Bredigite-containing materials for regenerative medicine applications: A rapid review

Authors

  • AmirHosein Shahbaz Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
  • Neda Tajbakhsh Department of Prosthodontics, School of Dentistry, Islamic Azad University, Tehran Dental Branch, Tehran, Iran https://orcid.org/0009-0001-3156-8833
  • Aidin Doroudi Polymer and Color Engineering Department, Amirkabir University of Technology, Tehran, Iran https://orcid.org/0009-0003-7727-3963
  • Fatemeh Bakhshi Polymer and Color Engineering Department, Amirkabir University of Technology, Tehran, Iran https://orcid.org/0009-0005-5528-1588
  • Samira Ranjbar Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran

DOI:

https://doi.org/10.61186/jcc.5.3.4

Keywords:

Bredigite, Regenerative Medicine, Dental Implants, Composites

Abstract

Bredigite (Br; Ca7MgSi4O16) is known as one of the most popular calcium-silicate bioceramics. It has an orthorhombic structure containing calcium silicate magnesium compound, and releases Si ions, thereby inducing precursor cell differentiation and cell growth. This in turn suggests that Br may serve as a promising material for existing orthopedic and dental implants. A new insight into the Br composites structure/activity/application tradeoff is the primary objective of the current review, which helps researchers overcome the existing challenges and recognize the bottlenecks that arose from this intersection. In this rapid review, the state-of-the-art advances in Br-containing composites in terms of preparation techniques and modifying methods for enhancing their functional properties, especially in the field of dental implants are surveyed and discussed.

References

S. Amirfarhangi, A. Vakili, L. Radfar, N. Tajbakhsh, Golden proportion and facial esthetic, the harmony and surgical considerations: A review, World Journal of Biology, Pharmacy and Health Sciences 11(01) (2022) 018–021.

N. Tajbakhsh, F. Delpisheh, N. Ghadimi, S. Ansari, Smile management: White esthetic, pink esthetic and facial attractiveness, a review of literature, Open Access Research Journal of Biology and Pharmacy 05(02) (2022) 046–050.

A.B. Berezow, R.P. Darveau, Microbial shift and periodontitis, Periodontol 2000 55(1) (2011) 36-47.

A. Murua, E. Herran, G. Orive, M. Igartua, F.J. Blanco, J.L. Pedraz, R.M. Hernandez, Design of a composite drug delivery system to prolong functionality of cell-based scaffolds, International Journal of Pharmaceutics 407(1) (2011) 142-150.

Y. Zhou, C. Wu, X. Zhang, P. Han, Y. Xiao, The ionic products from bredigite bioceramics induced cementogenic differentiation of periodontal ligament cells via activation of the Wnt/b-catenin signalling pathway, Journal of Materials Chemistry B 1(27) (2013) 3380-3389.

Y. Tamaki, T. Nakahara, H. Ishikawa, S. Sato, In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow, Odontology 101(2) (2013) 121-132.

L. Liu, J. Ling, X. Wei, L. Wu, Y. Xiao, Stem Cell Regulatory Gene Expression in Human Adult Dental Pulp and Periodontal Ligament Cells Undergoing Odontogenic/Osteogenic Differentiation, Journal of Endodontics 35(10) (2009) 13681376.

J. Nunez, S. Sanz-Blasco, F. Vignoletti, F. Munoz, H. Arzate, C. Villalobos, L. Nunez, R.G. Caffesse, M. Sanz, Periodontal regeneration following implantation of cementum and periodontal ligament-derived cells, Journal of Periodontal Research 47(1) (2012) 33-44.

C. Wu, Y. Zhou, C. Lin, J. Chang, Y. Xiao, Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering, Acta Biomaterialia 8(10) (2012) 3805-3815.

L.L. Hench, J.M. Polak, Third-Generation Biomedical Materials, Science 295(5557) (2002) 1014-1017.

K. Ji, Y. Liu, W. Lu, F. Yang, J. Yu, X. Wang, Q. Ma, Z. Yang, L. Wen, K. Xuan, Periodontal tissue engineering with stem cells from the periodontal ligament of human retained deciduous teeth, Journal of Periodontal Research 48(1) (2013) 105-116.

C. Wu, J. Chang, W. Zhai, S. Ni, A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering, Journal of Materials Science: Materials in Medicine 18(5) (2007) 857-864.

K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, H. Kobayashi, Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits, Biomaterials 23(2) (2002) 407-412.

M. Saito, H. Shimizu, M. Beppu, M. Takagi, The role of B-tricalcium phosphate in vascularized periosteum, Journal of Orthopaedic Science 5(3) (2000) 275282.

K. Ohura, M. Bohner, P. Hardouin, J. Lemaître, G. Pasquier, B. Flautre, Resorption of, and bone formation from, new B-tricalcium phosphate-monocalcium phosphate cements: An in vivo study, Journal of Biomedical Materials Research 30(2) (1996) 193-200.

K. Ohsawa, M. Neo, H. Matsuoka, H. Akiyama, H. Ito, H. Kohno, T. Nakamura, The expression of bone matrix protein mRNAs around B-TCP particles implanted into bone, Journal of Biomedical Materials Research 52(3) (2000) 460-466.

X. Zhang, Y. Li, X. Dong, H. Wang, B. Chen, R. Li, Y. Qin, O. Ivasishin, 3D-printed bioactive ceramic scaffolds with MoSe2 nanocrystals as photothermal agents for bone tumor therapy, RSC Advances 12(47) (2022) 30588-30597.

C. Wu, J. Chang, Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics, Journal of Biomedical Materials Research Part B: Applied Biomaterials 83B(1) (2007) 153-160.

V. Kahlenberg, I. Galuskina, B. Krüger, A. Pauluhn, E. Galuskin, Structural investigations on bredigite from the Hatrurim Complex, Mineralogy and Petrology 113(2) (2019) 261-272.

G. Kaur, V. Kumar, F. Baino, J.C. Mauro, G. Pickrell, I. Evans, O. Bretcanu, Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges, Materials Science and Engineering: C 104 (2019) 109895.

A. Hamidi, K. Parham, U. Atikol, A.H. Shahbaz, A parametric performance analysis of single and multi-effect distillation systems integrated with open-cycle absorption heat transformers, Desalination 371 (2015) 37-45.

M. Paidar, S. Ghavamian, O.O. Ojo, A. Khorram, A. Shahbaz, Modified friction stir clinching of dissimilar AA2024-T3 to AA7075-T6: Effect of tool rotational speed and penetration depth, Journal of Manufacturing Processes 47 (2019) 157-171.

A. Shahbaz, M. Abbasi, H. Sabet, Effect of microstructure on mechanical, electrochemical, and biological properties of Ti/HA surface composites fabricated by FSP method, Materials Today Communications 37 (2023) 107305.

A.H. Shahbaz, M. Esmaeilian, R. NasrAzadani, K. Gavanji, Effect of MgF2 addition on the mechanical properties of hydroxyapatite synthesized via powder metallurgy, Journal of Composites and Compounds 1(1) (2019) 16-21.

C. Wu, J. Chang, Synthesis and In vitro Bioactivity of Bredigite Powders, Journal of Biomaterials Applications 21(3) (2007) 251-263.

C. Wu, J. Chang, J. Wang, S. Ni, W. Zhai, Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic, Biomaterials 26(16) (2005) 2925-2931.

M. Kheradmandfard, S.F. Kashani-Bozorg, M.R. Barati, S. Sarfarazijami, A novel strategy for fast and facile synthesis of bioactive bredigite nanoparticles using microwave-assisted method, Journal of Materials Research and Technology 25 (2023) 1735-1747.

X. Bao, M. He, Z. Zhang, X. Liu, Crystal Structure and Some Thermodynamic Properties of Ca7MgSi4O16-Bredigite, Crystals 11(1) (2021) 14.

D. Yi, C. Wu, B. Ma, H. Ji, X. Zheng, J. Chang, Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility, Journal of Biomaterials Applications 28(9) (2014) 1343-1353.

S.N. Dezfuli, Z. Huan, A. Mol, S. Leeflang, J. Chang, J. Zhou, Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications, Materials Science and Engineering: C 79 (2017) 647-660.

P.B. Moore, T. Araki, The crystal structute of bredigite and the genealogy of some alkaline earth orthosilicates, American Mineralogist 61(1-2) (1976) 74-87.

M.P. Saradhi, U.V. Varadaraju, Photoluminescence Studies on Eu2+-Activated Li2SrSiO4 a Potential Orange-Yellow Phosphor for Solid-State Lighting, Chemistry of Materials 18(22) (2006) 5267-5272.

J.K. Park, K.J. Choi, C.H. Kim, H.D. Park, S.Y. Choi, Optical Properties of Eu2+ -Activated Sr2SiO4 Phosphor for Light-Emitting Diodes, Electrochemical and Solid-State Letters 7(5) (2004) H15.

K.H. Lee, S. Choi, H.-K. Jung, W.B. Im, Bredigite-structure Ca14Mg2[SiO4]8:Eu2+,Mn2+: A tunable green–red-emitting phosphor with efficient energy transfer for solid-state lighting, Acta Materialia 60(16) (2012) 5783-5790.

K.H. Lee, S.H. Park, H.S. Yoon, Y.-I. Kim, H.G. Jang, W.B. Im, Bredigite-structure orthosilicate phosphor as a green component for white LED: the structural and optical properties, Optics Express 20(6) (2012) 6248-6257.

K.H. Lee, W.B. Im, Efficiency Enhancement of Bredigite-Structure Ca14Mg2[SiO4]8:Eu2+ Phosphor via Partial Nitridation for Solid-State Lighting Applications, Journal of the American Ceramic Society 96(2) (2013) 503-508.

S.J. Kim, H.S. Jang, S. Unithrattil, Y.H. Kim, W.B. Im, Enhanced Optical Properties of Bredigite-Structure Ca13.7Eu0.3Mg2[SiO4]8 Phosphor: Effective Eu Reduction by La Co-Doping, Journal of the American Ceramic Society 99(2) (2016) 557-563.

M. Kouhi, V. Jayarama Reddy, M. Fathi, M. Shamanian, A. Valipouri, S. Ramakrishna, Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/fibrinogen/bredigite nanofibrous membranes and their integration with osteoblasts for guided bone regeneration, Journal of Biomedical Materials Research Part A 107(6) (2019) 11541165.

W.A. Jiranek, A.D. Hanssen, A.S. Greenwald, Current concepts review: Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement, Journal of Bone and Joint Surgery 88(11) (2006) 2487-2500.

M.E. Hake, H. Young, D.J. Hak, P.F. Stahel, E.M. Hammerberg, C. Mauffrey, Local antibiotic therapy strategies in orthopaedic trauma: Practical tips and tricks and review of the literature, Injury 46(8) (2015) 1447-1456.

A. Bolandparvaz Jahromi, E. Salahinejad, Competition of carrier bioresorption and drug release kinetics of vancomycin-loaded silicate macroporous microspheres to determine cell biocompatibility, Ceramics International 46(16, Part A) (2020) 26156-26159.

M. Diba, O.-M. Goudouri, F. Tapia, A.R. Boccaccini, Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications, Current Opinion in Solid State and Materials Science 18(3) (2014) 147-167.

M. Diba, F. Tapia, A.R. Boccaccini, L.A. Strobel, Magnesium-Containing Bioactive Glasses for Biomedical Applications, International Journal of Applied Glass Science 3(3) (2012) 221-253.

C. Wu, H. Zreiqat, Porous bioactive diopside (CaMgSi2O6) ceramic microspheres for drug delivery, Acta Biomaterialia 6(3) (2010) 820-829.

N. Zirak, A. Bolandparvaz Jahromi, E. Salahinejad, Vancomycin release kinetics from Mg–Ca silicate porous microspheres developed for controlled drug delivery, Ceramics International 46(1) (2020) 508-512.

S.-W. Choi, Y. Zhang, Y.-C. Yeh, A. Lake Wooten, Y. Xia, Biodegradable porous beads and their potential applications in regenerative medicine, Journal of Materials Chemistry 22(23) (2012) 11442-11451.

N. Zirak, A.M. Maadani, E. Salahinejad, N. Abbasnezhad, M. Shirinbayan, Fabrication, drug delivery kinetics and cell viability assay of PLGA-coated vancomycin-loaded silicate porous microspheres, Ceramics International 48(1) (2022) 48-54.

A. Jadidi, F. Davoodian, E. Salahinejad, Effect of poly lactic-co-glycolic acid encapsulation on drug delivery kinetics from vancomycin-impregnated Ca-Mg silicate scaffolds, Progress in Organic Coatings 149 (2020) 105970.

A. Jadidi, E. Salahinejad, E. Sharifi, L. Tayebi, Drug-delivery Ca-Mg silicate scaffolds encapsulated in PLGA, International Journal of Pharmaceutics 589 (2020) 119855.

T. Sopcak, L. Medvecky, P. Jevinova, M. Giretova, A. Mahun, L. Kobera, R. Stulajterova, F. Kromka, V. Girman, M. Balaz, Physico-chemical, mechanical and antibacterial properties of the boron modified biphasic larnite/bredigite cements for potential use in dentistry, Ceramics International 49(4) (2023) 6531-6544.

T. Sopcak, I. Shepa, T. Csanádi, L. Medvecky, M. Giretova, V. Kucharova, R. Sedlak, K. Balazsi, R. Stulajterova, M. Streckova, Influence of boron addition on the phase transformation, microstructure, mechanical and in-vitro cellular properties of bredigite-type coatings deposited by a spin coating technique, Materials Chemistry and Physics 283 (2022) 126049.

L. Chen, L. Liu, C. Wu, R. Yang, J. Chang, X. Wei, The extracts of bredigite bioceramics enhanced the pluripotency of human dental pulp cells, Journal of Biomedical Materials Research Part A 105(12) (2017) 3465-3474.

P. Srinath, P. Abdul Azeem, K. Venugopal Reddy, Review on calcium silicate-based bioceramics in bone tissue engineering, International Journal of Applied Ceramic Technology 17(5) (2020) 2450-2464.

X.-H. Huang, J. Chang, Preparation of nanocrystalline bredigite powders with apatite-forming ability by a simple combustion method, Materials Research Bulletin 43(6) (2008) 1615-1620.

M. Rahmati, M. Fathi, M. Ahmadian, Preparation and structural characterization of bioactive bredigite (Ca7MgSi4O16) nanopowder, Journal of Alloys and Compounds 732 (2018) 9-15.

A. Khandan, N. Ozada, Bredigite-Magnetite (Ca7MgSi4O16-Fe3O4) nanoparticles: A study on their magnetic properties, Journal of Alloys and Compounds 726 (2017) 729-736.

S. Sahmani, A. Khandan, S. Saber-Samandari, M.M. Aghdam, Nonlinear bending and instability analysis of bioceramics composed with magnetite nanoparticles: Fabrication, characterization, and simulation, Ceramics International 44(8) (2018) 9540-9549.

F. Tavangarian, R. Emadi, Mechanism of nanostructure bredigite formation by mechanical activation with thermal treatment, Materials Letters 65(15) (2011) 2354-2356.

D. He, C. Zhuang, C. Chen, S. Xu, X. Yang, C. Yao, J. Ye, C. Gao, Z. Gou, Rational Design and Fabrication of Porous Calcium–Magnesium Silicate Constructs That Enhance Angiogenesis and Improve Orbital Implantation, ACS Biomaterials Science & Engineering 2(9) (2016) 1519-1527.

Y. Shen, Z. Wang, J. Wang, Y. Zhou, H. Chen, C. Wu, M. Haapasalo, Bifunctional bioceramics stimulating osteogenic differentiation of a gingival fibroblast and inhibiting plaque biofilm formation, Biomaterials Science 4(4) (2016) 639651.

S. Hu, C. Ning, Y. Zhou, L. Chen, K. Lin, J. Chang, Antibacterial activity of silicate bioceramics, Journal of Wuhan University of Technology-Mater. Sci. Ed. 26(2) (2011) 226-230.

R. Keihan, E. Salahinejad, Inorganic-salt coprecipitation synthesis, fluoride-doping, bioactivity and physiological pH buffering evaluations of bredigite, Ceramics International 46(9) (2020) 13292-13296.

M. Kouhi, M. Shamanian, M. Fathi, A. Samadikuchaksaraei, A. Mehdipour, Synthesis, Characterization, In Vitro Bioactivity and Biocompatibility Evaluation of Hydroxyapatite/Bredigite (Ca7MgSi4O16) Composite Nanoparticles, JOM 68(4) (2016) 1061-1070.

S.N. Dezfuli, S. Leeflang, Z. Huan, J. Chang, J. Zhou, Fabrication of novel magnesium-matrix composites and their mechanical properties prior to and during in vitro degradation, Journal of the Mechanical Behavior of Biomedical Materials 67 (2017) 74-86.

Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Materials Science and Engineering: C 31(7) (2011) 1245-1256.

H. Ghomi, R. Emadi, Fabrication of bioactive porous bredigite (Ca7MgSi4O16) scaffold via space holder method, International Journal of Materials Research 109(3) (2018) 257-264.

A. Mansourighasri, N. Muhamad, A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, Journal of Materials Processing Technology 212(1) (2012) 83-89.

M. Kouhi, M. Fathi, V. Jayarama Reddy, S. Ramakrishna, Bredigite Reinforced Electrospun Nanofibers for Bone Tissue Engineering, Materials Today: Proceedings 7 (2019) 449-454.

M. Kouhi, M. Fathi, M.P. Prabhakaran, M. Shamanian, S. Ramakrishna, Poly L lysine-modified PHBV based nanofibrous scaffolds for bone cell mineralization and osteogenic differentiation, Applied Surface Science 457 (2018) 616-625.

A. Khademhosseini, R. Langer, A decade of progress in tissue engineering, Nature Protocols 11(10) (2016) 1775-1781.

B. Baumann, T. Jungst, S. Stichler, S. Feineis, O. Wiltschka, M. Kuhlmann, M. Linden, J. Groll, Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds, Angewandte Chemie International Edition 56(16) (2017) 4623-4628.

Y. Zhang, D. Zhai, M. Xu, Q. Yao, H. Zhu, J. Chang, C. Wu, 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity, Biofabrication 9(2) (2017) 025037.

I. Sabree, J.E. Gough, B. Derby, Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions, Ceramics International 41(7) (2015) 8425-8432.

R. Wang, P. Zhu, W. Yang, S. Gao, B. Li, Q. Li, Direct-writing of 3D periodic TiO2 bio-ceramic scaffolds with a sol-gel ink for in vitro cell growth, Materials and Design 144 (2018) 304-309.

C. Qin, D. Che, D. Liu, Z. Zhang, Y. Feng, Preparation and characterization of different micro/nano structures on the surface of bredigite scaffolds, Scientific Reports 13(1) (2023) 9072.

D. Liu, X. Zhou, F. Wang, Y. Feng, Y. Shi, Research and analysis of the properties of bredigite-based 3D-printed bone scaffolds, IJB 9(3) (2023). [77] Y. Xuan, L. Li, C. Zhang, M. Zhang, J. Cao, Z. Zhang, The 3D-Printed Ordered Bredigite Scaffold Promotes Pro-Healing of Critical-Sized Bone Defects by Regulating Macrophage Polarization, International Journal of Nanomedicine 18(null) (2023) 917-932.

S.L. Sing, W.Y. Yeong, F.E. Wiria, B.Y. Tay, Z. Zhao, L. Zhao, Z. Tian, S. Yang, Direct selective laser sintering and melting of ceramics: a review, Rapid Prototyping Journal 23(3) (2017) 611-623.

S.L. Sing, F.E. Wiria, W.Y. Yeong, Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior, Robotics and Computer-Integrated Manufacturing 49 (2018) 170-180.

Q. Shi, D. Gu, M. Xia, S. Cao, T. Rong, Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites, Optics & Laser Technology 84 (2016) 9-22.

Y. Yang, F. Yuan, C. Gao, P. Feng, L. Xue, S. He, C. Shuai, A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying, Journal of the Mechanical Behavior of Biomedical Materials 82 (2018) 51-60.

Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.-G. Jung, J.-H. Lee, J. Zhang, Additive Manufacturing of Metallic Materials: A Review, Journal of Materials Engineering and Performance 27(1) (2018) 1-13.

C. Gao, M. Yao, C. Shuai, S. Peng, Y. Deng, Nano-SiC reinforced Zn biocomposites prepared via laser melting: Microstructure, mechanical properties and biodegradability, Journal of Materials Science & Technology 35(11) (2019) 26082617.

C. Shuai, Y. Li, Y. Yang, S. Peng, W. Yang, F. Qi, S. Xiong, H. Liang, L. Shen, Bioceramic enhances the degradation and bioactivity of iron bone implant, Materials Research Express 6(11) (2019) 115401.

A.R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, Electrophoretic deposition of biomaterials, Journal of The Royal Society Interface 7(suppl_5) (2010) S581-S613.

I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, Journal of the European Ceramic Society 28(7) (2008) 1353-1367.

C.T. Kwok, P.K. Wong, F.T. Cheng, H.C. Man, Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied Surface Science 255(13) (2009) 6736-6744.

Q. Chen, L. Cordero-Arias, J.A. Roether, S. Cabanas-Polo, S. Virtanen, A.R. Boccaccini, Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition, Surface and Coatings Technology 233 (2013) 49-56.

M. Razavi, M. Fathi, O. Savabi, L. Tayebi, D. Vashaee, Biodegradable Magnesium Bone Implants Coated with a Novel Bioceramic Nanocomposite, Materials 13(6) (2020) 1315.

W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research 19(1) (2004) 3-20.

F.A.b.A. Azam, R. Shamsudin, Preliminary study of raw material for calcium silicate/PVA coating on Ti-6Al-4V alloy, AIP Conference Proceedings 1678(1) (2015).

N. Iqbal, R. Nazir, A. Asif, A.A. Chaudhry, M. Akram, G.Y. Fan, A. Akram, R. Amin, S.H. Park, R. Hussain, Electrophoretic deposition of PVA coated hydroxyapatite on 316L stainless steel, Current Applied Physics 12(3) (2012) 755-759.

H. Pingan, J. Mengjun, Z. Yanyan, H. Ling, A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength, RSC Advances 7(5) (2017) 2450-2459.

A. Timofejeva, M. D’Este, D. Loca, Calcium phosphate/polyvinyl alcohol composite hydrogels: A review on the freeze-thawing synthesis approach and applications in regenerative medicine, European Polymer Journal 95 (2017) 547-565.

C. Gao, M. Yao, S. Li, P. Feng, S. Peng, C. Shuai, Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting, Journal of Advanced Research 20 (2019) 91-104.

M. Razavi, M. Fathi, O. Savabi, L. Tayebi, D. Vashaee, Improvement of in vitro behavior of an Mg alloy using a nanostructured composite bioceramic coating, Journal of Materials Science: Materials in Medicine 29(10) (2018) 159.

C. Deng, R. Lin, M. Zhang, C. Qin, Q. Yao, L. Wang, J. Chang, C. Wu, Micro/ Nanometer-Structured Scaffolds for Regeneration of Both Cartilage and Subchondral Bone, Advanced Functional Materials 29(4) (2019) 1806068.

A. Khandan, N. Ozada, S. Saber-Samandari, M. Ghadiri Nejad, On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds, Ceramics International 44(3) (2018) 3141-3148.

E. Askari, M. Rasouli, S.F. Darghiasi, S.M. Naghib, Y. Zare, K.Y. Rhee, Reduced graphene oxide-grafted bovine serum albumin/bredigite nanocomposites with high mechanical properties and excellent osteogenic bioactivity for bone tissue engineering, Bio-Design and Manufacturing 4(2) (2021) 243-257.

M. Kouhi, M.P. Prabhakaran, M. Shamanian, M. Fathi, M. Morshed, S. Ramakrishna, Electrospun PHBV nanofibers containing HA and bredigite nanoparticles: Fabrication, characterization and evaluation of mechanical properties and bioactivity, Composites Science and Technology 121 (2015) 115-122.

M. Kouhi, M. Fathi, M.P. Prabhakaran, M. Shamanian, S. Ramakrishna, Enhanced proliferation and mineralization of human fetal osteoblast cells on PHBV-bredigite nanofibrous scaffolds, Materials Today: Proceedings 5(7, Part 3) (2018) 15702-15709.

M. Kouhi, V. Jayarama Reddy, S. Ramakrishna, GPTMS-Modified Bredigite/PHBV Nanofibrous Bone Scaffolds with Enhanced Mechanical and Biological Properties, Applied Biochemistry and Biotechnology 188(2) (2019) 357-368.

M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, Improvement of Biodegradability, Bioactivity, Mechanical Integrity and Cytocompatibility Behavior of Biodegradable Mg Based Orthopedic Implants Using Nanostructured Bredigite (Ca7MgSi4O16) Bioceramic Coated via ASD/EPD Technique, Annals of Biomedical Engineering 42(12) (2014) 2537-2550.

M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, Regenerative influence of nanostructured bredigite (Ca7MgSi4O16)/anodic spark coating on biodegradable AZ91 magnesium alloy implants for bone healing, Materials Letters 155 (2015) 97-101.

A. Nadi, M. Khodaei, M. Javdani, S.A. Mirzaei, M. Soleimannejad, L. Tayebi, S. Asadpour, Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration, International Journal of Biological Macromolecules 219 (2022) 1319-1336.

M. Eilbagi, R. Emadi, K. Raeissi, M. Kharaziha, A. Valiani, Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration, Materials Science and Engineering: C 68 (2016) 603-612.

A. Jadidi, E. Salahinejad, Mechanical strength and biocompatibility of bredigite (Ca7MgSi4O16) tissue-engineering scaffolds modified by aliphatic polyester coatings, Ceramics International 46(10, Part B) (2020) 16439-16446.

Downloads

Published

2023-06-29

How to Cite

Shahbaz, A., Tajbakhsh, N., Doroudi, A., Bakhshi, F., & Ranjbar, S. (2023). Bredigite-containing materials for regenerative medicine applications: A rapid review. Journal of Composites and Compounds, 5(16), 190–199. https://doi.org/10.61186/jcc.5.3.4

Issue

Section

Review Articles

Categories