TZNT alloy for surgical implant applications: A systematic review

Authors

  • Shima Nasibi Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
  • Kiana Alimohammadi Khajeh Nasir Toosi University of Technology (KNTU), Tehran, Iran
  • Leila Bazli School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
  • Sara Eskandarinezhad Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
  • Ali Mohammadi Department of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran ,Iran
  • Niloufar Sheysi Department of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran ,Iran

DOI:

https://doi.org/10.29252/jcc.2.2.1

Keywords:

TZNT alloy, Surgical implant, Biomedical

Abstract

Nowadays, Ti–Nb–Ta–Zr (TZNT) alloy have attracted attention as new titanium alloy material for surgical implant applications due to its biocompatibility, great corrosion behavior, low cytotoxicity, and enhanced wear resistance, biological and mechanical properties. There is a great need to improve the implant properties which can be achieved through a combined solution of titanium alloy (TNZT) with low elastic modulus in the physiological environment of the body. Moreover, it protects the surgical implant from inflammation, infection, adverse soft tissue reaction to particulate debris and implant fracture. Therefore this review aimed to improve the quality of the surgical implant applications to enhance the working life and prevent failure by adding four matrices containing niobium, zirconium, tantalum, and silicon. Hence, TZNT alloy can be developed to be a promising candidate for biomedical applications especially in surgical implant applications.

References

E. Sharifi Sedeh, S. Mirdamadi, F. Sharifianjazi, M. Tahriri, Synthesis and Evaluation of Mechanical and Biological Properties of Scaffold Prepared From Ti and Mg With Different Volume Percent, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 45(7) (2015) 1087-1091.

Z. Zheng, Z. Wang, W. Huang, Influence of load and sliding distance on the mi-cro-scale abrasive wear behavior of TZNT alloy, Journal of the Chinese Advanced Materials Society 4(1) (2016) 82-90.

L.C. Donaghy, R. McFadden, C.G. Smith, S. Kelaini, L. Carson, S. Malinov, A. Margariti, C.-W. Chan, Fibre Laser Treatment of Beta TNZT Titanium Alloys for Load-Bearing Implant Applications: Effects of Surface Physical and Chemical Features on Mesenchymal Stem Cell Response and Staphylococcus aureus Bacte-rial Attachment, Coatings 9(3) (2019).

L. Zhou, T. Yuan, J. Tang, J. He, R. Li, Mechanical and corrosion behavior of titanium alloys additively manufactured by selective laser melting – A comparison between nearly ? titanium, ? titanium and ? + ? titanium, Optics & Laser Technol-ogy 119 (2019) 105625.

M. Sowa, M. Parafiniuk, C.M.S. Mouzêlo, A. Kazek-K?sik, I.S. Zhidkov, A.I. Kukharenko, S.O. Cholakh, E.Z. Kurmaev, W. Simka, DC plasma electrolytic oxidation treatment of gum metal for dental implants, Electrochimica Acta 302 (2019) 10-20.

A. Zareidoost, M. Yousefpour, A study on the mechanical properties and corro-sion behavior of the new as-cast TZNT alloys for biomedical applications, Materi-als Science and Engineering: C 110 (2020) 110725.

S. Li, T.-h. Nam, Superelasticity and tensile strength of Ti-Zr-Nb-Sn alloys with high Zr content for biomedical applications, Intermetallics 112 (2019) 106545.

S.F. Jawed, C.D. Rabadia, Y.J. Liu, L.Q. Wang, P. Qin, Y.H. Li, X.H. Zhang, L.C. Zhang, Strengthening mechanism and corrosion resistance of beta-type Ti-S. Nasibi et al. / Journal of Composites and Compounds 2 (2020) 62-6867Nb-Zr-Mn alloys, Materials Science and Engineering: C 110 (2020) 110728.

Y.P. Sharkeev, V.A. Skripnyak, V.P. Vavilov, E.V. Legostaeva, A.A. Kozulin, A.O. Chulkov, A.Y. Eroshenko, O.A. Belyavskaya, V.V. Skripnyak, I.A. Glukhov, Special Aspects of Microstructure, Deformation and Fracture of Bioinert Zirconi-um and Titanium-Niobium Alloys in Different Structural States, Russian Physics Journal 61(9) (2019) 1718-1725.

T. Kokubo, S. Yamaguchi, Simulated body fluid and the novel bioactive ma-terials derived from it, Journal of Biomedical Materials Research Part A 107(5) (2019) 968-977.

A. Vladescu, M. Badea, S.C. Padmanabhan, G. Paraschiv, L. Floroian, L. Gaman, M.A. Morris, J.-L. Marty, C.M. Cotrut, Chapter 15 - Nanomaterials for medical applications and their antimicrobial advantages, in: A.-M. Holban, A.M. Grumezescu (Eds.), Materials for Biomedical Engineering, Elsevier2019, pp. 409-431.

A.S. Konopatsky, S.M. Dubinskiy, Y.S. Zhukova, V. Sheremetyev, V. Brai-lovski, S.D. Prokoshkin, M.R. Filonov, Ternary Ti-Zr-Nb and quaternary Ti-Zr-Nb-Ta shape memory alloys for biomedical applications: Structural features and cyclic mechanical properties, Materials Science and Engineering: A 702 (2017) 301-311.

V.T. Nguyen, M. Qian, Z. Shi, T. Song, L. Huang, J. Zou, A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA), Intermetallics 101 (2018) 39-43.

X. Meng, X. Wang, Y. Guo, S. Ma, W. Luo, X. Xiang, J. Zhao, Y. Zhou, Bio-compatibility Evaluation of a Newly Developed Ti-Nb-Zr-Ta-Si Alloy Implant, Journal of Biomaterials and Tissue Engineering 6(11) (2016) 861-869.

T. Nagase, M. Todai, T. Hori, T. Nakano, Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials, Journal of Alloys and Compounds 753 (2018) 412-421.

X. Song, C. Xiong, F. Zhang, Y. Nie, Y. Li, Strain induced martensite stabi-lization in ? Ti-Zr-Nb shape memory alloy, Materials Letters 259 (2020) 126914.

W.F. Oliveira, P.M.S. Silva, R.C.S. Silva, G.M.M. Silva, G. Machado, L.C.B.B. Coelho, M.T.S. Correia, Staphylococcus aureus and Staphylococcus epidermidis infections on implants, Journal of Hospital Infection 98(2) (2018) 111-117.

C. Lubov Donaghy, R. McFadden, S. Kelaini, L. Carson, A. Margariti, C.-W. Chan, Creating an antibacterial surface on beta TNZT alloys for hip implant applications by laser nitriding, Optics & Laser Technology 121 (2020) 105793.

C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Ap-plications, Wiley2006.

G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titani-um Alloys, ASM International1993.

A.P. Mouritz, Introduction to Aerospace Materials, Elsevier Science2012.

I. Polmear, D. StJohn, J.-F. Nie, M. Qian, 7 - Titanium Alloys, in: I. Pol-mear, D. StJohn, J.-F. Nie, M. Qian (Eds.), Light Alloys (Fifth Edition), Butter-worth-Heinemann, Boston, 2017, pp. 369-460.

I. Kopova, J. Stráský, P. Harcuba, M. Landa, M. Jane?ek, L. Ba?ákova, New-ly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility, Materials Science and Engineering: C 60 (2016) 230-238.

R. Santhosh, M. Geetha, V. Saxena, M.N. Rao, Effect of duplex aging on microstructure and mechanical behavior of beta titanium alloy Ti–15V–3Cr–3Al–3Sn under unidirectional and cyclic loading conditions, International Journal of Fatigue 73 (2015) 88-97.

A.E. Chaikh, P. Schmidt, H.J. Christ, Fatigue properties of duplex-aged Ti 38-644 metastable beta titanium alloy, Procedia Engineering 2(1) (2010) 1973-1982.

M.J. Donachie, Titanium: A Technical Guide, 2nd Edition, ASM Internation-al2000.

Y. Ren, S. Zhou, W. Luo, Z. Xue, Y. Zhang, Influence of primary ?-phase volume fraction on the mechanical properties of Ti-6Al-4V alloy at different strain rates and temperatures, IOP Conference Series: Materials Science and Engineer-ing, IOP Publishing, 2018, p. 022022.

Y. Chen, Z. Du, S. Xiao, L. Xu, J. Tian, Effect of aging heat treatment on mi-crostructure and tensile properties of a new ? high strength titanium alloy, Journal of alloys and compounds 586 (2014) 588-592.

C. Bo, S. Bing, L. Dong, Effect of heat treatment on microstructure and me-chanical properties of laser melting deposited TC17 titanium alloy, Chinese J La-sers 41(4) (2014) 0403001.

G. Srinivasu, Y. Natraj, A. Bhattacharjee, T. Nandy, G.N. Rao, Tensile and fracture toughness of high strength ? Titanium alloy, Ti–10V–2Fe–3Al, as a func-tion of rolling and solution treatment temperatures, Materials & Design 47 (2013) 323-330.

S. Sadeghpour, S. Abbasi, M. Morakabati, S. Bruschi, Correlation between alpha phase morphology and tensile properties of a new beta titanium alloy, Mate-rials & Design 121 (2017) 24-35.

V.K. Saxena, V. Radhakrishnan, Effect of phase morphology on fatigue crack growth behavior of ?-? titanium alloy—A crack closure rationale, Metallurgical and materials transactions A 29(1) (1998) 245-261.

S. Ankem, C. Greene, Recent developments in microstructure/property re-lationships of beta titanium alloys, Materials Science and Engineering: A 263(2) (1999) 127-131.

J. Tiley, T. Searles, E. Lee, S. Kar, R. Banerjee, J. Russ, H. Fraser, Quanti-fication of microstructural features in ?/? titanium alloys, Materials Science and Engineering: A 372(1-2) (2004) 191-198.

Y. Kawabe, S. Muneki, Strengthening capability of beta titanium alloys, Beta Titanium Alloys in the 1990’s1993.

E. Breslauer, A. Rosen, Relationship between microstructure and mechanical properties in metastable ? titanium 15–3 alloy, Materials science and technology 7(5) (1991) 441-446.

J. Ferrero, J. Wood, P. Russo, Microstructure/Mechanical property relation-ships in bar products of Beta-C trademark (Ti-3Al-8V-6Cr-4Mo-4Zr), Beta Titani-um Alloys in the 1990’s1993.

C. Sauer, G. Lütjering, Influence of ? layers at ? grain boundaries on me-chanical properties of Ti-alloys, Materials Science and Engineering: A 319 (2001) 393-397.

J.W. Foltz, B. Welk, P.C. Collins, H.L. Fraser, J.C. Williams, Formation of grain boundary ? in ? Ti alloys: its role in deformation and fracture behavior of these alloys, Metallurgical and Materials Transactions A 42(3) (2011) 645-650.

C.M. Branco, L.G. Rosa, Advances in Fatigue Science and Technology, Springer Netherlands2012.

R. Boyer, Applications of beta titanium alloys in airframes, The Minerals, Metal & Materials Society(USA) (1993) 335-346.

G. Lütjering, J. Albrecht, C. Sauer, T. Krull, The influence of soft, precipi-tate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior, Materials Science and Engineering: A 468 (2007) 201-209.

M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedi-cal applications, Journal of the mechanical behavior of biomedical materials 1(1) (2008) 30-42.

S. Shekhar, R. Sarkar, S.K. Kar, A. Bhattacharjee, Effect of solution treatment and aging on microstructure and tensile properties of high strength ? titanium al-loy, Ti–5Al–5V–5Mo–3Cr, Materials & Design 66 (2015) 596-610.

C. Tan, X. Li, Q. Sun, L. Xiao, Y. Zhao, J. Sun, Effect of ?-phase morphology on low-cycle fatigue behavior of TC21 alloy, International Journal of Fatigue 75 (2015) 1-9.

J. Gao, Y. Huang, D. Guan, A.J. Knowles, L. Ma, D. Dye, W.M. Rainforth, Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate, Acta Materialia 152 (2018) 301-314.

M.A.-H. Gepreel, Improved elasticity of new Ti-alloys for biomedical appli-cations, Materials Today: Proceedings 2 (2015) S979-S982.

S. Bahl, A.S. Krishnamurthy, S. Suwas, K. Chatterjee, Controlled nanoscale precipitation to enhance the mechanical and biological performances of a metasta-ble ? Ti-Nb-Sn alloy for orthopedic applications, Materials & Design 126 (2017) 226-237.

C. Xiong, P. Xue, B. Sun, Y. Li, Effect of annealing temperature on the mi-crostructure and superelasticity of Ti-19Zr-10Nb-1Fe alloy, Materials Science and Engineering: A 688 (2017) 464-469.

V. Cojocaru, D. Raducanu, T. Gloriant, D. Gordin, I. Cinca, Effects of cold-rolling deformation on texture evolution and mechanical properties of Ti–29Nb–9Ta–10Zr alloy, Materials Science and Engineering: A 586 (2013) 1-10.

J. Stráský, P. Harcuba, K. Václavová, K. Horváth, M. Landa, O. Srba, M. Jane?ek, Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O, Journal of the Mechanical Behavior of Biomedical Materials 71 (2017) 329-336.

A. Zareidoost, M. Yousefpour, Effect of cold rolling on the microstructure and texture evolution of as-cast (Ti55Zr25Nb10Ta10)99.5-Fe0.5 alloy, Materials Letters 259 (2020) 126876.

J. Li, L. Zhou, Z. Li, Corrosion behaviors of a new titanium alloy TZNT for surgical implant application in Ringer’s solution, Rare Metals 29(1) (2010) 37-44.

W. Weng, A. Biesiekierski, Y. Li, C. Wen, Effects of selected metallic and in-terstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications, Materialia 6 (2019) 100323.

W. Weng, A. Biesiekierski, J. Lin, S. Ozan, Y. Li, C. Wen, Impact of the rare earth elements scandium and yttrium on beta-type Ti-24Nb-38Zr-2Mo-base alloys for orthopedic applications, Materialia 9 (2020) 100586.

S. Acharya, A.G. Panicker, V. Gopal, S.S. Dabas, G. Manivasagam, S. Su-was, K. Chatterjee, Surface mechanical attrition treatment of low modulus Ti-Nb-Ta-O alloy for orthopedic applications, Materials Science and Engineering: C 110 (2020) 110729.

W. Xu, X. Lu, J. Tian, C. Huang, M. Chen, Y. Yan, L. Wang, X. Qu, C. Wen, Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications, Journal of Materials Science & Technology 41 (2020) 191-198.

J. Ureña, E. Tabares, S. Tsipas, A. Jiménez-Morales, E. Gordo, Dry sliding wear behaviour of ?-type Ti-Nb and Ti-Mo surfaces designed by diffusion treat-ments for biomedical applications, Journal of the Mechanical Behavior of Biomed-ical Materials 91 (2019) 335-344.

S. Acharya, A.G. Panicker, D.V. Laxmi, S. Suwas, K. Chatterjee, Study of the influence of Zr on the mechanical properties and functional response of Ti-Nb-Ta-Zr-O alloy for orthopedic applications, Materials & Design 164 (2019) 107555.

I. Çaha, A.C. Alves, P.A.B. Kuroda, C.R. Grandini, A.M.P. Pinto, L.A. Rocha, F. Toptan, Degradation behavior of Ti-Nb alloys: Corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina, Corrosion Science 167 (2020) 108488.

S. Ozan, J. Lin, Y. Li, Y. Zhang, K. Munir, H. Jiang, C. Wen, Deformation mechanism and mechanical properties of a thermomechanically processed ? Ti–28Nb–35.4Zr alloy, Journal of the Mechanical Behavior of Biomedical Materials 78 (2018) 224-234.

S.K. Kolawole, W. Hai, S. Zhang, Z. Sun, M.A. Siddiqui, I. Ullah, W. Song, F. Witte, K. Yang, Preliminary study of microstructure, mechanical properties and corrosion resistance of antibacterial Ti-15Zr-xCu alloy for dental application, Jour-nal of Materials Science & Technology 50 (2020) 31-43.

C.L. Donaghy, R. McFadden, G.C. Smith, S. Kelaini, L. Carson, S. Malin-ov, A. Margariti, C.-W. Chan, Fibre laser treatment of beta TNZT titanium alloys for load-bearing implant applications: Effects of surface physical and chemical features on mesenchymal stem cell response and Staphylococcus aureus bacterial attachment, Coatings 9(3) (2019) 186.

K. Zhang, Q. Van Le, Bioactive Glass Coated Zirconia for Dental Implants: a review, Composites and Compounds 2(1) (2020).

L. Bazli, H. Nargesi khoramabadi, A. Modarresi Chahardehi, H. Arsad, B. Malekpouri, M. Asgari Jazi, N. Azizabadi, Factors influencing the failure of dental implants: A Systematic Review, Composites and Compounds 2(1) (2020).

F. Sharifianjazi, A.H. Pakseresht, M. Shahedi Asl, A. Esmaeilkhanian, H. Nar-gesi khoramabadi, H.W. Jang, M. Shokouhimehr, Hydroxyapatite Consolidated by Zirconia: Applications for Dental Implant, Composites and Compounds 2(1) (2020).

J. Diaz-Marcos, 9 - Bone response to decontamination treatments for dental biomaterials, in: A. Piattelli (Ed.), Bone Response to Dental Implant Materials, Woodhead Publishing2017, pp. 163-184.

L. Gaviria, J.P. Salcido, T. Guda, J.L. Ong, Current trends in dental implants, J Korean Assoc Oral Maxillofac Surg 40(2) (2014) 50-60.

S. Rahimi, F. SharifianJazi, A. Esmaeilkhanian, M. Moradi, A.H. Safi Samgh-abadi, Effect of SiO2 content on Y-TZP/Al2O3 ceramic-nanocomposite proper-ties as potential dental applications, Ceramics International 46(8, Part A) (2020) 10910-10916.

M. Nejati, M.R. Rahimipour, I. Mobasherpour, A.H. Pakseresht, Microstruc-tural analysis and thermal shock behavior of plasma sprayed ceria-stabilized zir-conia thermal barrier coatings with micro and nano Al2O3 as a third layer, Surface and Coatings Technology 282 (2015) 129-138.

A.H. Pakseresht, A.H. Javadi, E. Ghasali, A. Shahbazkhan, S. Shakhesi, Eval-uation of hot corrosion behavior of plasma sprayed thermal barrier coatings with graded intermediate layer and double ceramic top layer, Surface and Coatings Technology 288 (2016) 36-45.

E.H. Jazi, R. Esalmi-Farsani, G. Borhani, F.S. Jazi, Synthesis and Character-ization of In Situ Al-Al13Fe4-Al2O3-TiB2 Nanocomposite Powder by Mechanical Alloying and Subsequent Heat Treatment, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 44(2) (2014) 177-184.

A. Esmaeilkhanian, F. Sharifianjazi, A. Abouchenari, A. Rouhani, N. Parvin, M. Irani, Synthesis and Characterization of Natural Nano-hydroxyapatite Derived from Turkey Femur-Bone Waste, Applied Biochemistry and Biotechnology 189(3) (2019) 919-932.

S. Bhasin, E. Perwez, S. Sachdeva, R. Mallick, Trends in prosthetic bioma-terials in implant dentistry, Journal of the International Clinical Dental Research Organization 7(3) (2015) 148-159.

A. Brizuela, M. Herrero-Climent, E. Rios-Carrasco, V.J. Rios-Santos, A.R. Pérez, M.J. Manero, J. Gil Mur, Influence of the Elastic Modulus on the Osseointe-gration of Dental Implants, Materials 12(6) (2019).

Y. Kirmanidou, M. Sidira, M.-E. Drosou, V. Bennani, A. Bakopoulou, A. Tsouknidas, N. Michailidis, K. Michalakis, New Ti-Alloys and Surface Modi-fications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review, BioMed Research International 2016 (2016) 2908570.

X. Wang, X. Meng, S. Chu, X. Xiang, Z. Liu, J. Zhao, Y. Zhou, Osseointegra-tion behavior of novel Ti–Nb–Zr–Ta–Si alloy for dental implants: an in vivo study, Journal of Materials Science: Materials in Medicine 27(9) (2016) 139.

Y.-f. Xu, Y.-f. Xiao, D.-q. Yi, H.-q. Liu, L. Wu, J. Wen, Corrosion behavior of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications in Ringer’s solution, Transac-tions of Nonferrous Metals Society of China 25(8) (2015) 2556-2563.

Article DOR: 20.1001.1.26765837.2020.2.3.1.1

Graphical Abstract

Downloads

Published

2020-06-24

How to Cite

Nasibi, S. ., Alimohammadi, K. ., Bazli, L., Eskandarinezhad, S. ., Mohammadi, A. ., & Sheysi, N. . (2020). TZNT alloy for surgical implant applications: A systematic review. Journal of Composites and Compounds, 2(3), 62–68. https://doi.org/10.29252/jcc.2.2.1

Issue

Section

Review Articles