Nickel sulfide-based composite as electrodes in electrochemical sensors: A review


  • Maryam Irandoost Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
  • Beena Kumari Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, Haryana, India -123401
  • Tuyen Truong Applied Physical Chemistry Laboratory (APCLAB), VNUHCM-University of Science, Ho Chi Minh City, Vietnam
  • Bhishma Karki Department of Physics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal
  • Md Rahimullah Miah Department of IT in Health, North East Medical College and Hospital, Affiliated with Sylhet Medical University, Sylhet, Bangladesh



Nickel sulfide, Composite, Electrode, Sensor, Energy Device


 Nickel sulfide (NiS) is an extremely a transition metal sulfide with great potential use as a sensor material because of its exceptional conductivity and stability. Herein, we present first, the all of synthesis of NiS into sensor and biosensor. Electrochemical sensor, Due to the fact that disposal to electrolyte during electrochemical impact can rapidly deform NiS, lowering its electroactivity and measurement repeatability, a method for effectively integrating NiS into sensors is crucial. Then, the main focus of this review is the recent advancements in sensor systems that utilize NiS and its composites. The article discusses the correlation between sensing performance and electrode construction strategies, and identifies shortcomings and limitations in the current applications of these sensors. Based on this analysis, the authors suggest potential future directions and areas for further research in the development of NiS-based sensors. This study focused on developments in NiS-based sensor systems and their composites throughout the past articles. The article investigates the correlation between the way electrodes are made and the effectiveness of the sensors they produce. On this basis, we discuss the scope for future of NiS-based sensors and offer additional directions.


Z. Nie, C.A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A.W. Martinez, M. Narovlyansky, G.M. Whitesides, Electrochemical sensing in paper-based microfluidic devices, Lab on a Chip 10(4) (2010) 477-483.

M. Gerard, A. Chaubey, B. Malhotra, Application of conducting polymers to biosensors, Biosensors and bioelectronics 17(5) (2002) 345-359.

H. Meskher, F. Achi, H. Belkhalfa, Synthesis and Characterization of CuO@PANI composite: A new prospective material for electrochemical sensing, Journal of Composites and Compounds 4(13) (2022) 178-181.

B.R. Eggins, Biosensors: an introduction, Springer-Verlag2013.

S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review, Biosensors and Bioelectronics 14(5) (1999) 443-456.

D.A. Sousa, M. Carneiro, D. Ferreira, F.T. Moreira, M.G.F. Sales, L.R. Rodrigues, Recent advances in the selection of cancer-specific aptamers for the development of biosensors, Current Medicinal Chemistry 29(37) (2022) 5850-5880.

S. Gavrilas, C.S. Ursachi, S. Perta-Crisan, F.-D. Munteanu, Recent trends in biosensors for environmental quality monitoring, Sensors 22(4) (2022) 1513.

S. D’souza, Microbial biosensors, Biosensors and Bioelectronics 16(6) (2001) 337-353.

J. Barek, How to improve the performance of electrochemical sensors via minimization of electrode passivation, Chemosensors 9(1) (2021) 12.

B.K. Boggs, R.L. King, G.G. Botte, Urea electrolysis: direct hydrogen production from urine, Chemical Communications (32) (2009) 4859-4861.

S. Sahoo, A. Satpati, Fabrication of rGO/NiS/AuNCs ternary nanocomposite modified electrode for electrochemical sensing of Cr (VI) at utra-trace level, Surfaces and Interfaces 24 (2021) 101096.

H. Emadi, A. Hemmati, E. Behrouzi, Investigation of Fe3O4/SBA-15 magnetic nanocomposite synthesized by microwave-assisted solvothermal route as multi-therapeutic agent, Journal of Composites and Compounds 4(12) (2022) 141-144.

M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices, Chemical Society Reviews 42(7) (2013) 2986-3017.

Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions, Advanced Materials 28(10) (2016) 1917-1933.

Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou, Y. Xie, Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions, Angewandte Chemie International Edition 54(38) (2015) 11231-11235.

N.F.H. Nik Zaiman, N. Shaari, N.A.M. Harun, Developing metal-organic framework-based composite for innovative fuel cell application: An overview, International Journal of Energy Research 46(2) (2022) 471-504.

H. Xu, Z. Kong, J. Siegenthaler, B. Zheng, Y. Tong, J. Li, T. Schuelke, Q.H. Fan, K. Wang, H. Xu, Review on recent advances in two-dimensional nanomaterials-based cathodes for lithium-sulfur batteries, EcoMat (2023) e12286.

J. Yang, X. Duan, W. Guo, D. Li, H. Zhang, W. Zheng, Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors, Nano Energy 5 (2014) 74-81.

F. Cai, R. Sun, Y. Kang, H. Chen, M. Chen, Q. Li, One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors, RSC Advances 5(29) (2015) 23073-23079.

Y. Li, H. Wang, H. Zhang, P. Liu, Y. Wang, W. Fang, H. Yang, Y. Li, H. Zhao, A {0001} faceted single crystal NiS nanosheet electrocatalyst for dye-sensitised solar cells: sulfur-vacancy induced electrocatalytic activity, Chemical communications 50(42) (2014) 5569-5571.

L. Mi, Y. Chen, W. Wei, W. Chen, H. Hou, Z. Zheng, Large-scale urchin-like micro/nano-structured NiS: controlled synthesis, cation exchange and lithium-ion battery applications, RSC advances 3(38) (2013) 17431-17439.

H. Geng, S.F. Kong, Y. Wang, NiS nanorod-assembled nanoflowers grown on graphene: morphology evolution and Li-ion storage applications, Journal of Materials Chemistry A 2(36) (2014) 15152-15158.

C. Tang, C. Zang, J. Su, D. Zhang, G. Li, Y. Zhang, K. Yu, Structure and magnetic properties of flower-like a-NiS nanostructures, Applied Surface Science 257(8) (2011) 3388-3391.

J. Yang, X. Duan, Q. Qin, W. Zheng, Solvothermal synthesis of hierarchical flower-like B-NiS with excellent electrochemical performance for supercapacitors, Journal of Materials Chemistry A 1(27) (2013) 7880-7884.

K. Muir, Shakespeare’s sonnets, Routledge2013.

S. Vinoth, P.M. Rajaitha, A. Venkadesh, K.S. Devi, S. Radhakrishnan, A. Pandikumar, Nickel sulfide-incorporated sulfur-doped graphitic carbon nitride nanohybrid interface for non-enzymatic electrochemical sensing of glucose, Nanoscale Advances 2(9) (2020) 4242-4250.

J. Liu, D. Xue, Rapid and scalable route to CuS biosensors: a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor, Journal of Materials Chemistry 21(1) (2011) 223-228.

T.-W. Lin, C.-J. Liu, C.-S. Dai, Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection, Applied Catalysis B: Environmental 154 (2014) 213-220.

M. Javaid, A. Haleem, S. Rab, R. Pratap Singh, R. Suman, Sensors for daily life: A review, Sensors International 2 (2021) 100121.

J. Shieh, J.E. Huber, N.A. Fleck, M.F. Ashby, The selection of sensors, Progress in Materials Science 46(3) (2001) 461-504.

H. Khalilpour, P. Shafiee, A. Darbandi, M. Yusuf, S. Mahmoudi, Z.M. Goudarzi, S. Mirzamohammadi, Application of Polyoxometalate-based composites for sensor systems: A review, Journal of Composites and Compounds 3(7) (2021) 129-139.

J. Fraden, Handbook of modern sensors: physics, designs, and applications, American Association of Physics Teachers, Springer, New York 2010.

J.R. Stetter, W.R. Penrose, S. Yao, Sensors, chemical sensors, electrochemical sensors, and ECS, Journal of The Electrochemical Society 150(2) (2003) S11.

J. Gutiérrez, M.C. Horrillo, Advances in artificial olfaction: Sensors and applications, Talanta 124 (2014) 95-105.

G. Harsanyi, Sensors in biomedical applications: fundamentals, technology and applications, CRC press2000.

K. Beaver, A. Dantanarayana, S.D. Minteer, Materials approaches for improving electrochemical sensor performance, The Journal of Physical Chemistry B 125(43) (2021) 11820-11834.

R. Keçili, A. Denizli, Molecular Imprinting-Based Smart Nanosensors for Pharmaceutical Applications, Molecular Imprinting for Nanosensors and Other Sensing Applications, Elsevier2021, pp. 19-43.

M.E. Natoli, M.M. Chang, K.A. Kundrod, J.B. Coole, G.E. Airewele, V.N. Tubman, R.R. Richards-Kortum, Allele-specific recombinase polymerase amplification to detect sickle cell disease in low-resource settings, Analytical Chemistry 93(11) (2021) 4832-4840.

P.K. Kalambate, N.S. Gadhari, X. Li, Z. Rao, S.T. Navale, Y. Shen, V.R. Patil, Y. Huang, Recent advances in MXene–based electrochemical sensors and biosensors, TrAC Trends in Analytical Chemistry 120 (2019) 115643.

S. Tajik, Z. Dourandish, F. Garkani Nejad, H. Beitollahi, P.M. Jahani, A. Di Bartolomeo, Transition metal dichalcogenides: Synthesis and use in the development of electrochemical sensors and biosensors, Biosensors and Bioelectronics 216 (2022) 114674.

B.S. Jilani, P. Malathesh, C. Mruthyunjayachari, K.V. Reddy, Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: A voltammetric study, Materials Chemistry and Physics 239 (2020) 121920.

A.J. Baeumner, Biosensors for environmental pollutants and food contaminants, Analytical and bioanalytical chemistry 377 (2003) 434-445.

C. Fan, G. Li, D. Zhu, Recent progress in immobilized enzyme-based reagentless electrochemical biosensors, Curr. Top. Anal. Chem 3 (2002) 233-251.

J. Wang, Analytical electrochemistry, John Wiley and, Sons2023.

L. Qian, J. Mao, X. Tian, H. Yuan, D. Xiao, In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor, Sensors and Actuators B: Chemical 176 (2013) 952-959.

X. Zhang, G. Wang, A. Gu, Y. Wei, B. Fang, CuS nanotubes for ultrasensitive nonenzymatic glucose sensors, Chemical Communications (45) (2008) 5945-5947.

Z. Zhang, Z. Huang, L. Ren, Y. Shen, X. Qi, J. Zhong, One-pot synthesis of hierarchically nanostructured Ni3S2 dendrites as active materials for supercapacitors, Electrochimica Acta 149 (2014) 316-323.

W. Zhou, X.-J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution, Energy and, Environmental Science 6(10) (2013) 2921-2924.

A.J. Bard, L.R. Faulkner, Fundamentals and applications, Electrochemical methods 2(482) (2001) 580-632.

Y. Gu, A. Wu, H. Sohn, C. Nicoletti, Z. Iqbal, J.F. Federici, Fabrication of rechargeable lithium ion batteries using water-based inkjet printed cathodes, Journal of Manufacturing Processes 20 (2015) 198-205.

O.M. Ama, S.S. Ray, Nanostructured Metal-Oxide Electrode Materials for Water Purification, Springer2020.

A. Hayat, C. Yang, A. Rhouati, J.L. Marty, Recent advances and achievements in nanomaterial-based, and structure switchable aptasensing platforms for ochratoxin A detection, Sensors 13(11) (2013) 15187-15208.

H. Meskher, F. Achi, Electrochemical Sensing Systems for the Analysis of Catechol and Hydroquinone in the Aquatic Environments: A Critical Review, Critical Reviews in Analytical Chemistry (2022) 1-14.

S. Jafari Zare, M. Masomi, M. Sharifzadeh Baei, S. Naghizadeh Raeisi, S.-A. Shahidi, Electrochemical sensing of Nalbuphine in pharmaceutical samples using amplified MgO/CNTs nanocomposite electrode, Journal of Composites and Compounds 4(10) (2022) 1-3.

W.Y. Yi, K.M. Lo, T. Mak, K.S. Leung, Y. Leung, M.L. Meng, A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems, Sensors 15(12) (2015) 31392-31427.

R. Amali, H. Lim, I. Ibrahim, N. Huang, Z. Zainal, S. Ahmad, Significance of nanomaterials in electrochemical sensors for nitrate detection: A review, Trends in Environmental Analytical Chemistry 31 (2021) e00135.

L.A. Zambrano-Intriago, C.G. Amorim, J.M. Rodríguez-Díaz, A.N. Araújo, M.C.B.S.M. Montenegro, Challenges in the design of electrochemical sensor for glyphosate-based on new materials and biological recognition, Science of The Total Environment 793 (2021) 148496.

M. Richards, M. Ghanem, M. Osmond, Y. Guo, J. Hassard, Grid-based analysis of air pollution data, Ecological modelling 194(1-3) (2006) 274-286.

M. Hicham, A. Fethi, S. Ha, B. Khaldoun, Antifouling double layers of functionalized-multi-walled carbon nanotubes coated ZnO for sensitive and selective electrochemical detection of catechol, Fullerenes, Nanotubes and Carbon Nanostructures 30(3) (2022) 334-347.

W. Zhang, R. Wang, F. Luo, P. Wang, Z. Lin, Miniaturized electrochemical sensors and their point-of-care applications, Chinese Chemical Letters 31(3) (2020) 589-600.

S. Nambiar, J.T. Yeow, Conductive polymer-based sensors for biomedical applications, Biosensors and Bioelectronics 26(5) (2011) 1825-1832.

W. Liu, K. Hiekel, R. Hübner, H. Sun, A. Ferancova, M. Sillanpää, Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: Influences of bimetallic effect and silica support, Sensors and Actuators B: Chemical 255 (2018) 1325-1334.

C. Bao, Q. Niu, X. Cao, C. Liu, H. Wang, W. Lu, Ni–Fe hybrid nanocubes: an efficient electrocatalyst for non-enzymatic glucose sensing with a wide detection range, New Journal of Chemistry 43(28) (2019) 11135-11140.

C. Tortolini, P. Bollella, R. Zumpano, G. Favero, F. Mazzei, R. Antiochia, Metal Oxide Nanoparticle Based Electrochemical Sensor for Total Antioxidant Capacity (TAC) Detection in Wine Samples, Biosensors 8(4) (2018) 108.

S.M. Khomambazari, P. Lokhande, S. Padervand, N.D. Zaulkiflee, M. Irandoost, S. Dubal, H. Sharifan, A review of recent progresses on nickel oxide/carbonous material composites as supercapacitor electrodes, Journal of Composites and Compounds 4(13) (2022) 195-208.

D. Hernandez-Santos, M.B. Gonzalez-Garcia, A.C. Garcia, Metal-nanoparticles based electroanalysis, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 14(18) (2002) 1225-1235.

M. Wang, Y. Ni, L. Cao, D. Zhao, X. Ma, Porous Ni/B-Ni(OH)2 superstructures: Rapid solvothermal synthesis, characterization, and electrochemical property, Journal of Colloid and Interface Science 401 (2013) 8-13.

G.C.M. de Oliveira, J.H. de Souza Carvalho, L.C. Brazaca, N.C.S. Vieira, B.C. Janegitz, Flexible platinum electrodes as electrochemical sensor and immunosensor for Parkinson’s disease biomarkers, Biosensors and Bioelectronics 152 (2020) 112016.

A.N. Raja, Recent development in chitosan-based electrochemical sensors and its sensing application, International Journal of Biological Macromolecules 164 (2020) 4231-4244.

H. Meskher, T. Ragdi, A.K. Thakur, S. Ha, I. Khelfaoui, R. Sathyamurthy, S.W. Sharshir, A.K. Pandey, R. Saidur, P. Singh, F. Sharifian jazi, I. Lynch, A Review on CNTs-Based Electrochemical Sensors and Biosensors: Unique Properties and Potential Applications, Critical Reviews in Analytical Chemistry (2023) 1-24 .

M. Hayat, A. Shah, J. Nisar, I. Shah, A. Haleem, M.N. Ashiq, A novel electrochemical sensing platform for the sensitive detection and degradation monitoring of methylene blue, Catalysts 12(3) (2022) 306.

H. Meskher, F. Achi, S. Ha, B. Berregui, F. Babanini, H. Belkhalfa, Sensitive rGO/MOF based electrochemical sensor for penta-chlorophenol detection: a novel artificial neural network (ANN) application, Sensors and, Diagnostics 1(5) (2022) 1032-1043.

G. Cho, S. Azzouzi, G. Zucchi, B. Lebental, Electrical and electrochemical sensors based on carbon nanotubes for the monitoring of chemicals in water—A review, Sensors 22(1) (2022) 218.

H. Meskher, H.C. Mustansar, A.K. Thakur, R. Sathyamurthy, I. Lynch, P. Singh, T.K. Han, R. Saidur, Recent trends in carbon nanotube (CNT)-based biosensors for the fast and sensitive detection of human viruses: a critical review, Nanoscale Advances 5(4) (2023) 992-1010.

E. Fazio, S. Spadaro, C. Corsaro, G. Neri, S.G. Leonardi, F. Neri, N. Lavanya, C. Sekar, N. Donato, G. Neri, Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors, Sensors 21(7) (2021) 2494.

M. Amiri, V.T. Targhi, S. Padervand, S.M.M. Khoei, Corrosion behavior of aluminum oxide coatings created by electrolytic plasma method under different potential regimes, Journal of Composites and Compounds 2(4) (2020) 129-137.

M. Arivazhagan, A. Shankar, G. Maduraiveeran, Hollow sphere nickel sulfide nanostructures–based enzyme mimic electrochemical sensor platform for lactic acid in human urine, Microchimica Acta 187 (2020) 1-9.

P.K. Kannan, C.S. Rout, High Performance Non-enzymatic Glucose Sensor Based on One-Step Electrodeposited Nickel Sulfide, Chemistry–A European Journal 21(26) (2015) 9355-9359.

J. Wang, J. Lu, U.A. Kirgoz, S.B. Hocevar, B. Ogorevc, Insights into the anodic stripping voltammetric behavior of bismuth film electrodes, Analytica Chimica Acta 434 (2001) 29-34.

J.-H. Hwang, X. Wang, D. Zhao, M.M. Rex, H.J. Cho, W.H. Lee, A novel nanoporous bismuth electrode sensor for in situ heavy metal detection, Electrochimica Acta 298 (2019) 440-448.

F. Liu, Y. Piao, K.S. Choi, T.S. Seo, Fabrication of free-standing graphene composite films as electrochemical biosensors, Carbon 50(1) (2012) 123-133.

Y. Liu, M. Wang, F. Zhao, Z. Xu, S. Dong, The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix, Biosensors and Bioelectronics 21(6) (2005) 984-988.

A. Rochefort, J.D. Wuest, Interaction of Substituted Aromatic Compounds with Graphene, Langmuir 25(1) (2009) 210-215.

J. Lu, I. Do, L.T. Drzal, R.M. Worden, I. Lee, Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response, ACS Nano 2(9) (2008) 1825-32.

Y.-G. Zhou, J.-J. Chen, F.-b. Wang, Z.-H. Sheng, X.-H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells, Chemical Communications 46(32) (2010) 5951-5953.

Y. Wang, Y. Wan, D. Zhang, Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media, Electrochemistry Communications 12(2) (2010) 187-190.

J. Xu, T. Li, L. Wang, J.-C. Wang, L. Zhao, S. Shen, Q. Tu, Y. Zhang, J. Wang, Voltammetric Behavior of Guanine at ERGO/GC Electrode and Its Application in Cell Counting, Journal of The Electrochemical Society 161(4) (2014) G21.

R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films, Materials Chemistry and Physics 65(1) (2000) 1-31.

S. Saeed, N. Rashid, R. Hussain, J.P. Jasinski, A.C. Keeley, S. Khan, Nanoparticles and nanocrystals of a new bidentate nickel(II) complex of N-[ethyl(propan-2-yl)carbamothioyl]-4-nitrobenzamide: synthesis, characterization, and crystal structures, Journal of Coordination Chemistry 66(1) (2013) 126-138.

P. Luo, F. Zhang, R.P. Baldwin, Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems, Analytica chimica acta 244 (1991) 169-178.

T. You, O. Niwa, Z. Chen, K. Hayashi, M. Tomita, S. Hirono, An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination, Analytical chemistry 75(19) (2003) 5191-5196.

K. Kano, M. Torimura, Y. Esaka, M. Goto, T. Ueda, Electrocatalytic oxidation of carbohydrates at copper(II) -modified electrodes and its application to flow-through detection, Journal of Electroanalytical Chemistry 372(1) (1994) 137-143.

N. Baig, M. Sajid, T.A. Saleh, Recent trends in nanomaterial-modified electrodes for electroanalytical applications, TrAC Trends in Analytical Chemistry 111 (2019) 47-61.

J. Zhang, C. Xu, D. Zhang, J. Zhao, S. Zheng, H. Su, F. Wei, B. Yuan, C. Fernandez, Facile synthesis of a nickel sulfide (NiS) hierarchical flower for the electrochemical oxidation of H2O2 and the methanol oxidation reaction (MOR), Journal of the electrochemical society 164(4) (2017) B92.

W. Wu, Y. Li, J. Jin, H. Wu, S. Wang, Y. Ding, J. Ou, Sensing nitrite with a glassy carbon electrode modified with a three-dimensional network consisting of Ni 7 S 6 and multi-walled carbon nanotubes, Microchimica Acta 183 (2016) 3159-3166.

S. Kim, S.H. Lee, M. Cho, Y. Lee, Solvent-assisted morphology confinement of a nickel sulfide nanostructure and its application for non-enzymatic glucose sensor, Biosensors and Bioelectronics 85 (2016) 587-595.

M. Ma, W. Zhu, D. Zhao, Y. Ma, N. Hu, Y. Suo, J. Wang, Surface engineering of nickel selenide nanosheets array on nickel foam: an integrated anode for glucose sensing, Sensors and Actuators B: Chemical 278 (2019) 110-116.

H. Huo, Y. Zhao, C. Xu, 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection, Journal of Materials Chemistry A 2(36) (2014) 15111-15117.

F.F. Bobinihi, O.E. Fayemi, D.C. Onwudiwe, Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni(II) dithiocarbamate, Materials Science in Semiconductor Processing 121 (2021) 105315.

R.Y. Pelgrift, A.J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance, Advanced Drug Delivery Reviews 65(13) (2013) 1803-1815.

D.C. Onwudiwe, J.N. Mugo, M. Hrubaru, E. Hosten, Bis diallyl dithiocarbamate Pt(II) complex: synthesis, characterization, thermal decomposition studies, and experimental and theoretical studies on its crystal structure, Journal of Sulfur Chemistry 36(1) (2015) 36-47.

C. Xiong, B. Li, H. Liu, W. Zhao, C. Duan, H. Wu, Y. Ni, A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors, Journal of Materials Chemistry A 8(21) (2020) 10898-10908.

A. Ziyaei-Halimehjani, K. Marjani, A. Ashouri, A one-pot, three-component synthesis of thiazolidine-2-thiones, Tetrahedron Letters 53(27) (2012) 3490-3492.

T.S. Sunil Kumar Naik, S. Saravanan, K.N. Sri Saravana, U. Pratiush, P.C. Ramamurthy, A non-enzymatic urea sensor based on the nickel sulfide / graphene oxide modified glassy carbon electrode, Materials Chemistry and Physics 245 (2020) 122798.

R.M. Abdel Hameed, I.M.A. Mohamed, A.M. Al-Enizi, A. Abutaleb, S.F. Shaikh, A. Yousef, Fabrication of electrospun nickel sulphide nanoparticles onto carbon nanofibers for efficient urea electro-oxidation in alkaline medium, International Journal of Hydrogen Energy 46(24) (2021) 12944-12960.

S. Haider, S.S. Shar, I. Shakir, P.O. Agboola, Design of NiS/CNTs nanocomposites for visible light driven catalysis and antibacterial activity studies, Ceramics International 47(24) (2021) 34269-34277.

T.S.K. Naik, S. Saravanan, K.S. Saravana, U. Pratiush, P.C. Ramamurthy, A non-enzymatic urea sensor based on the nickel sulfide/graphene oxide modified glassy carbon electrode, Materials Chemistry and Physics 245 (2020) 122798.

P. Muthukumaran, C. Sumathi, J. Wilson, G. Ravi, Enzymeless biosensor based on B-NiS@ rGO/Au nanocomposites for simultaneous detection of ascorbic acid, epinephrine and uric acid, RSC advances 6(99) (2016) 96467-96478.

Z. Lu, Y. Li, T. Liu, G. Wang, M. Sun, Y. Jiang, H. He, Y. Wang, P. Zou, X. Wang, A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine, Chemical Engineering Journal 389 (2020) 124417.

D. Zheng, J. Yang, Z. Zheng, M. Peng, J. Chen, Y. Chen, W. Gao, A highly sensitive photoelectrochemical biosensor for CEA analysis based on hollow NiS@ NiO/TiO2 composite with typal pn heterostructure, Talanta 246 (2022) 123523.

C. Wei, C. Cheng, J. Zhao, Z. Wang, H. Wu, K. Gu, W. Du, H. Pang, Mesoporous ZnS–NiS nanocomposites for nonenzymatic electrochemical glucose sensors, ChemistryOpen 4(1) (2015) 32-38.

P. Muthukumaran, R. Ramya, P. Thivya, J. Wilson, G. Ravi, Nanocomposite based on restacked crystallites of B-NiS and Ppy for the determination of theophylline and uric acid on screen-printed electrodes, New Journal of Chemistry 43(48) (2019) 19397-19407.

J. Qu, Z. Zhu, C. Wu, L. Zhang, J. Qu, Preparation of ZnS: Ni/ZnS quantum dots with core/shell structure and application for detecting cefoperazone–sulbactam, Spectrochimica acta part a: molecular and biomolecular spectroscopy 121 (2014) 350-354.

H. Huo, Y. Zhao, C. Xu, 3D Ni3 S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection, Journal of Materials Chemistry A 2(36) (2014) 15111-15117.

S. Radhakrishnan, S.J. Kim, Facile fabrication of NiS and a reduced graphene oxide hybrid film for nonenzymatic detection of glucose, Rsc Advances 5(55) (2015) 44346-44352.

S. Jana, G. Mondal, B.C. Mitra, P. Bera, B. Chakraborty, A. Mondal, A. Ghosh, Facile synthesis of nickel oxide thin films from PVP encapsulated nickel sulfide thin films: an efficient material for electrochemical sensing of glucose, hydrogen peroxide and photodegradation of dye, New Journal of Chemistry 41(24) (2017) 14985-14994.

T.D. Vu, P.K. Duy, H.T. Bui, S.-H. Han, H. Chung, Reduced graphene oxide–Nickel sulfide (NiS) composited on mechanical pencil lead as a versatile and cost-effective sensor for electrochemical measurements of bisphenol A and mercury (II), Sensors and Actuators B: Chemical 281 (2019) 320-325.

S. Kubendhiran, R. Sakthivel, S.-M. Chen, B. Mutharani, Functionalized-carbon black as a conductive matrix for nickel sulfide nanospheres and its application to non-enzymatic glucose sensor, Journal of The Electrochemical Society 165(3) (2018) B96.

Graphical Abstract journal of composites and compounds




How to Cite

Irandoost, M., Kumari, B., Truong, T., Karki, B., & Miah, M. R. (2023). Nickel sulfide-based composite as electrodes in electrochemical sensors: A review. Journal of Composites and Compounds, 5(14), 38–50.



Review Articles