3,5-Bis(trifluoromethyl) phenylammonium triflate: a new and green organocatalyst for the synthesis of indeno[1,2-b]pyridines
DOI:
https://doi.org/10.52547/jcc.4.4.2Keywords:
Organocatalyst, Green, Pyridine, Reusable, HeterocycleAbstract
3,5-Bis(trifluoromethyl) phenyl ammonium triflate(BFPAT) catalyzed one-pot synthesis of indeno[1,2-b]pyridine compound derivatives by four-component condensation of aldehyde, aromatic ketones, 1,3-indanedione, and ammonium acetate in ethanol. Accessible starting materials, Simplicity of operation, green and practical catalyst, easy purification, and excellent yields are the key benefits of the current technique.
References
P.I. Dalko, L. Moisan, In the golden age of organocatalysis, Angewandte Chemie International Edition 43(39) (2004) 5138-5175 DOI: https://doi.org/10.1002/anie.200400650.
A.G. Doyle, E.N. Jacobsen, Small-molecule H-bond donors in asymmetric catalysis, Chemical Reviews 107(12) (2007) 5713-5743 DOI: https://doi.org/10.1021/cr068373r.
F. Peng, Z. Shao, Advances in asymmetric organocatalytic reactions catalyzed by chiral primary amines, Journal of Molecular Catalysis A: Chemical 285(1-2) (2008) 1-13 DOI: https://doi.org/10.1021/cr068373r.
A. Dondoni, A. Massi, Asymmetric organocatalysis: from infancy to adolescence, Angewandte Chemie International Edition 47(25) (2008) 4638-4660 DOI: https://doi.org/10.1002/anie.200704684.
N. Abavi Torghabeh, B. Raissi, R. Riahifar, M. Sahbayaghmaee, Z. Minaei Bidgoli, Investigation of the flocculation and sedimentation of TiO2 nanoparticles in different alcoholic environments through turbidity measurements, Journal of Composites and Compounds 3(8) (2021) 159-163 DOI: 10.52547/jcc.3.3.2.
P. Renzi, M. Bella, Non-asymmetric organocatalysis, Chemical Communications 48(55) (2012) 6881-6896 DOI: https://doi.org/10.1039/C2CC31599H.
T. Funatomi, K. Wakasugi, T. Misaki, Y. Tanabe, Pentafluorophenylammonium triflate (PFPAT): an efficient, practical, and cost-effective catalyst for esterification, thioesterification, transesterification, and macrolactone formation, Green Chemistry 8(12) (2006) 1022-1027 DOI: https://doi.org/10.1039/B609181B.
A. Iida, J. Osada, R. Nagase, T. Misaki, Y. Tanabe, Mild and efficient pentafluorophenylammonium triflate (PFPAT)-catalyzed C-acylations of enol silyl ethers or ketene silyl (thio) acetals with acid chlorides, Organic Letters 9(10) (2007) 1859-1862 DOI: https://doi.org/10.1021/ol070191b.
S. Khaksar, S.M. Ostad, Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bis-indolyl methane derivatives, Journal of Fluorine Chemistry 132(11) (2011) 937-939 DOI: https://doi.org/10.1016/j.jfluchem.2011.07.011.
M. Ghashang, S.S. Mansoor, K. Aswin, Pentafluorophenylammonium triflate (PFPAT) catalyzed facile construction of substituted chromeno [2, 3-d] pyrimidinone derivatives and their antimicrobial activity, Journal of Advanced Research 5(2) (2014) 209-218 DOI: https://doi.org/10.1016/j.jare.2013.03.003.
N. Montazeri, K. Pourshamsian, S. Yosefiyan, S.S. Momeni, Pentafluorophenylammonium triflate-CuCl2: A mild, efficient and reusable heterogeneous catalyst system for facile synthesis of 4 (3H)-quinazolinones under solvent-free conditions, Journal of Chemical Sciences 124(4) (2012) 883-887 DOI: https://doi.org/10.1007/s12039-012-0260-2.
S. Khaksar, N. Behzadi, Pentafluorophenylammonium triflate (PFPAT): an efficient, practical, and cost-effective catalyst for one-pot condensation of ?-naphthol, aldehydes and cyclic 1, 3-dicarbonyl compounds, Combinatorial Chemistry & High Throughput Screening 15(10) (2012) 845-848 DOI: https://doi.org/10.2174/138620712803901153.
E.M. Abdelraheem, S. Khaksar, K. Kurpiewska, J. Kalinowska-T?us?cik, S. Shaabani, A. Do?mling, Two-step macrocycle synthesis by classical Ugi reaction, The Journal of organic chemistry 83(3) (2018) 1441-1447 DOI: https://doi.org/10.1021/acs.joc.7b02984.
S. Khaksar, M. Gholami, An eco-benign and highly efficient access to dihydro-1H-indeno [1, 2-b] pyridines in 2, 2, 2-trifluoroethanol, Journal of Molecular Liquids 196 (2014) 159-162 DOI: https://doi.org/10.1016/j.molliq.2014.03.030.
S. Khaksar, H. Radpeyma, Pentafluorophenylammonium triflate: A highly efficient catalyst for the synthesis of quinoxaline derivatives in water, Comptes Rendus Chimie 17(10) (2014) 1023-1027 DOI: https://doi.org/10.1016/j.crci.2013.11.009.
R. Miri, K. Javidnia, B. Hemmateenejad, A. Azarpira, Z. Amirghofran, Synthesis, cytotoxicity, QSAR, and intercalation study of new diindenopyridine derivatives, Bioorganic & medicinal chemistry 12(10) (2004) 2529-2536 DOI: https://doi.org/10.1016/j.crci.2013.11.009.
G. Heintzelman, K. Averill, J. Dodd, K. Demarest, Y. Tang, P. Jackson, inventors; WO 2003088963 A1. 2003, Chem. Abstr, 2003, p. 350637.
K. Cooper, M. Fray, P. Cross, K. Richardson, 0299727| 231441, (1989).
C. Safak, R. Simsek, Y. Altas, S. Boydag, K. Erol, 2-methyl-3-acetyl-4-aryl-5-oxo-1, 4-dihydro-5H indeno (1, 2-b) pyridine derivatives studies and their calcium antagonistic activities, Bollettino Chimico Farmaceutico 136(11) (1997) 665-669.
H. Won Jang, A. Zareidoost, M. Moradi, A. Abuchenari, A. Bakhtiari, R. Pouriamanesh, B. Malekpouri, A. Jafari Rad, D. Rahban, Photosensitive nanocomposites: environmental and biological applications, Journal of Composites and Compounds 2(2) (2020) 50-60 DOI: 10.29252/jcc.2.1.7.
S. Mohammadi, Z. Mohammadi, Functionalized NiFe2O4/mesopore silica anchored to guanidine nanocomposite as a catalyst for synthesis of 4H-chromenes under ultrasonic irradiation, Journal of Composites and Compounds 3(7) (2021) 84-90 DOI: 10.52547/jcc.3.2.1.
M. Bayat, F.S. Hosseini, B. Notash, Stereoselective synthesis of indenone-fused heterocyclic compounds via a one-pot four-component reaction, Tetrahedron 73(8) (2017) 1196-1204 DOI: https://doi.org/10.1016/j.tet.2017.01.024.
M. Pagliaro, R. Ciriminna, M. Yusuf, S. Eskandarinezhad, I.A. Wani, M. Ghahremani, Z. Rezaei Nezhad, Application of nanocellulose composites in the environmental engineering as a catalyst, flocculants, and energy storages: a review, Journal of Composites and Compounds 3(7) (2021) 114-128 DOI: 10.52547/jcc.3.2.5.
H. Khalilpour, P. Shafiee, A. Darbandi, M. Yusuf, S. Mahmoudi, Z. Moazzami Goudarzi, S. Mirzamohammadi, Application of Polyoxometalate-based composites for sensor systems: A review, Journal of Composites and Compounds 3(7) (2021) 129-139 DOI: 10.52547/jcc.3.2.6.
C. Mukhopadhyay, P.K. Tapaswi, R.J. Butcher, L-Proline-catalyzed one-pot expeditious synthesis of highly substituted pyridines at room temperature, Tetrahedron Letters 51(13) (2010) 1797-1802 DOI: https://doi.org/10.1016/j.tetlet.2010.01.106.
S. Samai, G.C. Nandi, R. Kumar, M. Singh, Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno [1, 2-b] pyridines, Tetrahedron Letters 50(50) (2009) 7096-7098 DOI: https://doi.org/10.1016/j.tetlet.2009.10.022.
M.T. DuPriest, C.L. Schmidt, D. Kuzmich, S.B. Williams, A facile synthesis of 7-halo-5H-indeno [1, 2-b] pyridines and-pyridin-5-ones, The Journal of Organic Chemistry 51(11) (1986) 2021-2023 DOI: https://doi.org/10.1021/jo00361a015.
K.V. Emelen, T.D. Wit, G.J. Hoornaert, F. Compernolle, Diastereoselective Intramolecular Ritter Reaction: Generation of a Cis-Fused Hexahydro-4a H-indeno [1, 2-b] pyridine Ring System with 4a, 9b-Diangular Substituents, Organic Letters 2(20) (2000) 3083-3086 DOI: https://doi.org/10.1021/ol006248a.
S. Tu, B. Jiang, R. Jia, J. Zhang, Y. Zhang, An efficient and expeditious microwave-assisted synthesis of 4-azafluorenones via a multi-component reaction, Tetrahedron letters 48(8) (2007) 1369-1374 DOI: https://doi.org/10.1016/j.tetlet.2006.12.102.
P.K. Tapaswi, C. Mukhopadhyay, Ceric ammonium nitrate (CAN) catalyzed one-pot synthesis of fully substituted new indeno [1, 2-b] pyridines at room temperature by a multi-component reaction, Arkivoc 2011 (2011) 287-298 DOI: http://doi.org/10.3998/ark.5550190.0012.a23.
K. Wakasugi, T. Misaki, K. Yamada, Y. Tanabe, Diphenylammonium triflate (DPAT): efficient catalyst for esterification of carboxylic acids and for transesterification of carboxylic esters with nearly equimolar amounts of alcohols, Tetrahedron letters 41(27) (2000) 5249-5252 DOI: https://doi.org/10.1016/S0040-4039(00)00821-2.
S. Eskandarinezhad, R. Khosravi, M. Amarzadeh, P. Mondal, F.J.C. Magalhães Filho, Application of different Nanocatalysts in industrial effluent treatment: A review, Journal of Composites and Compounds 3(6) (2021) 43-56 DOI: 10.52547/jcc.3.1.5.
N. Aboualigaledari, M. Rahmani, A review on the synthesis of the TiO2-based photocatalyst for the environmental purification, Journal of Composites and Compounds 3(6) (2021) 25-42 DOI: 10.52547/jcc.3.1.4.
Published
How to Cite
License
Copyright (c) 2022 The University of Georgia Publishing House (UGPH)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors will be asked, upon acceptance of an article, to transfer copyright of the article to the Publisher. This will ensure the widest possible dissemination of information under copyright laws. The submitted materials may be considered for inclusion but can not be returned.
Licensing: The JCC articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source (appropriate citation), provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
*Author rights
As an author you (or your employer or institution) have certain rights to reuse your work.