Investigation of Fe3O4/SBA-15 magnetic nanocomposite synthesized by microwave-assisted solvothermal route as multi-therapeutic agent
DOI:
https://doi.org/10.52547/jcc.4.3.1Keywords:
Fe3O4@SBA-15 , Magnetic nanocomposite, Drug carrier, Hyperthermia, MRIAbstract
In the current study, a facile and in situ synthesis route for the preparation of mesoporous SiO2-Fe3O4 magnetic nanocomposite using iron (III) acetylacetonate via microwave-assisted solvothermal method is proposed. To characterize the samples, XRD, EDS, SEM, TEM, BET, and VSM were applied, and their potential applications as drug carriers, hyperthermia, and MRI contrast agents were investigated. The results confirmed that the magnetic nanocomposite could be used as a drug carrier, and its drug release rate is affected by the magnetic field. Also, the product applications as both hyperthermia and MRI contrast agent for T2 weighted images were approved.
References
W. Chen, K. Sun, R. Zheng, H. Zeng, S. Zhang, C. Xia, Z. Yang, H. Li, X. Zou, J. He, Cancer incidence and mortality in China, 2014, Chinese journal of cancer research 30(1) (2018) 1.
Z.-F. Lim, P.C. Ma, Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy, Journal of hematology & oncology 12(1) (2019) 1-18.
F. Niazvand, P. Rajendra Wagh, E. Khazraei, M. Borzouyan Dastjerdi, C. Patil, I. Ahmad Najar, Application of carbon allotropes composites for targeted cancer therapy: A review, ournal of Composites and Compounds 3(7) (2021) 140-151
Z. Hedayatnasab, F. Abnisa, W. M. Ashri Wan Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application, Materials and Design 123 (2017) 174-196.
M. Arruebo, R. Fernandez-Pacheco, M. R. Ibarra, J. Santamaria, Magnetic nanoparticles for drug delivery, Nano Today 2(3) (2017) 22-32.
M. P. Paige, E. M. Waleed, A. A. Al-Ghamdi, L. M. Bronstein, Magnetic Drug Delivery: Where the Field Is Going, Frontiers in Chemistry 6 (2018) 619.
M. Modheji, H. Emadi, H. Vojoudi, Efcient pre concentration of As(III) in food samples using guanidine modified magnetic mesoporous silica, Journal of Porous Materials, 27 (2020)
-978.
A. de Sousa, K. C. de Souza, P. M. da Silva Leite, R. G. de Sousa, E. M. B. de Sousa, A Dual-Functional [SBA-15/Fe3O4/P(N-iPAAm)] Hybrid System as a Potential Nanoplatform for Biomedical Application, Journal of Nanomaterials 2014 (2014) 293624.
D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279(5350) (1998) 548-552.
T. M. Albayati, I. K. Salih, H. F. Alazzawi, Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system, Heliyon 5 (2019) e02539.
K. Alhooshani, Determination of nitrosamines in skin care cosmetics using Ce-SBA-15 based stir bar-supported micro-solid-phase extraction coupled with gas chromatography mass spectrometry, Arabian Journal of Chemistry, 13(1) (2020) 2508-2516.
E. Rossinyol, J. Arbiol, F. Peiro, A. Cornet, J. R. Morante, B. Tian, T. Bo, D. Zhao, Nanostructured metal oxides synthesized by hard template method for gas sensing applications, Sensors and Actuators B: Chemical 109(1) (2005) 57-63.
M. Vallet-Reg?´, J. C. Doadrio, A. L. Doadrio, I. Izquierdo-Barba, J. Pe´rez-Pariente, Hexagonal Ordered Mesoporous Material as a Matrix for the Controlled Release of Amoxicillin, Solid State Ionics, 172(1-4) (2004) 435-439.
P. Horcajada, A. Ra´mila, J. Pe´rez-Pariente, M. Vallet-Reg?´, Influence of pore size of MCM-41 matrices on drug delivery rate, Microporous Mesoporous Materials 68(1-3) (2004) 105-109.
A. Sousa A, K. C. Souza, E. M. B. Sousa, Mesoporous silica/apatite nanocomposite: Special synthesis route to control local drug delivery, Acta Biomaterialia 4(3) (2008) 671-679.
R. Nasr Azadani, M. Sabbagh, H. Salehi, A. Cheshmi, A. Raza, B. Kumari, G. Erabi, Sol-gel: Uncomplicated, routine and affordable synthesis procedure for utilization of composites in drug delivery: Review, Journal of Composites and Compounds, 3(6) (2021) 57–70.
M. Filip, G. Petcu, E. M. Anghel, S. Petrescu, B. Trica, P. Osiceanu, N. Stanica, I. Atkinson, C. Munteanu, M. Mureseanu,V. Parvulescu, FeTi- SBA-15 magnetic nanocomposites with photocatalytic properties, Catalysis Today 366 (2021) 10-19.
Z. Dahaghin, H. Zavvar Mousavi, M. Sajjadi, Synthesis and application of a novel magnetic SBA-15 nanosorbent for heavy metal removal from aqueous solutions, Journal of Sol-Gel Science and Technology 86(1) (2018) 217-225.
L. Zhao, A. Shiino, H. Qin, T. Kimura, N. Komatsu, Synthesis, Characterization, and Magnetic Resonance Evaluation of Polyglycerol-Functionalized Detonation Nanodiamond Conjugated with Gadolinium(III) Complex, Journal of Nanoscience and Nanotechnology 15(2) (2015) 1076–1082.
D. García-Soriano, P. Milán-Rois, N. Lafuente-Gómez, C. N. Lucía Gutiérrez, L. Cussó, M. Desco, D. Calle, Á. Somoza, G. Salas, Iron oxide-manganese oxide nanoparticles with tunable morphology and switchable MRI contrast mode triggered by intracellular conditions, Journal of Colloid and Interface Science, 613 (2022) 447-460.
T. Cao, C. Wang, Z. Zhou, L. Liu, S. Xu, H. Song, W. Lin, Z. Xu, Magnetic multi-functional SBA-15 supported silver nanocomposites: Synthesis, characterization and application, Applied Surface Science, 552 (2021) 149487.
Z. Vargas-Osorio, M. A. González-Gómez, Y. Piñeiro., C. Vázquez-Vázquez, C. Rodríguez-Abreu, M. A. López-Quintela, J. Rivas, Novel synthetic routes of large-pore magnetic mesoporous nanocomposites (SBA-15/Fe3O4) as potential multifunctional theranostic nanodevices, Journal of Materials Chemistry B 5 (2017) 9395-9404.
H. Emadi, A. Nemati Kharat, Single source preparation of superparamagnetic Fe3O4 nanoparticles by simple cyclic microwave approach, Materials Research Bulletin 48(10) (2013) 3994–4001.
S. Moradi, O. Akhavan, A. Tayyebi, R. Rahighi, M. Mohammadzadeh, H. R. Saligheh Rad, Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging, RSC Advances 5 (2015) 47529-47537.
K. C. Souza, J. D. Ardisson, E. M. B. Sousa, Study of mesoporous silica/magnetite systems in drug controlled release, Journal of Materials Science: Materials in Medicine 20 (2009) 507.
M. Arruebo, M. Galan, N. Navascues, C. Tellez, C. Marquina, M. R. Ibarra, J. Santamaria, Development of Magnetic Nanostructured Silica-Based Materials as Potential Vectors for Drug-Delivery Applications, Chemistry of Materials 18(7) (2006) 1911-1919.
G. Zhao, J. Wang, Y. Li, X. Chen, Y. Liu, Enzymes Immobilized on Superparamagnetic Fe3O4@Clays Nanocomposites: Preparation, Characterization, and a New Strategy for the Regeneration of Supports, Journal of Physical Chemistry C 115(14) (2011) 6350-6359.
D. H. Kim, D. E. Nikles, D. T. Johnson, C. S. Brazel, Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia, Journal of Magnetism and Magnetic Materials 320(19) (2008) 2390-2396.
S. Bae, S. W. Lee, A. Hirukawa, Y. Takemura, Y. H. Jo, S. G. Lee, AC Magnetic-Field-Induced Heating and Physical Properties of Ferrite Nanoparticles for a Hyperthermia Agent in Medicine, IEEE Transactions on Nanotechnology 8(1) (2009) 86-94.
H. M. Joshi, M. De, F. Richter, J. He, P. V. Prasad, V. P. Dravid, Effect of silica shell thickness of Fe3O4–SiOx core–shell nanostructures on MRI contrast, Contrast Media Mol Imaging, 7(5) (2012) 460-468.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 The University of Georgia Publishing House (UGPH)

This work is licensed under a Creative Commons Attribution 4.0 International License.
