A review of recent progresses on nickel oxide/carbonous material composites as supercapacitor electrodes
DOI:
https://doi.org/10.52547/jcc.4.4.4Keywords:
Nickel oxide, Materials-based carbon, Electrode materials, Electrochemical properties, SupercapacitorsAbstract
The rapid economic growth and enormous expansion of the portable electronics market generate a significant need for renewable energy sources, energy storage, and energy conversion technologies. Supercapacitors have emerged as a viable technology for storing renewable energy sources to meet this demand. Recently novel Transition metal oxides/carbon materials (TMC) based electrode materials attracted attention of research community working in supercapacitor field. Redox-active materials, like transition metal oxides, conductive polymers, add pseudo capacitance through quick, reversible redox reactions, and carbon-supported materials Due to their excellent physicochemical stability, large specific surface area, adaptable pore shape, and high electrical conductivity, it has been extensively utilized in supercapacitors (SCs). Of nickel oxide/active carbon composites as electrode materials for supercapacitors are examined in this review article. This review will provide a comprehensive and up-to-date summary of materials composite investigated as prospective electrode in the creation of efficient supercapacitors, along with their respective production processes and electrochemical properties addition, this article will introduce synthesis of supercapacitor electrode composite and fundamental parameters that influence supercapacitor performance.
References
L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science 321(5895) (2008) 1457-1461.
G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific2011, pp. 101-110.
P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for electrochemical supercapacitors: overview, Electrochemical Energy Reviews 3(1) (2020) 155-186.
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors, Energy & Environmental Science 8(8) (2015) 2250-2282.
M. Graetzel, R.A. Janssen, D.B. Mitzi, E.H. Sargent, Materials interface engineering for solution-processed photovoltaics, Nature 488(7411) (2012) 304-312.
F. Wang, J. Ma, K. Zhou, X. Li, MoS2/corncob-derived activated carbon for supercapacitor application, Materials Chemistry and Physics 244 (2020) 122215.
S. Zhang, N. Pan, Supercapacitors performance evaluation, Advanced Energy Materials 5(6) (2015) 1401401.
X. Zhang, H. Zhang, Z. Lin, M. Yu, X. Lu, Y. Tong, Recent advances and challenges of stretchable supercapacitors based on carbon materials, Science China Materials 59(6) (2016) 475-494.
G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy 2(2) (2013) 213-234.
K. Li, J. Zhang, Recent advances in flexible supercapacitors based on carbon nanotubes and graphene, Science China Materials 61(2) (2018) 210-232.
K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: Materials and devices, Journal of Energy Storage 21 (2019) 801-825.
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews 38(9) (2009) 2520-2531 DOI: 10.1039/B813846J.
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature materials 7(11) (2008) 845-854.
Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, S. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review, Journal of Materials Science 56(1) (2021) 173-200.
M.E. ?ahin, F. Blaabjerg, A. Sangwongwanich, A comprehensive review on supercapacitor applications and developments, Energies 15(3) (2022) 674.
M.S. Halper, J.C. Ellenbogen, Supercapacitors: A brief overview, The MITRE Corporation, McLean, Virginia, USA 1 (2006).
K. Naoi, W. Naoi, S. Aoyagi, J.-i. Miyamoto, T. Kamino, New generation “nanohybrid supercapacitor”, Accounts of chemical research 46(5) (2013) 1075-1083.
M.M. Sk, C.Y. Yue, K. Ghosh, R.K. Jena, Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors, Journal of Power Sources 308 (2016) 121-140.
R.S. Kate, S.A. Khalate, R.J. Deokate, Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review, Journal of Alloys and Compounds 734 (2018) 89-111.
J. Wang, S. Mao, Z. Liu, Z. Wei, H. Wang, Y. Chen, Y. Wang, Dominating role of Ni0 on the interface of Ni/NiO for enhanced hydrogen evolution reaction, ACS Applied Materials & Interfaces 9(8) (2017) 7139-7147.
N. Slepi?ková Kasálková, P. Slepi?ka, V. Švor?ík, Carbon nanostructures, nanolayers, and their composites, Nanomaterials 11(9) (2021) 2368.
D. Wu, X. Xie, Y. Zhang, D. Zhang, W. Du, X. Zhang, B. Wang, MnO2/carbon composites for supercapacitor: synthesis and electrochemical performance, Frontiers in Materials 7 (2020) 2.
A. Zakeri, M.R. Masoumi Balashadehi, A. Sabour Rouh Aghdam, Development of hybrid electrodeposition/slurry diffusion aluminide coatings on Ni-based superalloy with enhanced hot corrosion resistance, Journal of Composites and Compounds 3(6) (2021) 1-8 DOI: 10.52547/jcc.3.1.1.
H. Pourkheirollah, J. Keskinen, D. Lupo, M. Mäntysalo, A Modified Exponential Equivalent Parallel Resistance (EPR) Model for Predicting Self-Discharge Behavior of Printed Flexible Supercapacitors, 2022 IEEE 9th Electronics System-Integration Technology Conference (ESTC), IEEE, 2022, pp. 264-268.
H.v. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch?elektrischen Versuche (Schluss.), Annalen der Physik 165(7) (1853) 353-377.
D.L. Chapman, LI. A contribution to the theory of electrocapillarity, The London, Edinburgh, and Dublin philosophical magazine and journal of science 25(148) (1913) 475-481.
G. Guoy, Constitution of the electric charge at the surface of an electrolyte, J Physique 9 (1910) 457-67.
O. Stern, The theory of the electrolytic double-layer, Z. Elektrochem 30(508) (1924) 1014-1020.
L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews 38(9) (2009) 2520-2531.
B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, Journal of power sources 66(1-2) (1997) 1-14.
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science 7(5) (2014) 1597-1614.
Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors, Chemical reviews 118(18) (2018) 9233-9280.
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nature materials 12(6) (2013) 518-522.
M.M. Sk, C.Y. Yue, Synthesis of polyaniline nanotubes using the self-assembly behavior of vitamin C: a mechanistic study and application in electrochemical supercapacitors, Journal of Materials Chemistry A 2(8) (2014) 2830-2838.
A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of power sources 157(1) (2006) 11-27.
F.-X. Ma, L. Yu, C.-Y. Xu, X.W.D. Lou, Self-supported formation of hierarchical NiCo 2 O 4 tetragonal microtubes with enhanced electrochemical properties, Energy & Environmental Science 9(3) (2016) 862-866.
X.Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage, Advanced Energy Materials 6(3) (2016) 1501333.
V.C. Lokhande, A.C. Lokhande, C.D. Lokhande, J.H. Kim, T. Ji, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers, Journal of Alloys and Compounds 682 (2016) 381-403.
J. Libich, J. Máca, J. Vondrák, O. ?ech, M. Sedla?íková, Supercapacitors: Properties and applications, Journal of Energy Storage 17 (2018) 224-227.
S. Senthilkumar, R.K. Selvan, J. Melo, Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors, Journal of Materials Chemistry A 1(40) (2013) 12386-12394.
Y. Wu, C. Cao, The way to improve the energy density of supercapacitors: Progress and perspective, Science China Materials 61(12) (2018) 1517-1526.
G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Nano Energy 2012, Chem. Eur. J 21 (2015) 1055-1063.
S. Wu, Y. Zhu, Highly densified carbon electrode materials towards practical supercapacitor devices, Science China Materials 60(1) (2017) 25-38.
X. Wu, S. Yao, Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices, Nano Energy 42 (2017) 143-150.
Y. Liu, P. Hu, H. Liu, J. Song, A. Umar, X. Wu, Toward a high performance asymmetric hybrid capacitor by electrode optimization, Inorganic Chemistry Frontiers 6(10) (2019) 2824-2831.
S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade, A.V. Moholkar, Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material, Vacuum 181 (2020) 109646.
J. He, H. Lindström, A. Hagfeldt, S.-E. Lindquist, Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell, The Journal of Physical Chemistry B 103(42) (1999) 8940-8943.
R.C. Korošec, P. Bukovec, Sol-gel prepared NiO thin films for electrochromic applications, Acta Chim. Slov 53(2) (2006) 136-147.
A. Dordsheikh Torkamani, M. Velashjerdi, A. Abbas, M. Bolourchi, P. Maji, Electrodeposition of Nickel matrix composite coatings via various Boride particles: A review, Journal of Composites and Compounds 3(7) (2021) 106-113 DOI: 10.52547/jcc.3.2.4.
S. Berchmans, H. Gomathi, G.P. Rao, Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode, Journal of Electroanalytical Chemistry 394(1-2) (1995) 267-270.
G. Bodurov, P. Stefchev, T. Ivanova, K. Gesheva, Investigation of electrodeposited NiO films as electrochromic material for counter electrodes in “Smart Windows”, Materials Letters 117 (2014) 270-272.
P. Tomczyk, G. Mordarski, J. Ob?, Kinetics of the oxygen electrode reaction in molten Li+ Na carbonate eutectic: Part 5. Linear voltammetric and chronoamperometric data for the reduction processes at NiO monocrystalline electrodes, Journal of Electroanalytical Chemistry 353(1-2) (1993) 177-193.
H. Zhang, Y. Ji, X. Ma, J. Xu, D. Yang, Long Bi2S3 nanowires prepared by a simple hydrothermal method, Nanotechnology 14(9) (2003) 974.
Q. Xia, K.S. Hui, K. Hui, D. Hwang, S. Lee, W. Zhou, Y. Cho, S. Kwon, Q. Wang, Y. Son, A facile synthesis method of hierarchically porous NiO nanosheets, Materials Letters 69 (2012) 69-71.
B. Subramanian, M.M. Ibrahim, V. Senthilkumar, K. Murali, V. Vidhya, C. Sanjeeviraja, M. Jayachandran, Optoelectronic and electrochemical properties of nickel oxide (NiO) films deposited by DC reactive magnetron sputtering, Physica B: Condensed Matter 403(21-22) (2008) 4104-4110.
E.L. Miller, R.E. Rocheleau, Electrochemical behavior of reactively sputtered iron?doped nickel oxide, Journal of the Electrochemical Society 144(9) (1997) 3072.
T. Yu, Y.-F. Chen, Z.-G. Liu, X.-Y. Chen, L. Sun, N.-B. Ming, L.-J. Shi, Epitaxial growth of conductive LaNiO3 thin films by pulsed laser ablation, Materials Letters 26(1-2) (1996) 73-76.
S. Sarihi, S. Padervand, S. Mousavi Khoei, N. Shakiba, The effect of nitrogen concentration on N-doped diamond-like carbon films prepared by plasma-electrolytic method, Inorganic and Nano-Metal Chemistry 51(12) (2021) 1686-1696.
W. Shin, N. Murayama, High performance p-type thermoelectric oxide based on NiO, Materials Letters 45(6) (2000) 302-306.
F. Caruso, M. Spasova, V. Salgueiriño?Maceira, L. Liz?Marzán, Multilayer assemblies of silica?encapsulated gold nanoparticles on decomposable colloid templates, Advanced Materials 13(14) (2001) 1090-1094.
Y.-z. Zheng, H.-y. Ding, M.-l.J.M.R.B. Zhang, Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material, 44(2) (2009) 403-407.
E. Niknam, H. Naffakh-Moosavy, M. Ghahraman Afshar, Electrochemical performance of Nickel foam electrode in Potassium Hydroxide and Sodium Sulfate electrolytes for supercapacitor applications, Journal of Composites and Compounds 4(12) (2022) 149-152 DOI: 10.52547/jcc.4.3.3.
B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Springer Science & Business Media2013.
Y. Zhang, X. Xia, J. Tu, Y. Mai, S. Shi, X. Wang, C. Gu, Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors, Journal of Power Sources 199 (2012) 413-417.
X.-h. Xia, J.-p. Tu, X.-l. Wang, C.-d. Gu, X.-b. Zhao, Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material, Journal of Materials Chemistry 21(3) (2011) 671-679.
V. Srinivasan, J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors, Journal of the Electrochemical Society 144(8) (1997) L210.
F. Shi, L. Li, X.-l. Wang, C.-d. Gu, J.-p. Tu, Metal oxide/hydroxide-based materials for supercapacitors, Rsc Advances 4(79) (2014) 41910-41921.
S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song, J.-H. Jang, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology, ACS applied materials & interfaces 5(5) (2013) 1596-1603.
G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, A.L.-S. Eh, P.S. Lee, Electrochromo-supercapacitor based on direct growth of NiO nanoparticles, Nano Energy 12 (2015) 258-267.
S. Zhu, Y. Dai, W. Huang, C. Zhang, Y. Zhao, L. Tan, Z. Wang, In situ preparation of NiO nanoflakes on Ni foams for high performance supercapacitors, Materials Letters 161 (2015) 731-734.
Y. Zhang, J. Wang, H. Wei, J. Hao, J. Mu, P. Cao, J. Wang, S. Zhao, Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application, Materials Letters 162 (2016) 67-70.
N. Duraisamy, A. Numan, S.O. Fatin, K. Ramesh, S. Ramesh, Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application, Journal of colloid and interface science 471 (2016) 136-144.
G.S. Gund, C.D. Lokhande, H.S. Park, Controlled synthesis of hierarchical nanoflake structure of NiO thin film for supercapacitor application, Journal of Alloys and Compounds 741 (2018) 549-556.
W. Sun, L. Xiao, X. Wu, Facile synthesis of NiO nanocubes for photocatalysts and supercapacitor electrodes, Journal of Alloys and Compounds 772 (2019) 465-471.
M. Sethi, U.S. Shenoy, D.K. Bhat, Hassle-free solvothermal synthesis of NiO nanoflakes for supercapacitor application, Physica B: Condensed Matter 611 (2021) 412959.
J. Chen, Y. Huang, C. Li, X. Chen, X. Zhang, Synthesis of NiO@ MnO2 core/shell nanocomposites for supercapacitor application, Applied Surface Science 360 (2016) 534-539.
F. Yang, K. Zhang, W. Li, K. Xu, Structure-designed synthesis of hierarchical NiCo2O4@ NiO composites for high-performance supercapacitors, Journal of colloid and interface science 556 (2019) 386-391.
S. Nagamuthu, K.-S. Ryu, Synthesis of Ag/NiO honeycomb structured nanoarrays as the electrode material for high performance asymmetric supercapacitor devices, Scientific reports 9(1) (2019) 1-11.
S. Xiong, S. Jiang, J. Wang, H. Lin, M. Lin, S. Weng, S. Liu, Y. Jiao, Y. Xu, J. Chen, A high-performance hybrid supercapacitor with NiO derived NiO@ Ni-MOF composite electrodes, Electrochimica Acta 340 (2020) 135956.
S. Hou, Y. Lian, Y. Bai, Q. Zhou, C. Ban, Z. Wang, J. Zhao, H. Zhang, Hollow dodecahedral Co3S4@ NiO derived from ZIF-67 for supercapacitor, Electrochimica Acta 341 (2020) 136053.
V. Kakani, S. Ramesh, H.M. Yadav, A. Kumar, S. Shinde, S. Sandhu, L.N.D. Quang, H.S. Kim, H.-S. Kim, H. Kim, Facile synthesis of CuO/NiO/nitrogen doped rGO by ultrasonication for high performance supercapacitors, Journal of Alloys and Compounds 847 (2020) 156411.
Y. Zhang, W. Zhang, C. Yu, Z. Liu, X. Yu, F. Meng, Synthesis, structure and supercapacitive behavior of spinel NiFe2O4 and NiO@ NiFe2O4 nanoparticles, Ceramics International 47(7) (2021) 10063-10071.
Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang, Y. Liu, Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high?performance, flexible, all?solid?state asymmetric supercapacitors, Advanced Energy Materials 4(10) (2014) 1400064.
W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chemical society reviews 40(3) (2011) 1697-1721.
J. Yu, W. Lu, S. Pei, K. Gong, L. Wang, L. Meng, Y. Huang, J.P. Smith, K.S. Booksh, Q. Li, Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films, ACS nano 10(5) (2016) 5204-5211.
D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries, Chemical Society Reviews 44(7) (2015) 1777-1790.
J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials, Advanced materials 18(16) (2006) 2073-2094.
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, science 313(5794) (2006) 1760-1763.
T. Kyotani, Control of pore structure in carbon, Carbon 38(2) (2000) 269-286.
M. Noked, E. Avraham, Y. Bohadana, A. Soffer, D. Aurbach, Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition, The Journal of Physical Chemistry C 113(17) (2009) 7316-7321.
E. Frackowiak, Carbon materials for supercapacitor application, Physical chemistry chemical physics 9(15) (2007) 1774-1785.
I. Tajzad, E. Ghasali, Production methods of CNT-reinforced Al matrix composites: A review, Journal of Composites and Compounds 2(2) (2020) 1-9 DOI: 10.29252/jcc.2.1.1.
A. Carbon, Bansal RC, Donnet JB, Stoeckli F, New York: Marcel Dekker, 1988.
H. Suda, K. Haraya, Alkene/alkane permselectivities of a carbon molecular sievemembrane, Chemical Communications (1) (1997) 93-94.
E.J. Bottani, J.M. Tascón, Adsorption by carbons, Elsevier2011.
K. Sharma, P.M. Shafi, An overview, methods of synthesis and modification of carbon-based electrodes for supercapacitor, Journal of Energy Storage 55 (2022) 105727.
J. Pikunic, C. Clinard, N. Cohaut, K.E. Gubbins, J.-M. Guet, R.J.-M. Pellenq, I. Rannou, J.-N. Rouzaud, Structural modeling of porous carbons: constrained reverse Monte Carlo method, Langmuir 19(20) (2003) 8565-8582.
R. Richner, S. Muller, M. Bartschi, R. Kotz, A. Wokaun, Physically and chemically bonded carbonaceous material for double-layer capacitor applications, Journal of New Materials for Electrochemical Systems 5(4) (2002) 297-304.
B. Faki?, A. Kumar, M. Alipour, A. Abbas, E. Ahmadi, N. Nikzad, P. Shafiee, Carbon-based materials and their composites as anodes: A review on lithium-ion batteries, Journal of Composites and Compounds 4(11) (2022) 124-139 DOI: 10.52547/jcc.4.2.7.
C. Zhu, X. Mu, P.A. van Aken, J. Maier, Y. Yu, Fast Li storage in MoS2?graphene?carbon nanotube nanocomposites: advantageous functional integration of 0D, 1D, and 2D nanostructures, Advanced Energy Materials 5(4) (2015) 1401170.
M.S. Dresselhaus, P. Avouris, Introduction to carbon materials research, Carbon nanotubes, Springer2001, pp. 1-9.
X. Du, C. Wang, M. Chen, Y. Jiao, J. Wang, Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution, The Journal of Physical Chemistry C 113(6) (2009) 2643-2646.
J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Progress in Materials Science 57(4) (2012) 724-803.
X. Xia, S. Cai, C. Xie, Preparation, structure and thermal stability of Cu/LDPE nanocomposites, Materials Chemistry and Physics 95(1) (2006) 122-129.
M.L. Vadala, M.A. Zalich, D.B. Fulks, T.G.S. Pierre, J.P. Dailey, J.S. Riffle, Cobalt–silica magnetic nanoparticles with functional surfaces, Journal of magnetism and magnetic materials 293(1) (2005) 162-170.
P. Forouzandeh, V. Kumaravel, S.C. Pillai, Electrode materials for supercapacitors: a review of recent advances, Catalysts 10(9) (2020) 969.
Z. Kavaliauskas, L. Marcinauskas, P. Valatkevicius, Formation and characterization of carbon and nickel oxide/carbon composites for supercapacitors, Acta physica polonica A 119(2) (2011) 253-255.
T. Sheshko, Y.M. Serov, Combined hydrogenation of carbon oxides on catalysts bearing iron and nickel nanoparticles, Russian Journal of Physical Chemistry A 85(1) (2011) 51-54.
D. Kuang, L. Hou, S. Wang, B. Yu, D. Lianwen, L. Lin, H. Huang, J. He, M. Song, Enhanced electromagnetic wave absorption of Ni–C core-shell nanoparticles by HCP-Ni phase, Materials Research Express 5(9) (2018) 095013.
M. Galaburda, V. Bogatyrov, W. Tomaszewski, O. Oranska, M. Borysenko, J. Skubiszewska-Zi?ba, V. Gun’ko, Adsorption/desorption of explosives on Ni-, Co-, and NiCo-carbon composites: Application in solid phase extraction, Colloids and Surfaces A: Physicochemical and Engineering Aspects 529 (2017) 950-958.
V.M. Bogatyrov, M.V. Galaburda, W. Tomaszewski, J. Skubiszewska-Zi?ba, Effect of the surface properties of resorcinol–formaldehyde resin/carbon nanocomposites and their carbonization products on the solid-phase extraction of explosives, RSC advances 7(12) (2017) 7033-7040.
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews 41(2) (2012) 797-828.
T. Zhu, J.S. Chen, X.W. Lou, Shape-controlled synthesis of porous Co 3 O 4 nanostructures for application in supercapacitors, Journal of Materials Chemistry 20(33) (2010) 7015-7020.
C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, A reduced graphene oxide/Co3O4 composite for supercapacitor electrode, Journal of Power Sources 226 (2013) 65-70.
D. Guan, Z. Gao, W. Yang, J. Wang, Y. Yuan, B. Wang, M. Zhang, L. Liu, Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material, Materials Science and Engineering: B 178(10) (2013) 736-743.
Q. He, S. Wu, Z. Yin, H. Zhang, Graphene-based electronic sensors, Chemical Science 3(6) (2012) 1764-1772.
B. Li, H. Cao, G. Yin, Y. Lu, J. Yin, Cu2O@ reduced graphene oxide composite for removal of contaminants from water and supercapacitors, Journal of Materials Chemistry 21(29) (2011) 10645-10648.
K. Lota, A. Sierczynska, G. Lota, Supercapacitors based on nickel oxide/carbon materials composites, International Journal of Electrochemistry 2011 (2011).
Y. Wang, S. Xing, E. Zhang, J. Wei, H. Suo, C. Zhao, X. Zhao, One-pot synthesis of nickel oxide–carbon composite microspheres on nickel foam for supercapacitors, Journal of Materials Science 47(5) (2012) 2182-2187.
A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nature materials 4(5) (2005) 366-377.
D.-D. Zhao, S.-J. Bao, W.-J. Zhou, H.-L. Li, Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor, Electrochemistry communications 9(5) (2007) 869-874.
M.-S. Wu, Y.-A. Huang, C.-H. Yang, J.-J. Jow, Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors, International Journal of Hydrogen Energy 32(17) (2007) 4153-4159.
H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review, Progress in natural science 19(3) (2009) 291-312.
J.Y. Lee, K. Liang, K.H. An, Y.H. Lee, Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance, Synthetic metals 150(2) (2005) 153-157.
J.H. Kim, K.-W. Nam, S.B. Ma, K.B. Kim, Fabrication and electrochemical properties of carbon nanotube film electrodes, Carbon 44(10) (2006) 1963-1968.
H. Inoue, Y. Namba, E. Higuchi, Preparation and characterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors, Journal of Power Sources 195(18) (2010) 6239-6244.
J. Li, Q.M. Yang, I. Zhitomirsky, Nickel foam-based manganese dioxide–carbon nanotube composite electrodes for electrochemical supercapacitors, Journal of Power Sources 185(2) (2008) 1569-1574.
M. Hakamada, A. Moriguchi, M. Mabuchi, Fabrication of carbon nanotube/NiOx (OH) y nanocomposite by pulsed electrodeposition for supercapacitor applications, Journal of Power Sources 245 (2014) 324-330.
G. Zhou, J. Yin, Z. Sun, X. Gao, F. Zhu, P. Zhao, R. Li, J. Xu, An ultrasonic-assisted synthesis of rice-straw-based porous carbon with high performance symmetric supercapacitors, RSC advances 10(6) (2020) 3246-3255.
G. Zhou, L. Chen, X. Li, G. Luo, Z. Yu, J. Yin, L. Fan, Y. Chao, L. Jiang, W. Zhu, Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine, Green Energy & Environment (2022).
D. Leontyeva, I. Leontyev, M. Avramenko, Y.I. Yuzyuk, Y.A. Kukushkina, N.J.E.A. Smirnova, Electrochemical dispergation as a simple and effective technique toward preparation of NiO based nanocomposite for supercapacitor application, 114 (2013) 356-362.
J. Xu, L. Wu, Y. Liu, J. Zhang, J. Liu, S. Shu, X. Kang, Q. Song, D. Liu, F.J.S. Huang, Interfaces, NiO-rGO composite for supercapacitor electrode, 18 (2020) 100420.
X. Zhu, H. Dai, J. Hu, L. Ding, L.J.J.o.P.S. Jiang, Reduced graphene oxide–nickel oxide composite as high performance electrode materials for supercapacitors, 203 (2012) 243-249.
K.S. Lee, M.S. Park, J.-D.J.C. Kim, S.A. Physicochemical, E. Aspects, Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes, 533 (2017) 323-329.
J.-P. Cao, S. He, Y. Wu, X.-Y. Zhao, X.-Y. Wei, T.J.I.J.E.S. Takarada, Synthesis of NiO/activated carbon composites and their application as electrode materials for capacitors, 12 (2017) 2704-2718.
P. Cao, L. Wang, Y. Xu, Y. Fu, X.J.E.A. Ma, Facile hydrothermal synthesis of mesoporous nickel oxide/reduced graphene oxide composites for high performance electrochemical supercapacitor, 157 (2015) 359-368.
H. Kahimbi, S.B. Hong, M. Yang, B.G.J.J.o.E.C. Choi, Simultaneous synthesis of NiO/reduced graphene oxide composites by ball milling using bulk Ni and graphite oxide for supercapacitor applications, 786 (2017) 14-19.
P. Lin, Q. She, B. Hong, X. Liu, Y. Shi, Z. Shi, M. Zheng, Q.J.J.o.t.E.S. Dong, The nickel oxide/CNT composites with high capacitance for supercapacitor, 157(7) (2010) A818.
Y. Jiang, D. Chen, J. Song, Z. Jiao, Q. Ma, H. Zhang, L. Cheng, B. Zhao, Y.J.E.A. Chu, A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors, 91 (2013) 173-178.
K. Lota, A. Sierczynska, G.J.I.J.o.E. Lota, Supercapacitors based on nickel oxide/carbon materials composites, 2011 (2011).
M.S. Yadav, S.J.I. Tripathi, Synthesis and characterization of nanocomposite NiO/activated charcoal electrodes for supercapacitor application, 23(10) (2017) 2919-2930.
X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X.J.C.A.E.J. Zhao, Graphene sheet/porous NiO hybrid film for supercapacitor applications, 17(39) (2011) 10898-10905.
Y. Chen, Z. Huang, H. Zhang, Y. Chen, Z. Cheng, Y. Zhong, Y. Ye, X.J.i.j.o.h.e. Lei, Synthesis of the graphene/nickel oxide composite and its electrochemical performance for supercapacitors, 39(28) (2014) 16171-16178.
X. Hui, L. Qian, G. Harris, T. Wang, J.J.M. Che, design, Fast fabrication of NiO@ graphene composites for supercapacitor electrodes: Combination of reduction and deposition, 109 (2016) 242-250.
W. Li, Y. Bu, H. Jin, J. Wang, W. Zhang, S. Wang, J.J.E. Wang, fuels, The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications, 27(10) (2013) 6304-6310.
Z. Qiu, D. He, Y. Wang, X. Zhao, W. Zhao, H.J.R.a. Wu, High performance asymmetric supercapacitors with ultrahigh energy density based on hierarchical carbon nanotubes@ NiO core–shell nanosheets and defect-introduced graphene sheets with hole structure, 7(13) (2017) 7843-7856.
B. Zhao, J. Song, P. Liu, W. Xu, T. Fang, Z. Jiao, H. Zhang, Y.J.J.o.M.C. Jiang, Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors, 21(46) (2011) 18792-18798.
M.-S. Wu, Y.-P. Lin, C.-H. Lin, J.-T.J.J.o.M.C. Lee, Formation of nano-scaled crevices and spacers in NiO-attached graphene oxide nanosheets for supercapacitors, 22(6) (2012) 2442-2448.
D.H. Shin, J.S. Lee, J. Jun, J.J.J.o.M.C.A. Jang, Fabrication of amorphous carbon-coated NiO nanofibers for electrochemical capacitor applications, 2(10) (2014) 3364-3371.
S.A. Al Kiey, M.S. Hasanin, Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste, Environmental Science and Pollution Research 28(47) (2021) 66888-66900.
B. Tong, W. Wei, Z. Wu, L. Zhao, W. Ye, J. Wang, W. Chen, C. Soutis, L. Mi, Interface engineering based on multinanoscale heterojunctions between NiO quantum dots, N-doped amorphous carbon and Ni for advanced supercapacitor, ACS Applied Energy Materials 4(4) (2021) 3221-3230.
J. Pan, W. Zhong, Z. Gao, X. Yang, Y. Zhang, Y. Guan, X. Yan, N, S-doped silicon oxycarbide-drived carbon/amorphous ball-flower-like NiO as high performance electrode in asymmetric supercapacitors, Ceramics International 47(19) (2021) 27833-27842.
M. Sethi, U.S. Shenoy, D.K. Bhat, Simple solvothermal synthesis of porous graphene-NiO nanocomposites with high cyclic stability for supercapacitor application, Journal of Alloys and Compounds 854 (2021) 157190.
Z. Shi, X. Li, X. Wang, Z. Wang, X. Wu, Synthesis of NiO/Nitrogen-Doped Carbon Nanowire Composite with Multi-Layered Network Structure and Its Enhanced Electrochemical Performance for Supercapacitor Application, Materials 15(20) (2022) 7358.
V. Shanmugam, S. Mohan, P. Manimaran, K. Ravikumar, K.V. Chandekar, A.B.G. Trabelsi, F.H. Alkallas, M. Shkir, Hydrothermal development of a novel NiO/rGO nanocomposites for dual supercapacitor and photocatalytic applications, Materials Chemistry and Physics 289 (2022) 126425.
Y.-G. Zhu, G.-S. Cao, C.-Y. Sun, J. Xie, S.-Y. Liu, T.-J. Zhu, X. Zhao, H.Y. Yang, Design and synthesis of NiO nanoflakes/graphene nanocomposite as high performance electrodes of pseudocapacitor, RSC advances 3(42) (2013) 19409-19415.
A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, N. Manyala, Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications, Journal of materials science 48(19) (2013) 6707-6712.
Y. Zhang, Y. Shen, X. Xie, W. Du, L. Kang, Y. Wang, X. Sun, Z. Li, B. Wang, One-step synthesis of the reduced graphene oxide@ NiO composites for supercapacitor electrodes by electrode-assisted plasma electrolysis, Materials & Design 196 (2020) 109111.
J. Lv, Z. Wang, H. Miura, Facile synthesis of mesoporous NiO nanoflakes on graphene foam and its electrochemical properties for supercapacitor application, Solid State Communications 269 (2018) 45-49.
S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review, Chemical Engineering Journal 403 (2021) 126352.
H. Zhao, Y. Lei, 3D nanostructures for the next generation of high?performance nanodevices for electrochemical energy conversion and storage, Advanced Energy Materials 10(28) (2020) 2001460.
M. Ferdosi Heragh, S. Eskandarinezhad, A. Dehghan, Ni-Cu matrix composite reinforced with CNTs: preparation, characterization, wear and corrosion behavior, inhibitory effects, Journal of Composites and Compounds 2(4) (2020) 123-128 DOI: 10.29252/jcc.2.3.3.
K.-W. Nam, E.-S. Lee, J.-H. Kim, Y.-H. Lee, K.-B. Kim, Synthesis and electrochemical investigations of Ni1? x O thin films and Ni1? x O on three-dimensional carbon substrates for electrochemical capacitors, Journal of the Electrochemical Society 152(11) (2005) A2123.
A.D. Su, X. Zhang, A. Rinaldi, S.T. Nguyen, H. Liu, Z. Lei, L. Lu, H.M.J.C.P.L. Duong, Hierarchical porous nickel oxide–carbon nanotubes as advanced pseudocapacitor materials for supercapacitors, 561 (2013) 68-73.
C. Yuan, L. Chen, B. Gao, L. Su, X. Zhang, Synthesis and utilization of RuO 2· xH 2 O nanodots well dispersed on poly (sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors, Journal of Materials Chemistry 19(2) (2009) 246-252.
A.K. Singh, D. Sarkar, G.G. Khan, K. Mandal, Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors, Journal of Materials Chemistry A 1(41) (2013) 12759-12767.
M.S. Kolathodi, M. Palei, T.S. Natarajan, Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors, Journal of Materials Chemistry A 3(14) (2015) 7513-7522.
H.M. Yadav, S. Ramesh, K.A. Kumar, S. Shinde, S. Sandhu, A. Sivasamy, N.K. Shrestha, H.S. Kim, H.-S. Kim, C. Bathula, Impact of polypyrrole incorporation on nickel oxide@ multi walled carbon nanotube composite for application in supercapacitors, Polymer Testing 89 (2020) 106727.
W.G. Nunes, L.M. Da Silva, R. Vicentini, B.G. Freitas, L.H. Costa, A.M. Pascon, H. Zanin, Nickel oxide nanoparticles supported onto oriented multi-walled carbon nanotube as electrodes for electrochemical capacitors, Electrochimica acta 298 (2019) 468-483.
Y.-H. Lai, S. Gupta, C.-H. Hsiao, C.-Y. Lee, N.-H. Tai, Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors, Electrochimica Acta 354 (2020) 136744.
S. Shin, M.W. Shin, Nickel metal–organic framework (Ni-MOF) derived NiO/C@ CNF composite for the application of high performance self-standing supercapacitor electrode, Applied Surface Science 540 (2021) 148295.
L. Sun, Y. Sun, Q. Fu, C. Pan, Facile preparation of NiO nanoparticles anchored on N/P-codoped 3D carbon nanofibers network for high-performance asymmetric supercapacitors, Journal of Alloys and Compounds 888 (2021) 161488.
R. Kumar, A. Soam, V. Sahajwalla, Sucrose-derived carbon-coated nickel oxide (SDCC-NiO) as an electrode material for supercapacitor applications, Materials Advances 1(4) (2020) 609-616.
D.H. Shin, J.S. Lee, J. Jun, J. Jang, Fabrication of amorphous carbon-coated NiO nanofibers for electrochemical capacitor applications, Journal of Materials Chemistry A 2(10) (2014) 3364-3371.
Published
How to Cite
License
Copyright (c) 2022 The University of Georgia Publishing House (UGPH)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors will be asked, upon acceptance of an article, to transfer copyright of the article to the Publisher. This will ensure the widest possible dissemination of information under copyright laws. The submitted materials may be considered for inclusion but can not be returned.
Licensing: The JCC articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source (appropriate citation), provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
*Author rights
As an author you (or your employer or institution) have certain rights to reuse your work.