Hydroxyapatite consolidated by zirconia: applications for dental implant

Authors

  • Fariborz Sharifianjazi Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
  • Amir Hossein Pakseresht Coating department, Centre for Functional and Surface Functionalized Glass, Alexander Dubcek University of Trencin, Trencin 91150 Slovakia
  • Mehdi Shahedi Asl Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
  • Amirhossein Esmaeilkhanian Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
  • Hiva Nargesi khoramabadi Department of medical engineering, Payame Noor University (PNU), Alborz 19395-3697, Iran
  • Ho Won Jang Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
  • Mohammadreza Shokouhimehr Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

DOI:

https://doi.org/10.29252/jcc.2.1.4

Keywords:

Hydroxyapatite, Zirconia, Dental implant, Biocompatibility, Coating, Ceramic, composite

Abstract

Zirconia has garnered significant attention as a new ceramic material for dental implant due to its excellent biocompatibility, strength, and promoting the oral rehabilitation with high aesthetic, biological and mechanical properties. It also expedites the amelioration of bone minerals surface by its bio-integrative ingredients which are naturally close to ceramic intrinsic of bone. Alternatively, hydroxyapatite (HAp) has prevalently been used in dental implant due to its high biocompatibility. However, it generally shows weak strength and mechanical properties. Consequently, incorporating zirconia and HAp produces appropriate composites for dental implant having improved physiochemical properties. This review provides discussions addressing the methodologies and exemplars for the designed composites used in dental implant applications. The representative methods for surface modification of zirconia incorporating HAp (i.e. sol-gel, hot isostatic pressing, plasma spraying, electrophoretic deposition, etc.) is highlighted. The advantages, disadvantages, biocompatibility, strength, and osseointergration and biointegration properties of the presented composites are explored.

References

G. Rajan, R. Raju, S. Jinachandran, P. Farrar, J. Xi, B.G. Prusty, Polymerisation Shrinkage Profiling of Dental Composites using Optical Fibre Sensing and their Correlation with Degree of Conversion and Curing Rate, Scientific Reports 9(1) (2019) 3162.

K. Cho, G. Wang, Raju, J. Fang, G. Rajan, M.H. Stenzel, P. Farrar, B.G. Prusty, Selective Atomic-Level Etching on Short S-Glass Fibres to Control Interfacial Properties for Restorative Dental Composites, Scientific Reports 9(1) (2019) 3851.

A.A. Pérez-Mondragón, C.E. Cuevas-Suárez, J.A. González-López, N. Trejo-Carbajal, M. Meléndez-Rodríguez, A.M. Herrera-González, Preparation and evaluation of a BisGMA-free dental composite resin based on a novel trimethacrylate monomer, Dental Materials 36(4) (2020) 542-550.

Y. Boussès, N. Brulat-Bouchard, P.-O. Bouchard, H. Abouelleil, Y. Tillier, The-oretical prediction of dental composites yield stress and flexural modulus based on filler volume ratio, Dental Materials 36(1) (2020) 97-107.

S.V. Palagummi, T. Hong, Z. Wang, C.K. Moon, M.Y.M. Chiang, Resin viscos-ity determines the condition for a valid exposure reciprocity law in dental compos-ites, Dental Materials 36(2) (2020) 310-319.

A.P. Fugolin, D. Sundfeld, J.L. Ferracane, C.S. Pfeifer, Toughening of Dental Composites with Thiourethane-Modified Filler Interfaces, Scientific Reports 9(1) (2019) 2286.

E. Habib, R. Wang, J. Zhu, Dental Nanocomposites, 1st edition, Advances in Nanostruc-tured Composites: Volume 1: Carbon Nanotube and Graphene Composites,USA, 2019.

S.-N. Zhao, D.-L. Yang, D. Wang, Y. Pu, Y. Le, J.-X. Wang, J.-F. Chen, Design and efficient fabrication of micro-sized clusters of hydroxyapatite nanorods for dental resin composites, Journal of Materials Science 54(5) (2019) 3878-3892.

L. Bohner, M. Hanisch, J. Kleinheinz, S. Jung, Dental implants in growing patients: a systematic review, British Journal of Oral and Maxillofacial Surgery 57(5) (2019) 397-406.

A.-D. Draghici, C. Busuioc, A. Mocanu, A.-I. Nicoara, F. Iordache, S.-I. Jinga, Composite scaffolds based on calcium phosphates and barium titanate obtained through bacterial cellulose templated synthesis, Materials Science and Engineer-ing: C 110 (2020) 110704.

P. Kumar, M. Saini, B.S. Dehiya, A. Umar, A. Sindhu, H. Mohammed, Y. Al-Hadeethi, Z. Guo, Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications, Internation-al Journal of Biological Macromolecules 149 (2020) 1-10.

Y. Chen, P. Han, A. Dehghan-Manshadi, D. Kent, S. Ehtemam-Haghighi, C. Jowers, M. Bermingham, T. Li, J. Cooper-White, M.S. Dargusch, Sintering and biocompatibility of blended elemental Ti-xNb alloys, Journal of the Mechanical Behavior of Biomedical Materials 104 (2020) 103691.

A.H. Shahbaz, M. Esmaeilian, R. NasrAzadani, K. Gavanji, The effect of MgF2 addition on the mechanical properties of hydroxyapatite synthesized via powder metallurgy, Journal of Composites and Compounds 1(1) (2019) 16-21.

E. Asadi, A. Fassadi Chimeh, S. Hosseini, S. Rahimi, B. Sarkhosh, L. Bazli, R. Bashiri, A.H. Vakili Tahmorsati, A review of clinical applications of graphene quantum dot-based composites, Journal of Composites and Compounds 1(1) (2019) 31-40.

Z.-K. Cui, S. Kim, J.J. Baljon, B.M. Wu, T. Aghaloo, M. Lee, Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering, Nature Communications 10(1) (2019) 3523.

Y. Wang, N. Sun, Y. Zhang, B. Zhao, Z. Zhang, X. Zhou, Y. Zhou, H. Liu, Y. Zhang, J. Liu, Enhanced osteogenic proliferation and differentiation of human ad-ipose-derived stem cells on a porous n-HA/PGS-M composite scaffold, Scientific Reports 9(1) (2019) 7960.

A. Esmaeilkhanian, F. Sharifianjazi, A. Abouchenari, A. Rouhani, N. Parvin, M. Irani, Synthesis and characterization of natural nano-hydroxyapatite derived from turkey femur-bone waste, Applied biochemistry and biotechnology 189(3) (2019) 919-932.

J. Soares da Silva, T.R. Machado, T.A. Martins, M. Assis, C.C. Foggi, N.G. Macedo, H. Beltrán-Mir, E. Cordoncillo, J. Andrés, E. Longo, ?-AgVO3 Decorated by Hydroxyapatite (Ca10(PO4)6(OH)2): Tuning Its Photoluminescence Emissions and Bactericidal Activity, Inorganic Chemistry 58(9) (2019) 5900-5913.

X. Guo, D. Li, Synthesis of Hydroxyapatite Containing some Trace Amounts Elements in Simulated Body Fluids, Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 38(1) (2019) 83-91.

M. Mansoorianfar, M. Mansourianfar, M. Fathi, S. Bonakdar, M. Ebrahimi, E.M. Zahrani, A. Hojjati-Najafabadi, D. Li, Surface modification of orthopedic implants by optimized fluorine-substituted hydroxyapatite coating: Enhancing cor-rosion behavior and cell function, Ceramics International 46(2) (2020) 2139-2146.

A. Veiga, F. Castro, C.C. Reis, A. Sousa, A.L. Oliveira, F. Rocha, Hydroxy-apatite/sericin composites: A simple synthesis route under near-physiological con-ditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process, Materials Science and Engineering: C 108 (2020) 110400.

K. Wongsawichai, A. Kingkaew, A. Pariyaisut, S. Khondee, Porous Hydroxy-apatite/Chitosan/Carboxymethyl Cellulose Scaffolds with Tunable Microstruc-tures for Bone Tissue Engineering, Key Engineering Materials 819 (2019) 9-14.

C.Y. Goh, S.S. Lim, K.Y. Tshai, A.W.Z.Z. El Azab, H.-S. Loh, Fabrication and in vitro biocompatibility of sodium tripolyphosphate-crosslinked chitosan–hy-droxyapatite scaffolds for bone regeneration, Journal of Materials Science 54(4) (2019) 3403-3420.

Gunawarman, J. Affi, Y. Yetri, Ilhamdi, D. Juliadmi, N.F. Nuswantoro, H. Fajri, A. Ahli, R. Gundini, H. Nur, Synthesis and characterization of calcium pre-cursor for hydroxyapatite synthesis from blood clam shell (Anadara antiquata) using planetary ball mill process, IOP Conference Series: Materials Science and Engineering 602 (2019) 012072.

P. Galindo-Moreno, M. Padial-Molina, L. Lopez-Chaichio, L. Gutiérrez-Garrido, N. Martín-Morales, F. O’Valle, Algae-derived hydroxyapatite behavior as bone biomaterial in comparison with anorganic bovine bone: A split-mouth clinical, radiological, and histologic randomized study in humans, Clinical Oral Implants Research 31(6) (2020) 536-548.

H.L. Jaber, A.S. Hammood, N. Parvin, Synthesis and characterization of hy-droxyapatite powder from natural Camelus bone, Journal of the Australian Ceram-ic Society 54(1) (2018) 1-10.

S.M.B. Nabavi, M.R. Shushizadeh, A. Behfar, M.G. Ashrafi, Persian Gulf Corals: A New Hydroxyapatite Bioceramics in Medicine, International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) 7(5) (2017) 59-64.

N. Lagopati, S. Agathopoulos, Hydroxyapatite Scaffolds Produced from Cut-tlefish Bone via Hydrothermal Transformation for Application in Tissue Engineer-ing and Drug Delivery Systems, in: A.H. Choi, B. Ben-Nissan (Eds.), Marine-De-rived Biomaterials for Tissue Engineering Applications, Springer Singapore, Singapore, 2019, pp. 179-205.

A. Pal, S. Paul, A.R. Choudhury, V.K. Balla, M. Das, A. Sinha, Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications, Mate-rials Letters 203 (2017) 89-92.

A. Nasar, 8 - Hydroxyapatite and its coatings in dental implants, in: A.M. Asiri, Inamuddin, A. Mohammad (Eds.), Applications of Nanocomposite Materials in Dentistry, Woodhead Publishing,London, 2019, pp. 145-160.

J. Yazdani, E. Ahmadian, S. Sharifi, S. Shahi, S.M. Dizaj, A short view on nanohydroxyapatite as coating of dental implants, Biomedicine & Pharmacother-apy 105 (2018) 553-557.

A. Klinge, D. Khalil, B. Klinge, B. Lund, A. Naimi-Akbar, S. Tranaeus, M. Hultin, Prophylactic antibiotics for staged bone augmentation in implant dentistry, Acta Odontologica Scandinavica 78(1) (2020) 64-73.

R. Lieber, N. Pandis, C.M. Faggion Jr, Reporting and handling of incomplete outcome data in implant dentistry: A survey of randomized clinical trials, Journal of Clinical Periodontology 47(2) (2020) 257-266.

J. Carpentieri, G. Greenstein, J. Cavallaro, Hierarchy of restorative space re-quired for different types of dental implant prostheses, The Journal of the American Dental Association 150(8) (2019) 695-706.

M. Buciumeanu, D. Faria, J. Mesquita-Guimarães, F. Silva, Tribological char-acterization of bioactive zirconia composite layers on zirconia structures, Ceram-ics International 44(15) (2018) 18663-18671.

A. Pakseresht, H.A. Baghbaderani, R. Yazdani-Rad, Role of different fractions of nano-size SiC and milling time on the microstructure and mechanical properties of Al–SiC nanocomposites, Transactions of the Indian Institute of Metals 69(5) (2016) 1007-1014.

M.D. Chermahini, M. Rahimipour, A. Pakseresht, Microstructure and mag-netic properties of nanostructured Fe–Co powders prepared by series of milling and annealing treatments, Advanced Powder Technology 25(1) (2014) 462-466.

K. Shirvanimoghaddam, E. Ghasali, A. Pakseresht, S. Derakhshandeh, M. Alizadeh, T. Ebadzadeh, M. Naebe, Super hard carbon microtubes derived from natural cotton for development of high performance titanium composites, Journal of Alloys and Compounds 775 (2019) 601-616.

Z. Özkurt, E. Kazazo?lu, Zirconia dental implants: a literature review, Journal of oral implantology 37(3) (2011) 367-376.

S. Rahimi, F. SharifianJazi, A. Esmaeilkhanian, M. Moradi, A.H. Safi Samghabadi, Effect of SiO2 content on Y-TZP/Al2O3 ceramic-nanocomposite properties as potential dental applications, Ceramics International 46(8, Part A) (2020) 10910-10916.

M. Nejati, M. Rahimipour, I. Mobasherpour, A. Pakseresht, Microstructural analysis and thermal shock behavior of plasma sprayed ceria-stabilized zirconia thermal barrier coatings with micro and nano Al2O3 as a third layer, Surface and Coatings Technology 282 (2015) 129-138.

N. Pourmohammadie Vafa, B. Nayebi, M. Shahedi Asl, M. Jaberi Zamharir, M. Ghassemi Kakroudi, Reactive hot pressing of ZrB2-based composites with changes in ZrO2/SiC ratio and sintering conditions. Part II: Mechanical behavior, Ceramics International 42(2, Part A) (2016) 2724-2733.

A. Apratim, P. Eachempati, K.K.K. Salian, V. Singh, S. Chhabra, S. Shah, Zirconia in dental implantology: A review, Journal of International Society of Pre-ventive & Community Dentistry 5(3) (2015) 147.

A. Hafezeqoran, R. Koodaryan, Effect of Zirconia Dental Implant Surfaces on Bone Integration: A Systematic Review and Meta-Analysis, BioMed Research International 2017 (2017) 9246721.

S.P. Victor, C.K.S. Pillai, C.P. Sharma, 1 - Biointegration: an introduction, in: C.P. Sharma (Ed.), Biointegration of Medical Implant Materials (Second Edition), Woodhead Publishing, London, 2020, pp. 1-16.

T.J. Matsumoto, S.-H. An, T. Ishimoto, T. Nakano, T. Matsumoto, S. Imazato, Zirconia–hydroxyapatite composite material with micro porous structure, Dental materials 27(11) (2011) e205-e212.

J. Izquierdo, G. Bolat, N. Cimpoesu, L.C. Trinca, D. Mareci, R.M. Souto, Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirco-nia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application, Applied Surface Science 385 (2016) 368-378.

B. Bulut, Z. Erkmen, E. Kayali, Biocompatibility of Hydroxyapatite-Alumina and Hydroxyapatite-Zirconia Composite including Commercial Inert Glass (CIG) as a Ternary Component, J. Ceram. Sci. Tech 7(03) (2016) 263-276.

C.H. Leong, A. Muchtar, C.Y. Tan, M. Razali, N.F. Amat, Sintering of Hydroxyapatite/Yttria Stabilized Zirconia Nanocomposites under Nitrogen Gas for Dental Materials, Advances in Materials Science and Engineering 2014 (2014) 367267.

O. Carvalho, F. Sousa, S. Madeira, F. Silva, G. Miranda, HAp-functionalized zirconia surfaces via hybrid laser process for dental applications, Optics & Laser Technology 106 (2018) 157-167.

G. Gergely, F.C. Sahin, G. Göller, O. Yücel, C. Balázsi, Microstructural and mechanical investigation of hydroxyapatite–zirconia nanocomposites prepared by spark plasma sintering, Journal of the European Ceramic Society 33(12) (2013) 2313-2319.

V.T. Targhi, H. Omidvar, S.M.M. Hadavi, F. Sharifianjazi, Microstructure and hot corrosion behavior of hot dip siliconized coating on Ni-base superalloy IN738LC, Materials Research Express 7(5) (2020) 056527.

M. Barekat, R.S. Razavi, F. Sharifianjazi, Synthesis and the surface resistivity of carbon black pigment on black silicone thermal control coating, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 45(4) (2015) 502-506.

L. Bazli, M. Siavashi, A. Shiravi, A review of carbon nanotube/TiO2 composite prepared via sol-gel method, Journal of Composites and Compounds 1(1) (2019) 1-9.

A.R. Rouhani, A.H. Esmaeil-Khanian, F. Davar, S. Hasani, The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method, International Journal of Applied Ceramic Technology 15(3) (2018) 758-765.

V. Salimian Rizi, F. Sharifianjazi, H. Jafarikhorami, N. Parvin, L. Saei Fard, M. Irani, A. Esmaeilkhanian, Sol–gel derived SnO2/Ag2O ceramic nanocomposite for H2 gas sensing applications, Materials Research Express 6(11) (2019) 1150g2.

A.H. Pakseresht, Microstructural Investigation of BaTiO3 Plasma Sprayed Coating Deposited by Splash and Disk-Like Splats, Journal of Environmental Friendly Materials 2(1) (2018) 1-6.

M. Heydari, M.R. Vaezi, A.A. Behnamghader, A.H. Pakseresht, M. Sarmast, Hydroxyapatite/silica Nanopowders Deposition on Ti Substrate by Plasma Spray Method, Advanced Ceramics Progress 3(4) (2017) 21-24.

A. Jam, S.M.R. Derakhshandeh, H. Rajaei, A.H. Pakseresht, Evaluation of microstructure and electrochemical behavior of dual-layer NiCrAlY/mullite plas-ma sprayed coating on high silicon cast iron alloy, Ceramics International 43(16) (2017) 14146-14155.

H. Salimkhani, P. Palmeh, A.B. Khiabani, E. Hashemi, S. Matinpour, H. Salimkhani, M.S. Asl, Electrophoretic deposition of spherical carbonyl iron parti-cles on carbon fibers as a microwave absorbent composite, Surfaces and Interfaces 5 (2016) 1-7.

R.B. Osman, M.V. Swain, A critical review of dental implant materials with an emphasis on titanium versus zirconia, Materials 8(3) (2015) 932-958.

C. Leong, K. Lim, A. Muchtar, N. Yahaya, Decomposition of hydroxyapatite in hydroxyapatite/zirconia composites for dental applications, Advanced Materials Research, Trans Tech Publ, Switzerland, 2013, pp. 1664-1668.

C. Ergun, Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing, Ceramics International 37(3) (2011) 935-942.

K.F. Lim, M. Andanastuti, R. Mustaffa, C.Y. Tan, Sintering of HA/Zirconia composite for biomedical and dental applications: A Review, Advanced Materials Research, Trans Tech Publ, Switzerland, 2013, pp. 290-295.

J. Mesquita-Guimarães, R. Detsch, A.C. Souza, B. Henriques, F.S. Silva, A.R. Boccaccini, O. Carvalho, Cell adhesion evaluation of laser-sintered HAp and 45S5 bioactive glass coatings on micro-textured zirconia surfaces using MC3T3-E1 osteoblast-like cells, Materials Science and Engineering: C 109 (2020) 110492.

N. Cimpoe?u, L.C. Trinc?, G. Dasc?lu, S. Stanciu, S.O. Gurlui, D. Mareci, Electrochemical Characterization of a New Biodegradable FeMnSi Alloy Coated with Hydroxyapatite-Zirconia by PLD Technique, Journal of Chemistry 2016 (2016) 9520972.

F. Sharifianjazi, N. Parvin, M. Tahriri, Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses, Journal of Non-Crystalline Solids 476 (2017) 108-113.

F. Sharifianjazi, N. Parvin, M. Tahriri, Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses, Ceramics Interna-tional 43(17) (2017) 15214-15220.

Z. Goudarzi, N. Parvin, F. Sharifianjazi, Formation of hydroxyapatite on sur-face of SiO2– P2O5–CaO–SrO–ZnO bioactive glass synthesized through sol-gel route, Ceramics International 45(15) (2019) 19323-19330.

M.S.N. Shahrbabak, F. Sharifianjazi, D. Rahban, A. Salimi, A Comparative Investigation on Bioactivity and Antibacterial Properties of Sol-Gel Derived 58S Bioactive Glass Substituted by Ag and Zn, Silicon 11(6) (2019) 2741-2751.

F.S. Jazi, N. Parvin, M. Tahriri, M. Alizadeh, S. Abedini, M. Alizadeh, The relationship between the synthesis and morphology of SnO2-Ag2O nanocomposite, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 44(5) (2014) 759-764.

S. Abedini, N. Parvin, P. Ashtari, F. Jazi, Microstructure, strength and CO2separation characteristics of ?-alumina supported ?-alumina thin film membrane, Advances in Applied Ceramics 112(1) (2013) 17-22.

H. Vasconcelos, M. Barreto, Tailoring the microstructure of sol–gel derived hydroxyapatite/zirconia nanocrystalline composites, Nanoscale Res Lett 6(1) (2011) 1-5.

S. Salehi, M. Fathi, Fabrication and characterization of sol–gel derived hy-droxyapatite/zirconia composite nanopowders with various yttria contents, Ceram-ics International 36(5) (2010) 1659-1667.

F. Bollino, E. Armenia, E. Tranquillo, Zirconia/hydroxyapatite composites synthesized via Sol-Gel: Influence of hydroxyapatite content and heating on their biological properties, Materials 10(7) (2017) 757.

M. Catauro, F. Bollino, E. Tranquillo, R. Tuffi, A. Dell’Era, S.V. Ciprioti, Morphological and thermal characterization of zirconia/hydroxyapatite compos-ites prepared via sol-gel for biomedical applications, Ceramics International 45(2) (2019) 2835-2845.

S.D. Jin, S.C. Um, J.K. Lee, Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol–Gel Method, Journal of nanoscience and nanotechnology 15(8) (2015) 5946-5950.

R.T. Candidato Jr, P. Soko?owski, L. Paw?owski, G. Lecomte-Nana, C. Con-stantinescu, A. Denoirjean, Development of hydroxyapatite coatings by solution precursor plasma spray process and their microstructural characterization, Surface and Coatings Technology 318 (2017) 39-49.

A. Pakseresht, M. Rahimipour, M. Vaezi, M. Salehi, Effect of plasma spray parameters on the microstructure anddielectric properties of barium titanate coat-ing, DENT 18 (2014) 21.

A.H. Pakseresht, M.R. Rahimipour, M.R. Vaezi, M. Salehi, Effect of morphol-ogy and non-bounded interface on dielectric properties of plasma sprayed BaTiO3coating, Journal of advanced materials and processing (journal of materials sci-ence) 2(4) (2014) 25-32.

A. Pakseresht, M. Rahimipour, M. Vaezi, M. Salehi, Thermal plasma spheroid-ization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder, Materials Chemistry and Physics 173 (2016) 395-403.

M.F. Hasan, J. Wang, C. Berndt, Evaluation of the mechanical properties of plasma sprayed hydroxyapatite coatings, Applied surface science 303 (2014) 155-162.

A. Rafieerad, A. Bushroa, B. Nasiri-Tabrizi, S. Baradaran, S. Shahtalebi, S. Khanahmadi, M. Afshar-Mohajer, J. Vadivelu, F. Yusof, W. Basirun, In-vitro bioassay of electrophoretically deposited hydroxyapatite–zirconia nanocomposite coating on Ti–6Al–7Nb implant, Advances in Applied Ceramics 116(6) (2017) 293-306.

M. Sandhyarani, N. Rameshbabu, K. Venkateswarlu, Fabrication, characteri-zation and in-vitro evaluation of nanostructured zirconia/hydroxyapatite compos-ite film on zirconium, Surface and Coatings Technology 238 (2014) 58-67.

K. Sakthiabirami, J.W. Kim, J.H. Kang, K.J. Jang, G.J. Oh, J.G. Fisher, K.D. Yun, H.P. Lim, S.W. Park, Tailoring interfacial interaction through glass fusion in glass/zinc-hydroxyapatite composite coatings on glass-infiltrated zirconia, Ceram-ics International 44(14) (2018) 16181-16190.

D. Drdlik, M. Slama, H. Hadraba, J. Cihlar, Hydroxyapatite/zirconia-micro-fibre composites with controlled microporosity and fracture properties prepared by electrophoretic deposition, Ceramics International 41(9) (2015) 11202-11212.

H. Farnoush, Z. Rezaei, Effect of suspension stability on bonding strength and electrochemical behavior of electrophoretically deposited HA–YSZ nanostruc-tured composite coatings, Ceramics International 43(15) (2017) 11885-11897.

D.-j. Kong, D. Long, Y.-z. Wu, C.-z. Zhou, Mechanical properties of hydroxy-apatite-zirconia coatings prepared by magnetron sputtering, Transactions of Non-ferrous Metals Society of China 22(1) (2012) 104-110.

K. Ozeki, T. Goto, H. Aoki, T. Masuzawa, Fabrication of hydroxyapatite thin films on zirconia using a sputtering technique, Bio-medical materials and engineer-ing 24(5) (2014) 1793-1802.

Article DOR: 20.1001.1.26765837.2020.2.2.4.2

Graphical Abstract

Downloads

Published

2020-03-27

How to Cite

Sharifianjazi, F., Pakseresht, A. H. ., Shahedi Asl, M. ., Esmaeilkhanian, A. ., Nargesi khoramabadi, H. ., Won Jang, H., & Shokouhimehr, M. (2020). Hydroxyapatite consolidated by zirconia: applications for dental implant. Journal of Composites and Compounds, 2(2), 26–34. https://doi.org/10.29252/jcc.2.1.4

Issue

Section

Review Articles