Simple synthesis of Fe3O4@Fe3S4 Nanocomposites coated with polyindole-polythiophene for high-performance supercapacitor
DOI:
https://doi.org/10.52547.jcc.5.1.4Keywords:
Supercapacitor, Nanoshepres, Fe3O4, Fe3S4, Active Material SynthesisAbstract
To prevent a major energy crisis in the near future, it is necessary to assemble efficient electrochemical energy storage devices such as supercapacitors. Herein, a Fe3O4@Fe3S4 nanocomposites coated with polyindole-polythiophene on nickel foam (NF) has been prepared by following a low facile, multistep method. In terms of structural and electrochemical performance, the nanocomposites have been investigated. The electrochemical properties of as fabricated Fe3O4@Fe3S4@PIn-PTh are studied in 2M KOH. A specific capacitance of 100.83 F g-1 at a current density of 2 A g-1. The results of the synthesized sample in comparison with Fe3O4 show that using sulfide metal and polymer component improve the electrochemical performance. These characteristics of Fe3O4@Fe3S4@PIn-PTh as the active material illustrate a sutiable performance as a cathode material for electrochemical energy storage.
References
A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renewable and Sustainable Energy Reviews 101 (2019) 123-145.
E. Niknam, H. Naffakh-Moosavy, S.E. Moosavifard, M.G. Afshar, Multishelled bimetal V-doped Co3O4 hollow spheres derived from metal organic framework for high performance supercapacitors, Journal of Energy Storage 44 (2021) 103508.
U. Gulzar, S. Goriparti, E. Miele, T. Li, G. Maidecchi, A. Toma, F. De Angelis, C. Capiglia, R.P. Zaccaria, Next-generation textiles: from embedded supercapacitors to lithium ion batteries, Journal of Materials Chemistry A 4(43) (2016) 16771-16800.
E. Niknam, H. Naffakh-Moosavy, M.G. Afshar, Electrochemical performance of Nickel foam electrode in Potassium Hydroxide and Sodium Sulfate electrolytes for supercapacitor applications, Journal of Composites and Compounds 4(12) (2022) 149-152.
M.K. Aslam, T.S. AlGarni, M.S. Javed, S.S.A. Shah, S. Hussain, M. Xu, 2D MXene Materials for Sodium Ion Batteries: A review on Energy Storage, Journal of Energy Storage 37 (2021) 102478.
F. Ozel, H.S. Kilic, H. Coskun, I. Deveci, A. Sarilmaz, A. Balikcioglu, Y. Gundogdu, A. Aljabour, A. Ozen, S.Y. Gezgin, A. Houimi, A. Yar, M. Kus, M. Ersoz, A general review on the thiospinels and their energy applications, Materials Today Energy 21 (2021) 100822.
N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric Supercapacitor Electrodes and Devices, Advanced Materials 29(21) (2017) 1605336.
Z.S. Iro, C. Subramani, S.J.I.J.E.S. Dash, A brief review on electrode materials for supercapacitor, 11(12) (2016) 10628-10643.
S.Z. Golkhatmi, A. Sedghi, H.N. Miankushki, M. Khalaj, Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes, Energy 214 (2021) 118950.
H. Jiang, Y. Li, Y. Deng, W. Zhang, P. Dong, J. Zhang, In-situ-foaming synthesis of cheese-like Fe 3o4/Ti3C2Tx electrode material with both high energy and power density for Al/Zn-ion supercapacitors, Journal of Materials Research and Technology 23 (2023) 3547-3556.
L. Qu, L. Yang, Y. Ren, X. Ren, D. Fan, K. Xu, H. Wang, Y. Li, H. Ju, Q. Wei, A signal-off electrochemical sensing platform based on Fe3S4 -Pd and pineal mesoporous bioactive glass for procalcitonin detection, Sensors and Actuators B: Chemical 320 (2020) 128324.
H. Mudila, P. Prasher, M. Kumar, A. Kumar, M.G.H. Zaidi, A. Kumar, Critical analysis of polyindole and its composites in supercapacitor application, Materials for Renewable and Sustainable Energy 8(2) (2019) 9-19.
E. Niknam, H. Naffakh-Moosavy, S.E. Moosavifard, M. Ghahraman Afshar, Amorphous V-doped Co3S4 yolk-shell hollow spheres derived from metal-organic framework for high-performance asymmetric supercapacitors, Journal of Alloys and Compounds 895 (2022) 162720.
M. Karuppasamy, D. Muthu, Y. Haldorai, R.T. Rajendra Kumar, Solvothermal synthesis of Fe3S4@graphene composite electrode materials for energy storage, Carbon Letters 30(6) (2020) 667-673.
W. Meng, W. Chen, L. Zhao, Y. Huang, M. Zhu, Y. Huang, Y. Fu, F. Geng, J. Yu, X. Chen, C. Zhi, Porous Fe3o4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance, Nano Energy 8 (2014) 133-140.
Y. Miao, X. Zhang, J. Zhan, Y. Sui, J. Qi, F. Wei, Q. Meng, Y. He, Y. Ren, Z. Zhan, Z. Sun, Hierarchical NiS@CoS with Controllable Core-Shell Structure by Two-Step Strategy for Supercapacitor Electrodes, Advanced Materials Interfaces 7(3) (2020) 1901618.
Y. Zhu, X. Yun, S. Wu, Z. Li, Y. Zhou, W. Zhong, C. Li, J. Li, M. Zhou, Mesoporous Fe3S4 microparticles as a novel anode material for rechargeable alkaline aqueous batteries, Ionics 26(1) (2020) 105-113.
H. Talebi, A. Olad, R. Nosrati, Fe3o4/PANI nanocomposite core-shell structure in epoxy resin matrix for the application as electromagnetic waves absorber, Progress in Organic Coatings 163 (2022) 106665.
C.-R. Lin, O.S. Ivanova, I.S. Edelman, Y.V. Knyazev, S.M. Zharkov, D.A. Petrov, A.E. Sokolov, E.S. Svetlitsky, D.A. Velikanov, L.A. Solovyov, Y.-Z. Chen, Y.-T. Tseng, Carbon Double Coated Fe3o4@C@C Nanoparticles: Morphology Features, Magnetic Properties, Dye Adsorption, Nanomaterials 12(3) (2022) 376.
X. Du, C. Wang, M. Chen, Y. Jiao, J. Wang, Electrochemical Performances of Nanoparticle Fe3o4/Activated Carbon Supercapacitor Using KOH Electrolyte Solution, Journal of Physical Chemistry C 113(6) (2009) 2643-2646.
M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications, Journal of Materials Science: Materials in Electronics 28(18) (2017) 13532-13539.
M. Mazloum-Ardakani, F. Sabaghian, M. Yavari, A. Ebady, N. Sahraie, Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of a-Fe2O3@CeO2 core-shell, Journal of Alloys and Compounds 819 (2020) 152949.
Q. Liu, Z. Chen, R. Qin, C. Xu, J. Hou, Hierarchical mulberry-like Fe3S4/ Co9S8 nanoparticles as highly reversible anode for lithium-ion batteries, Electrochimica Acta 304 (2019) 405-414.
J. Sun, P. Zan, X. Yang, L. Ye, L. Zhao, Room-temperature synthesis of Fe3o4/ Fe-carbon nanocomposites with Fe-carbon double conductive network as supercapacitor, Electrochimica Acta 215 (2016) 483-491.
B. Hu, Y. Wang, X. Shang, K. Xu, J. Yang, M. Huang, J. Liu, Structure-tunable Mn3O4-Fe 3o4@C hybrids for high-performance supercapacitor, Journal of Colloid and Interface Science 581 (2021) 66-75.
A. Shokry, M. Karim, M. Khalil, S. Ebrahim, J. El Nady, Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes, Scientific Reports 12(11278) (2022) 1-13.
S. Mozaffari, J. Behdani, S.M.B. Ghorashi, Synthesis of polyindole nanoparticles and its copolymers via emulsion polymerization for the application as counter electrode for dye-sensitized solar cells, Polymer Bulletin 79(8) (2022) 6777-6796.
A. Shokry, M. Karim, M. Khalil, S. Ebrahim, J. El Nady, Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes %J Sci. Rep, 12(11278) (2022) 1–13.
J. Li, J. Zheng, C. Wu, H. Zhang, T. Jin, F. Wang, Q. Li, E. Shangguan, Facile synthesis of Fe3S4 microspheres as advanced anode materials for alkaline iron-based rechargeable batteries, Journal of Alloys and Compounds 874 (2021) 159873.
X. Wang, D. Jiang, C. Jing, X. Liu, K. Li, M. Yu, S. Qi, Y. Zhang, Biotemplate Synthesis of Fe3o4/Polyaniline for Supercapacitor, Journal of Energy Storage 30 (2020) 101554.
C. Wu, J. Zheng, J. Li, T. Jin, F. Wang, Q. Li, M. Chen, J. Qi, S. Gao, E. Shangguan, Fe3S4@reduced graphene oxide composites as novel anode materials for high performance alkaline secondary batteries, Journal of Alloys and Compounds 895 (2022) 162593.
W. Bao, C. Chen, W. Chen, X. Ding, Z. Si, Controllable synthesis of Ni-dotted Fe 3S4 with its superior wideband electromagnetic absorbing performance, Journal of Materials Science: Materials in Electronics 31(15) (2020) 12775-12782.
R.B. Choudhary, S. Ansari, B. Purty, Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review, Journal of Energy Storage 29 (2020) 101302.
M. Moradi, F. Hasanvandian, M. Ghahraman Afshar, A. Larimi, F. Khorasheh, E. Niknam, S. Rahman Setayesh, Incorporation of Fe in mixed CoCu-alkoxide hollow sphere for enhancing the electrochemical water oxidation performance, Materials Today Chemistry 22 (2021) 100586.
Y. Wang, Y. Lei, J. Li, L. Gu, H. Yuan, D. Xiao, Synthesis of 3D-Nanonet Hollow Structured Co3O4 for High Capacity Supercapacitor, ACS Applied Materials and, Interfaces 6(9) (2014) 6739-6747.
Y.-W. Li, W.-J. Zhang, J. Li, H.-Y. Ma, H.-M. Du, D.-C. Li, S.-N. Wan J.-S. Zhao, J.-M. Dou, L. Xu, Fe-MOF-Derived Efficient ORR/OER Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries, ACS Applied Materials and, Interfaces 12(40) (2020) 44710-44719.
L. Wang, J. Yu, X. Dong, X. Li, Y. Xie, S. Chen, P. Li, H. Hou, Y. Song, Three-Dimensional Macroporous Carbon/Fe3o4-Doped Porous Carbon Nanorods for High-Performance Supercapacitor, ACS Sustainable Chemistry and, Engineering 4(3) (2016) 1531-1537.
Published
How to Cite
License
Copyright (c) 2023 The University of Georgia Publishing House (UGPH)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors will be asked, upon acceptance of an article, to transfer copyright of the article to the Publisher. This will ensure the widest possible dissemination of information under copyright laws. The submitted materials may be considered for inclusion but can not be returned.
Licensing: The JCC articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source (appropriate citation), provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
*Author rights
As an author you (or your employer or institution) have certain rights to reuse your work.