Determination of Hg2+ by diphenylcarbazone compound in polymer film

Authors

  • Asghar Kazemzadeh Full professor, Department of semiconductors, Materials and Energy Research Center, Karaj, Iran
  • Hooman Kazemzadeh Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran

DOI:

https://doi.org/10.29252/jcc.1.1.5

Keywords:

Optical sensor, Mercury determination, Diphenylcarbazone compound, Cellulose acetate

Abstract

A sensitive optical sensor for determining Hg2+ concentration has been prepared by incorporating the indicator dye, diphenylcarbazone, into cellulose acetate polymer film. The sensor was fabricated by binding diphenylcarbazone to a cellulose acetate film that had been previously subjected to exhaustive base hydrolysis. The method is easy to perform and uses acetyl cellulose as a carrier. The results showed that the sensor has the ability to determine the Hg2+ concentration with ±6% error. Also, the adsorption capacity was 3.41 × 10-3 mmol/g.

References

I. Hofer, M. Gremaud, A. Marchese, S. Le Bouhellec, Determination of Mer-cury in Aerosol by Inductively Coupled Plasma Mass Spectrometry, Beiträge zur Tabakforschung International/Contributions to Tobacco Research 27(8) (2017) 186-194.

L. Yang, Y. Zhang, F. Wang, Z. Luo, S. Guo, U. Strähle, Toxicity of mercury: Molecular evidence, Chemosphere 245 (2020) 125586.

S. Koli, A. Prakash, S. Choudhury, R. Mandil, S.K. Garg, Mercury affects uter-ine myogenic activity even without producing any apparent toxicity in rats: In-volvement of calcium-signaling cascades, Journal of Trace Elements in Medicine and Biology 57 (2020) 40-47.

J. Kim, H. Lee, G. Park, H. Choi, S. Ji, D. Kil, Determination of the Toxic Level of Dietary Mercury and Prediction of Mercury Intake and Tissue Mercury Concentrations in Broiler Chickens Using Feather Mercury Concentrations, The Journal of Applied Poultry Research 28(4) (2019) 1240-1247.

P. Oliveira, A.V. Lírio, C. Canhoto, L. Guilhermino, Toxicity of mercury and post-exposure recovery in Corbicula fluminea: Neurotoxicity, oxidative stress and oxygen consumption, Ecological Indicators 91 (2018) 503-510.

C.M. Bulka, P.A. Bommarito, R.C. Fry, Predictors of toxic metal exposures among US women of reproductive age, Journal of Exposure Science & Environmental Epidemiology 29(5) (2019) 597-612.

S. Vennam, S. Georgoulas, A. Khawaja, S. Chua, N.G. Strouthidis, P.J. Foster, Heavy metal toxicity and the aetiology of glaucoma, Eye 34(1) (2020) 129-137.

M.A. Al-Ghouti, D. Da’ana, M. Abu-Dieyeh, M. Khraisheh, Adsorptive remov-al of mercury from water by adsorbents derived from date pits, Scientific reports 9(1) (2019) 1-15.

S.A. El-Safty, M. Shenashen, Mercury-ion optical sensors, TrAC Trends in Analytical Chemistry 38 (2012) 98-115.

S. Cinnirella, D. Bruno, N. Pirrone, M. Horvat, I. Živkovi?, D. Evers, S. John-son, E. Sunderland, Mercury concentrations in biota in the Mediterranean Sea, a compilation of 40 years of surveys, Scientific data 6(1) (2019) 1-11.

F. Kahrizi, A. Salimi, F. Noorbakhsh, M. Faizi, F. Mehri, P. Naserzadeh, N. Naderi, J. Pourahmad, Repeated administration of mercury intensifies brain dam-age in multiple sclerosis through mitochondrial dysfunction, Iranian journal of pharmaceutical research: IJPR 15(4) (2016) 834.

R. Raghuvanshi, A. Chaudhari, G.N. Kumar, Amelioration of cadmium-and mercury-induced liver and kidney damage in rats by genetically engineered pro-biotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid, Nutrition 32(11-12) (2016) 1285-1294.

M.N. Rana, J. Tangpong, M.M. Rahman, Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: a mini review, Toxicology reports 5 (2018) 704-713.

S. Orr, Potential Mechanisms of Inorganic Mercury Intoxication in Rat Kid-ney Cells, Mercer University, 2018.

D.G. Streets, Q. Zhang, Y. Wu, Projections of global mercury emissions in 2050, Environmental science & technology 43(8) (2009) 2983-2988.

F. Amélineau, D. Grémillet, A.M. Harding, W. Walkusz, R. Choquet, J. Fort, Arctic climate change and pollution impact little auk foraging and fitness across a decade, Scientific reports 9(1) (2019) 1014.

B. Smoli?ska, The influence of compost and nitrilotriacetic acid on mercury phytoextraction by Lepidium sativum L, Journal of Chemical Technology & Biotechnology 95(4) (2020) 950-958.

K. Leopold, M. Foulkes, P. Worsfold, Methods for the determination and speciation of mercury in natural waters—a review, Analytica chimica acta 663(2) (2010) 127-138.

M. de Godoi Pereira, M.A.Z. Arruda, Trends in preconcentration procedures for metal determination using atomic spectrometry techniques, Microchimica Acta 141(3-4) (2003) 115-131.

W. Geng, T. Nakajima, H. Takanashi, A. Ohki, Determination of mercury in ash and soil samples by oxygen flask combustion method–cold vapor atomic fluo-rescence spectrometry (CVAFS), Journal of hazardous materials 154(1-3) (2008) 325-330.

J. Górecki, P. Burmistrz, M. Trzaskowska, B. So?tys, J. Go?a?, Method devel-opment and validation for total mercury determination in coke oven gas combining a trap sampling method with CVAAS detection, Talanta 188 (2018) 293-298.

X. Lu, J. Zhao, X. Liang, L. Zhang, Y. Liu, X. Yin, X. Li, B. Gu, The Applica-tion and Potential Artifacts of Zeeman Cold Vapor Atomic Absorption Spectrom-etry in Mercury Stable Isotope Analysis, Environmental Science & Technology Letters 6(3) (2019) 165-170.

M. G?ogowska, R. Stawarz, Accumulation of mercury in women in relation age and state of health, Journal of Microbiology, Biotechnology and Food Sciences 2019 (2019) 19.

G. Aragay, J. Pons, A. Merkoçi, Recent trends in macro-, micro-, and nano-material-based tools and strategies for heavy-metal detection, Chemical reviews 111(5) (2011) 3433-3458.

H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Fluorescent and colorimetric sen-sors for detection of lead, cadmium, and mercury ions, Chemical Society Reviews 41(8) (2012) 3210-3244.

S. Yoon, A.E. Albers, A.P. Wong, C.J. Chang, Screening mercury levels in fish with a selective fluorescent chemosensor, Journal of the American Chemical Society 127(46) (2005) 16030-16031.

L. Feng, Y. Zhang, L. Wen, Z. Shen, Y. Guan, Colorimetric determination of copper (II) ions by filtration on sol–gel membrane doped with diphenylcarbazide, Talanta 84(3) (2011) 913-917.

G. Peng, Y. Chen, R. Deng, Q. He, D. Liu, Y. Lu, J.-M. Lin, Highly sensitive and selective determination of Hg (II) based on microfluidic chip with on-line flu-orescent derivatization, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 204 (2018) 1-6.

D. Huang, X. Liu, C. Lai, L. Qin, C. Zhang, H. Yi, G. Zeng, B. Li, R. Deng, S. Liu, Colorimetric determination of mercury (II) using gold nanoparticles and double ligand exchange, Microchimica Acta 186(1) (2019) 31.

H. Xia, C. Li, H. Chen, Green preparation of CuI particles in dielectric bar-rier discharge for colorimetric determination of trace mercury in comparison with atomic fluorescence spectrometric determination, Microchemical Journal 146 (2019) 1169-1172.

C. Wang, G. Tang, H. Tan, Colorimetric determination of mercury (II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state ceri-um-based metal-organic framework, Microchimica Acta 185(10) (2018) 475.

E. Soršak, J. Volmajer Valh, Š. Korent Urek, A. Lobnik, Design and Investi-gation of Optical Properties of N-(Rhodamine-B)-Lactam-Ethylenediamine (RhB-EDA) Fluorescent Probe, Sensors 18(4) (2018) 1201.

M. Saqib, S. Bashir, H. Li, C. Li, S. Wang, Y. Jin, Efficient Electrogenerated Chemiluminescence of Tris (2, 2?-bipyridine) ruthenium (II) with N-Hydroxysul-fosuccinimide as a Coreactant for Selective and Sensitive Detection of l-Proline and Mercury (II), Analytical chemistry 91(19) (2019) 12517-12524.

M. Tsetsoni, E. Roditi, C. Kokkinos, A. Economou, Microfabricated Au-Film Sensors for the Voltammetric Determination of Hg (II), Multidisciplinary Digital Publishing Institute Proceedings 2(13) (2018) 1518.

Y. Zhang, R. Qiao, C. Sheng, H. Zhao, Technologies for detection of HRPs in wastewater, High-Risk Pollutants in Wastewater, Elsevier2020, pp. 79-100.

A. Waheed, M. Mansha, N. Ullah, Nanomaterials-based electrochemical de-tection of heavy metals in water: current status, challenges and future direction, TrAC Trends in Analytical Chemistry 105 (2018) 37-51.

Y.-W. Lin, C.-C. Huang, H.-T. Chang, Gold nanoparticle probes for the detec-tion of mercury, lead and copper ions, Analyst 136(5) (2011) 863-871.

P.D. Selid, H. Xu, E.M. Collins, M. Striped Face-Collins, J.X. Zhao, Sens-ing mercury for biomedical and environmental monitoring, Sensors 9(7) (2009) 5446-5459.

L. Rassaei, F. Marken, M. Sillanpää, M. Amiri, C.M. Cirtiu, M. Sillanpää, Nanoparticles in electrochemical sensors for environmental monitoring, TrAC Trends in Analytical Chemistry 30(11) (2011) 1704-1715.

A. Economou, Recent developments in on-line electrochemical stripping anal-ysis—An overview of the last 12 years, Analytica Chimica Acta 683(1) (2010) 38-51.

N.Y. Stozhko, N.A. Malakhova, M.V. Fyodorov, K.Z. Brainina, Modified carbon-containing electrodes in stripping voltammetry of metals, Journal of Solid State Electrochemistry 12(10) (2008) 1185-1204.

Y. Kostov, A. Neykov, Rapid Covalent Method for Fabrication of Optical pH Sensitive Membranes, Analytical Letters 33(3) (2000) 413-423.

Y. Jiang, H. Zhang, Q. He, Z. Hu, X. Chang, Selective solid-phase extraction of trace mercury (II) using a silica gel modified with diethylenetriamine and thiourea, Microchimica Acta 178(3-4) (2012) 421-428.

M. Otto, J. Stach, R. Kirmse, Mechanism and kinetics of the vanadium-cata-lyzed o-dianisidine—t-butyl hydroperoxide reaction in non-aqueous media, Ana-lytica Chimica Acta 147 (1983) 277-286.

O. Güney, F.Ç. Cebeci, Molecularly imprinted fluorescent polymers as che-mosensors for the detection of mercury ions in aqueous media, Journal of applied polymer science 117(4) (2010) 2373-2379.

J. Fan, Y. Qin, C. Ye, P. Peng, C. Wu, Preparation of the diphenylcarba-zone-functionalized silica gel and its application to on-line selective solid-phase extraction and determination of mercury by flow-injection spectrophotometry, Journal of hazardous materials 150(2) (2008) 343-350.

L. Mergola, S. Scorrano, E. Bloise, M.P. Di Bello, M. Catalano, G. Vasapollo, R. Del Sole, Novel polymeric sorbents based on imprinted Hg (II)-diphenylcarba-zone complexes for mercury removal from drinking water, Polymer Journal 48(1) (2016) 73.

Article DOR: 20.1001.1.26765837.2019.1.1.5.4

Graphycal Abstract

Downloads

Published

2019-12-29

How to Cite

Kazemzadeh, A., & Kazemzadeh, H. (2019). Determination of Hg2+ by diphenylcarbazone compound in polymer film. Journal of Composites and Compounds, 1(1), 27–30. https://doi.org/10.29252/jcc.1.1.5

Issue

Section

Article