Production methods of ceramic-reinforced Al-Li matrix composites: A review

Authors

  • Kaiqiang Zhang School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Ho Won Jang Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
  • Quyet Van Le Institute of Research and Development, Duy Tan University, Da Nang, 550000, VietNam

DOI:

https://doi.org/10.29252/jcc.2.2.3

Keywords:

MMCs, Al-Li alloy, Al-Li matrix composites, Ceramic reinforcement

Abstract

Recently, the increasing need for good quality, high performance, and low-cost materials has directed research to composite materials rather than monolithic materials. In the case of metal matrix composites (MMCs), composites based on aluminum matrix have been widely developed for the automobile and aerospace industry as well as structural applications due to having a low cost, high wear resistance, and high strength to weight ratio. Moreover, a facile and economical method for the production of the composites is a very important factor for expanding their application. Ceramic reinforcements such as graphite, silicon carbide, alumina, and fly ash particulates can be introduced in metal matrices. Moreover, there has been considerable interest in developing Al-Li alloys and composites because of having high specific strength and high specific modulus. The present article has focused on the development of aluminum-lithium alloy composites as well as their production methods.

References

L. Bazli, M. Siavashi, A. Shiravi, A Review of Carbon nanotube/TiO2 Com-posite prepared via Sol-Gel method, Journal of Composites and Compounds 1(1) (2019) 1-12.

L. Bazli, A. Khavandi, M.A. Boutorabi, M. Karrabi, Morphology and visco-elastic behavior of silicone rubber/EPDM/Cloisite 15A nanocomposites based on Maxwell model, Iranian Polymer Journal 25(11) (2016) 907-918.

E. Omrani, A.D. Moghadam, M. Algazzar, P.L. Menezes, P.K. Rohatgi, Effect of graphite particles on improving tribological properties Al-16Si-5Ni-5Graphite self-lubricating composite under fully flooded and starved lubrication conditions for transportation applications, The International Journal of Advanced Manufac-turing Technology 87(1-4) (2016) 929-939.

A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Effect of in-situ pro-cessing parameters on the mechanical and tribological properties of self-lubricat-ing hybrid aluminum nanocomposites, Tribology Letters 62(2) (2016) 25.

A.D. Moghadam, B.F. Schultz, J. Ferguson, E. Omrani, P.K. Rohatgi, N. Gupta, Functional metal matrix composites: self-lubricating, self-healing, and nanocom-posites-an outlook, Jom 66(6) (2014) 872-881.

A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Mechanical and tri-bological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review, Composites Part B: Engineering 77 (2015) 402-420.

E. Omrani, A.D. Moghadam, P.L. Menezes, P.K. Rohatgi, Influences of graph-ite reinforcement on the tribological properties of self-lubricating aluminum ma-trix composites for green tribology, sustainability, and energy efficiency—a re-view, The International Journal of Advanced Manufacturing Technology 83(1-4) (2016) 325-346.

M. Tabandeh-Khorshid, E. Omrani, P.L. Menezes, P.K. Rohatgi, Tribolog-ical performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets, Engineering science and technology, an international jour-nal 19(1) (2016) 463-469.

P.K. Rohatgi, M. Tabandeh-Khorshid, E. Omrani, M.R. Lovell, P.L. Menez-es, Tribology of metal matrix composites, Tribology for scientists and engineers, Springer2013, pp. 233-268.

I. Tajzad, E. Ghasali, Production Methods of CNT-reinforced Al Matrix Com-posites: A Review, Composites and Compounds 1(1) (2020).

L. Bazli, A. Khavandi, M.A. Boutorabi, M. Karrabi, Correlation between vis-coelastic behavior and morphology of nanocomposites based on SR/EPDM blends compatibilized by maleic anhydride, Polymer 113 (2017) 156-166.

K.U. Kainer, Basics of metal matrix composites, Wiley Online Library2006.

J. Hooker, P. Doorbar, Metal matrix composites for aeroengines, Materials science and technology 16(7-8) (2000) 725-731.

R. Etemadi, B. Wang, K. Pillai, B. Niroumand, E. Omrani, P. Rohatgi, Pres-sure infiltration processes to synthesize metal matrix composites–A review of metal matrix composites, the technology and process simulation, Materials and Manufacturing Processes 33(12) (2018) 1261-1290.

P.K. Rohatgi, A. Dorri, B.F. Schultz, J. Ferguson, Synthesis and properties of metal matrix nanocomposites (MMnCs), syntactic foams, self lubricating and self-healing metals, Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, Springer, 2013, pp. 1515-1524.

A. Masoudian, A. Tahaei, A. Shakiba, F. Sharifianjazi, J.A. Mohandesi, Mi-crostructure and mechanical properties of friction stir weld of dissimilar AZ31-O magnesium alloy to 6061-T6 aluminum alloy, Transactions of nonferrous metals society of China 24(5) (2014) 1317-1322.

A. Dorri Moghadam, J. Ferguson, B.F. Schultz, H. Lopez, P.K. Rohatgi, Direct Synthesis of nanostructured in situ hybrid aluminum matrix nanocomposite, Indus-trial & Engineering Chemistry Research 55(22) (2016) 6345-6353.

A.D. Moghadam, J. Ferguson, B.F. Schultz, P.K. Rohatgi, In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts, AIMS Materials Science 3(3) (2016) 954-964.

M. Surappa, Aluminium matrix composites: Challenges and opportunities, Sadhana 28(1-2) (2003) 319-334.

S. Adhikari, P. Mukhopadhyay, Physical metallurgy of beryllium and its al-loys, Mineral Processing and Extractive Metullargy Review 14(1) (1995) 253-299.

D. Huda, M. El Baradie, M. Hashmi, Metal-matrix composites: Materials as-pects. Part II, Journal of Materials Processing Technology 37(1-4) (1993) 529-541.

I. Polmear, Aluminium Alloys--A Century of Age Hardening, Materials fo-rum, 2004, p. 13.

M. Furukawa, Y. Miura, M. Nemoto, Strengthening mechanisms in Al–Li al-loys containing coherent ordered particles, Transactions of the Japan institute of metals 26(4) (1985) 230-235.

S.N. Murty, B.N. Rao, B. Kashyap, On the hot working characteristics of 6061Al–SiC and 6061–Al2O3 particulate reinforced metal matrix composites, Composites science and technology 63(1) (2003) 119-135.

S. Kumar, R. Singh, M. Hashmi, Metal matrix composite: a methodological review, Advances in Materials and Processing Technologies 6(1) (2020) 13-24.

J.P. Davim, Diamond tool performance in machining metal–matrix compos-ites, Journal of materials processing technology 128(1-3) (2002) 100-105.

R.N. Rai, G. Datta, M. Chakraborty, A. Chattopadhyay, A study on the ma-chinability behaviour of Al–TiC composite prepared by in situ technique, Materi-als Science and Engineering: A 428(1-2) (2006) 34-40.

J.D. Torralba, C. Da Costa, F. Velasco, P/M aluminum matrix composites: an overview, Journal of Materials Processing Technology 133(1-2) (2003) 203-206.

Y. Mazaheri, M. Meratian, R. Emadi, A. Najarian, Comparison of microstruc-tural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques, Materials Science and Engineering: A 560 (2013) 278-287.

S. Kumar, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically sep-arable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced pho-tocatalytic performance under visible-light irradiation, The Journal of Physical Chemistry C 117(49) (2013) 26135-26143.

M.K. Akbari, H. Baharvandi, O. Mirzaee, Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of rein-forcement powders and evaluation of its properties, Composites Part B: Engineer-ing 55 (2013) 426-432.

A. Baradeswaran, A.E. Perumal, Influence of B4C on the tribological and me-chanical properties of Al 7075–B4C composites, Composites Part B: Engineering 54 (2013) 146-152.

J.D.R. Selvam, D.R. Smart, I. Dinaharan, Synthesis and characterization of Fig. 8. A schematic of diffusion bonding process.

Al6061-Fly Ashp-SiCp composites by stir casting and compocasting methods, En-ergy procedia 34 (2013) 637-646.

K.K. Chawla, Metal matrix composites, Composite Materials, Springer2012, pp. 197-248.

R.G. Kamat, J.M. Newman, R.R. Sawtell, J.C. Lin, Aluminum-lithium alloys, and methods for producing the same, Google Patents, 2012.

N.E. Prasad, A. Gokhale, R. Wanhill, Aluminum-lithium alloys: processing, properties, and applications, Butterworth-Heinemann2013.

J. Ekvall, J. Rhodes, G. Wald, Methodology for evaluating weight savings from basic material properties, Design of Fatigue and Fracture Resistant Struc-tures, ASTM international1982.

C. Peel, B. Evans, C. Baker, D. Bennett, P. Gregson, H. Flower, The devel-opment and application of improved aluminium-lithium alloys, Aluminum-lithium alloys II (1984) 363-392.

K.V. Rao, R. Ritchie, Fatigue of aluminium—lithium alloys, International ma-terials reviews 37(1) (1992) 153-186.

N.E. Prasad, A.A. Gokhale, R. Wanhill, Aluminium–lithium alloys, Aero-space Materials and Material Technologies, Springer2017, pp. 53-72.

Z.S. Yuan, Z. Lu, Y.H. Xie, X.L. Wu, S.L. Dai, C.S. Liu, Mechanical prop-erties of a novel high-strength aluminum-lithium alloy, Materials Science Forum, Trans Tech Publ, 2011, pp. 385-389.

K.K. Chawla, Composite materials: science and engineering, Springer Sci-ence & Business Media2012.

G. M.-C., W. D.-B., W. J.-J., Y. G.-J., L. C.-G., Microstructure and mechan-ical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process, Materials science and technology 16(5) (2000) 556-563.

W.H. Hunt Jr, Aluminum metal matrix composites today, Materials science forum, Trans Tech Publ, 2000, pp. 71-84.

A. Contreras, V. Lopez, E. Bedolla, Mg/TiC composites manufactured by pressureless melt infiltration, Scripta materialia 51(3) (2004) 249-253.

H. Su, W. Gao, Z. Feng, Z. Lu, Processing, microstructure and tensile proper-ties of nano-sized Al2O3 particle reinforced aluminum matrix composites, Materi-als & Design (1980-2015) 36 (2012) 590-596.

R. Bauri, M. Surappa, Damping behavior of Al-Li-SiC p composites pro-cessed by stir casting technique, Metallurgical and Materials Transactions A 36(3) (2005) 667-673.

R. Bauri, M. Surappa, Processing and properties of Al–Li–SiCp composites, Science and Technology of Advanced Materials 8(6) (2007) 494.

D. Wittig, A. Glauche, C. Aneziris, T. Minghetti, C. Schelle, T. Graule, J. Kuebler, Activated pressureless melt infiltration of zirconia-based metal matrix composites, Materials Science and Engineering: A 488(1-2) (2008) 580-585.

P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain, P. Gupta, Ad-vance research progresses in aluminium matrix composites: manufacturing & ap-plications, Journal of Materials Research and Technology 8(5) (2019) 4924-4939.

A. Demir, N. Altinkok, Effect of gas pressure infiltration on microstructure and bending strength of porous Al2O3/SiC-reinforced aluminium matrix compos-ites, Composites Science and Technology 64(13-14) (2004) 2067-2074.

Q. Zhang, G. Chen, G. Wu, Z. Xiu, B. Luan, Property characteristics of a AlNp/Al composite fabricated by squeeze casting technology, Materials Letters 57(8) (2003) 1453-1458.

S. Dong, J. Mao, D. Yang, Y. Cui, L. Jiang, Age-hardening behavior of a SiCw/Al-Li-Cu-Mg-Zr composite, Materials Science and Engineering: A 327(2) (2002) 213-223.

S. Dong, D. Yang, S. Chen, Influence of SiC whisker on planar slip in Al-Li based alloys, Journal of materials science 37(12) (2002) 2527-2534.

T.S. Srivatsan, E. Lavernia, Use of spray techniques to synthesize particu-late-reinforced metal-matrix composites, Journal of materials science 27(22) (1992) 5965-5981.

A. Agarwal, T. McKechnie, S. Seal, Net shape nanostructured aluminum ox-ide structures fabricated by plasma spray forming, Journal of Thermal Spray Tech-nology 12(3) (2003) 350-359.

A. Agarwal, T. McKechnie, S. Seal, The spray forming of nanostructured alu-minum oxide, JOM 54(9) (2002) 42-44.

T. Gómez-del Río, A. Rico, M. Garrido, P. Poza, J. Rodríguez, Temperature and velocity transitions in dry sliding wear of Al–Li/SiC composites, Wear 268(5-6) (2010) 700-707.

C. González, A. Mart??n, J. Llorca, Effect of temperature on the fracture mech-anisms of 8090 Al–Li alloy and 8090 Al–Li/SiC composite, Scripta Materialia 51(11) (2004) 1111-1115.

D. Lloyd, Particle reinforced aluminium and magnesium matrix composites, International materials reviews 39(1) (1994) 1-23.

Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing, Carbon 50(5) (2012) 1843-1852.

K. Padmavathi, R. Ramakrishnan, K. Palanikumar, Aluminium Metal Matrix composite–an insight into solid state and liquid state processes, Applied Mechan-ics and Materials, Trans Tech Publ, 2015, pp. 234-239.

Y. Wan, Y. Wang, H. Luo, G. Cheng, Effect of interfacial bonding strength on thermal expansion behaviour of PM Al2O3/copper alloy composites, Powder metallurgy 43(1) (2000) 76-78.

H.-K. Kang, Microstructure and electrical conductivity of high volume Al2O3-reinforced copper matrix composites produced by plasma spray, Surface and Coatings Technology 190(2-3) (2005) 448-452.

M. Aboraia, H. Wasly, M. Doheim, G. Abdalla, A. Mahmoud, Characteriza-tion of Al/(10% Al2O3-10% ZrO2) nanocomposite powders fabricated by high-en-ergy ball milling, International Journal of Engineering Research and Applications 3 (2013) 474-482.

N. Zhao, P. Nash, X. Yang, The effect of mechanical alloying on SiC dis-tribution and the properties of 6061 aluminum composite, Journal of Materials Processing Technology 170(3) (2005) 586-592.

Y. Xi, D. Chai, W. Zhang, J. Zhou, Titanium alloy reinforced magnesium matrix composite with improved mechanical properties, Scripta Materialia 54(1) (2006) 19-23.

S. Aksöz, B. Bostan, Effects of ageing and cryo-ageing treatments on mi-crostructure and hardness properties of AA2014–SiC MMCs, Transactions of the Indian Institute of Metals 71(8) (2018) 2035-2042.

A. Abuchenari, M. Moradi, The Effect of Cu-Substitution on the Microstruc-ture and Magnetic Properties of Fe-15%Ni alloy Prepared by Mechanical Alloy-ing, Composites and Compounds 1(1) (2019).

M. Alizadeh, F. Sharifianjazi, E. Haghshenasjazi, M. Aghakhani, L. Rajabi, Production of nanosized boron oxide powder by high-energy ball milling, Synthe-sis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 45(1) (2015) 11-14.

J. Cintas, F. Cuevas, J. Montes, E. Herrera, High-strength PM aluminium by milling in ammonia gas and sintering, Scripta Materialia 53(10) (2005) 1165-1170.

E. Tan, Y. Kaplan, H. Ada, S. Aksöz, Production of the AA2196-TiB2 MMCs via PM Technology, Springer International Publishing, Cham, 2019, pp. 153-157.

R. Casati, M. Vedani, Metal matrix composites reinforced by nano-parti-cles—a review, Metals 4(1) (2014) 65-83.

M. Alizadeh, M. Paydar, F.S. Jazi, Structural evaluation and mechanical prop-erties of nanostructured Al/B4C composite fabricated by ARB process, Composites Part B: Engineering 44(1) (2013) 339-343.

M. Murato?lu, O. Yilmaz, M. Aksoy, Investigation on diffusion bonding char-acteristics of aluminum metal matrix composites (Al/SiCp) with pure aluminum for different heat treatments, Journal of materials processing Technology 178(1-3) (2006) 211-217.

Y. Wang, F. Zhong, R. Wu, H. Wu, N. Turakhodjaev, B. Kudratkhon, J. Sun, L. Hou, J. Zhang, X. Li, M. Zhang, High-strength, ductility and modulus Al–Li/B4C composite with near nanostructure produced by accumulative roll bonding, Journal of Alloys and Compounds 834 (2020) 155105.

Y. Sahin, M. Ac?lar, Production and properties of SiCp-reinforced aluminium alloy composites, Composites Part A: Applied Science and Manufacturing 34(8) (2003) 709-718.

E.H. Jazi, R. Esalmi-Farsani, G. Borhani, F.S. Jazi, Synthesis and Character-ization of In Situ Al-Al13Fe4-Al2O3-TiB2 Nanocomposite Powder by Mechanical Alloying and Subsequent Heat Treatment, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 44(2) (2014) 177-184.

H. Wang, G. Li, Y. Zhao, G. Chen, In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites, Materials Science and En-gineering: A 527(12) (2010) 2881-2885.

N. Chawla, K.K. Chawla, Processing, Metal Matrix Composites (2013) 55-97.

A. Masoudian, M. Karbasi, F. SharifianJazi, A. Saidi, Developing Al2O3-TiC in-situ nanocomposite by SHS and analyzingtheeffects of Al content and mechan-ical activation on microstructure, Journal of Ceramic Processing Research 14(4) (2013) 486-491.

V. Balouchi, F.S. Jazi, A. Saidi, Developing (W, Ti) C-(Ni, Co) nanocomposite by SHS method, Journal of Ceramic Processing Research 16(5) (2015) 605-608.

L. Wu, C. Zhou, X. Li, N. Ma, H. Wang, Microstructural evolution and me-chanical properties of cast high-Li-content TiB2/Al-Li-Cu composite during heat treatment, Journal of Alloys and Compounds 739 (2018) 270-279.

B. Zhao, Q. Yang, L. Wu, X. Li, M. Wang, H. Wang, Effects of nanosized particles on microstructure and mechanical properties of an aged in-situ TiB2/Al-Cu-Li composite, Materials Science and Engineering: A 742 (2019) 573-583.

Article DOR: 20.1001.1.26765837.2020.2.3.3.3

Graphical Abstract

Downloads

Published

2020-06-30

How to Cite

Zhang, K., Won Jang, H., & Van Le, Q. (2020). Production methods of ceramic-reinforced Al-Li matrix composites: A review. Journal of Composites and Compounds, 2(3), 77–84. https://doi.org/10.29252/jcc.2.2.3

Issue

Section

Review Articles