A review of carbon nanotube/TiO2 composite prepared via sol-gel method


  • Leila Bazli School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
  • Mostafa Siavashi stu213298@mail.uni-kiel.de Christian-Albrechts-University Kiel, Faculty of Engineering, Kiel, Germany
  • Arman Shiravi Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran




Carbon nanotube, TiO2, Nanoparticles, Nanocomposites, Characterization


A substantial review is performed in this work about the development and design of Carbon Nanotubes/Titanium Oxide nanocompisites. The fundamental method of sol-gel synthesis of Carbon Nanotubes is also reported here. Single-Walled and Multi-Walled Carbon Nanotubes are reviewed here. Finally, different applications for this nanocomposite are discussed.


C. Cheng, J. Wu, Y. Xiao, Y. Chen, H. Yu, Z. Tang, J. Lin, M. Huang, Prepa-ration of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells, Frontiers of Optoelectronics 5(2) (2012) 224-230.

S.-H. Huang, C.-C. Wang, S.-Y. Liao, J.-Y. Gan, T.-P. Perng, CNT/TiO2 core-shell structures prepared by atomic layer deposition and characterization of their photocatalytic properties, Thin Solid Films 616 (2016) 151-159.

S.B.A. Hamid, T.L. Tan, C.W. Lai, E.M. Samsudin, Multiwalled carbon nano-tube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye, Chinese Journal of Catalysis 35(12) (2014) 2014-2019.

P. Chand, S. Munjal, T. Aziz, M. Sharma, Unit-12 Carbon and its Compounds, IGNOU2018.

T. Gupta, Carbon (C) the Nacre and Its Allotropes, in: T. Gupta (Ed.), Carbon: The Black, the Gray and the Transparent, Springer International Publishing, Cham, 2018, pp. 1-45.

A. Kumar, M.L. Singla, A. Kumar, J.K. Rajput, Fabrication and linearisation of conformable POMANI-Mn3O4 nanocomposite based thermistor for temperature monitoring applications in prosthetic gloves, Sensors and Actuators A: Physical 285 (2019) 588-598.

B.I. Kharisov, O.V. Kharissova, Carbon Allotropes in the Environment and Their Toxicity, in: B.I. Kharisov, O.V. Kharissova (Eds.), Carbon Allotropes: Met-al-Complex Chemistry, Properties and Applications, Springer International Pub-lishing, Cham, 2019, pp. 639-652.

C. Ozkan, Handbook of Graphene, Volume 4: Composites, Wiley2019.

L.F. Fernandes, G.E. Bruch, A.R. Massensini, F. Frézard, Recent Advances in the Therapeutic and Diagnostic Use of Liposomes and Carbon Nanomaterials in Ischemic Stroke, Frontiers in Neuroscience 12(453) (2018).

D. White, M. Chen, C. Xiao, W. Huang, S. Sundararajan, Microtribological behavior of Mo and W nanoparticle/graphene composites, Wear 414-415 (2018) 310-316.

M. Nocu?, S. Kwa?ny, M. Kwa?ny, I. Grelowska, Spectroscopy studies of TiO2/carbon nanotubes nanocomposite layers synthesized by the sol-gel method, Journal of Molecular Structure 1167 (2018) 194-199.

S. Iijima, Helical microtubules of graphitic carbon, Nature 354(6348) (1991) 56-58.

Y.M. Chen, X.Y. Yu, Z. Li, U. Paik, X.W. Lou, Hierarchical MoS<sub->2</sub> tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries, Science Advances 2(7) (2016) e1600021.

M. Ghosh, H. Bovn, M. Moisse, B. Boeckx, R.C. Duca, K. Poels, K. Luyts, E. Putzeys, K. Van Landuydt, J.A. Vanoirbeek, Differences in MWCNT-and SWCNT-induced DNA methylation alterations in association with the nuclear deposition, Particle and Fibre Technology 15(1) (2018).

S. Aryal, C.K. Kim, K.-W. Kim, M.S. Khil, H.Y. Kim, Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning, Materials Science and Engineering: C 28(1) (2008) 75-79.

J. Cho, S. Schaab, J.A. Roether, A.R. Boccaccini, Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD), Journal of Nanoparticle Research 10(1) (2008) 99-105.

B. Gao, G.Z. Chen, G. Li Puma, Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity, Applied Catalysis B: Environmental 89(3) (2009) 503-509.

R. Qing, L. Liu, H. Kim, W.M. Sigmund, Electronic Property Dependence of Electrochemical Performance for TiO2/CNT Core-shell Nanofibers in Lithium Ion Batteries, Electrochimica Acta 180 (2015) 295-306.

E.M. Jin, B. Jin, K.-H. Park, H.-B. Gu, G.-C. Park, K.-W. Kim, Electrochemi-cal Characteristics of Lithium Iron Phosphate with Multi-Walled Carbon Nanotube for Lithium Polymer Batteries, Journal of Nanoscience and Nanotechnology 8(10) (2008) 5057-5061.

C. Sotowa, G. Origi, M. Takeuchi, Y. Nishimura, K. Takeuchi, I.Y. Jang, Y.J. Kim, T. Hayashi, Y.A. Kim, M. Endo, M.S. Dresselhaus, The Reinforcing Effect of Combined Carbon Nanotubes and Acetylene Blacks on the Positive Electrode of Lithium-Ion Batteries, ChemSusChem 1(11) (2008) 911-915.

R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N. Wong Shi Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, H. Dai, Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors, Proceedings of the National Academy of Sciences 100(9) (2003) 4984.

G. Gonzalez, C. Albano, V. Herman, I. Boyer, A. Monsalve, J.A. Brito, Nano-composite building blocks of TiO2–MWCNTf and ZrO2–MWCNTf, Materials Characterization 64 (2012) 96-106.

A.A. White, S.M. Best, I.A. Kinloch, Hydroxyapatite–Carbon Nanotube Composites for Biomedical Applications: A Review, International Journal of Applied Ceramic Technology 4(1) (2007) 1-13.

A. Esmaeilkhanian, F. Sharifianjazi, A. Abouchenari, A. Rouhani, N. Parvin, M. Irani, Synthesis and Characterization of Natural Nano-hydroxyapatite Derived from Turkey Femur-Bone Waste, Applied biochemistry and biotechnology (2019) 1-14.

S.-H. Lee, S. Pumprueg, B. Moudgil, W. Sigmund, Inactivation of bacterial endospores by photocatalytic nanocomposites, Colloids and Surfaces B: Biointer-faces 40(2) (2005) 93-98.

Y.-J. Xu, Y. Zhuang, X. Fu, New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange, The Journal of Physical Chemistry C 114(6) (2010) 2669-2676.

A. Kongkanand, P.V. Kamat, Electron Storage in Single Wall Carbon Nano-tubes. Fermi Level Equilibration in Semiconductor–SWCNT Suspensions, ACS Nano 1(1) (2007) 13-21.

R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon Nanotubes--the Route Toward Applications, Science 297(5582) (2002) 787.

K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic Carbon-Nanotube–TiO2 Composites, Advanced Materials 21(21) (2009) 2233-2239.

Y. An, J. Hou, Z. Liu, B. Peng, Enhanced solid-phase photocatalytic degrada-tion of polyethylene by TiO2–MWCNTs nanocomposites, Materials Chemistry and Physics 148(1) (2014) 387-394.

R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon 49(3) (2011) 741-772.

C.-Y. Kuo, Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process, Journal of Hazardous Materials 163(1) (2009) 239-244.

L. Song, J. Zhai, P. Du, J. Xiong, F. Ko, A novel bilayer photoanode made of carbon nanotubes incorporated TiO2 nanorods and Mg2+ doped TiO2 nanorods for flexible dye-sensitized solar cells, Thin Solid Films 646 (2018) 44-52.

A.A. Mejía, L. Béjar, C. Parra, C. Aguilar, A. Medina, E.H. Padilla, S.E. Borjas-García, J.L. Bernal, Characterization of Carbon Nanotubes with TiO2 by the (CVD) Chemical Vapor Deposition Method, Microscopy and Microanalysis 24(S1) (2018) 1094-1095.

C.-M. Tsai, C.-G. Song, Y.-C. Hung, Y.-G. Jeong, S.H. Oh, J.H. Jeong, H. Kim, H. Huh, J.-W. Yoon, W. Sigmund, Carbon induced phase transformation in electrospun TiO2/multiwall carbon nanotube nanofibers, Ceramics International 43(4) (2017) 3761-3768.

H. Yu, X. Quan, S. Chen, H. Zhao, TiO2?Multiwalled Carbon Nanotube Het-erojunction Arrays and Their Charge Separation Capability, The Journal of Physi-cal Chemistry C 111(35) (2007) 12987-12991.

J. Sun, L. Gao, M. Iwasa, Noncovalent attachment of oxide nanoparticles onto carbon nanotubes using water-in-oil microemulsions, Chemical Communications (7) (2004) 832-833.

F. Sharifianjazi, N. Parvin, M. Tahriri, Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses, Journal of Non-Crystalline Solids 476 (2017) 108-113.

F.S. Jazi, N. Parvin, M. Tahriri, M. Alizadeh, S. Abedini, M. Alizadeh, The relationship between the synthesis and morphology of SnO2-Ag2O nanocomposite, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 44(5) (2014) 759-764.

F. Sharifianjazi, N. Parvin, M. Tahriri, Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses, Ceramics Interna-tional 43(17) (2017) 15214-15220.

Z. Goudarzi, N. Parvin, F. Sharifianjazi, Formation of hydroxyapatite on sur-face of SiO2–P2O5–CaO–SrO–ZnO bioactive glass synthesized through sol-gel route, Ceramics International (2019).

S. Jurablu, M. Farahmandjou, T.P. Firoozabadi, Multiple-layered structure of obelisk-shaped crystalline nano-ZnO prepared by sol–gel route, Journal of Theo-retical and Applied Physics 9(4) (2015) 261-266.

S. Abedini, N. Parvin, P. Ashtari, F. Jazi, Microstructure, strength and CO2 separation characteristics of ?-alumina supported ?-alumina thin film membrane, Advances in Applied Ceramics 112(1) (2013) 17-22.

V. Salimian Rizi, F. Sharifianjazi, H. Jafarikhorami, N. Parvin, L. Saei Fard, M. Irani, A. Esmaeilkhanian, Sol–gel derived SnO2/Ag2O ceramic nanocomposite for H2 gas sensing applications, Materials Research Express 6(11) (2019) 1150g2.

A. Moghanian, F. Sharifianjazi, P. Abachi, E. Sadeghi, H. Jafarikhorami, A. Sedghi, Production and properties of Cu/TiO2 nano-composites, Journal of Alloys and Compounds 698 (2017) 518-524.

M.J. de Andrade, M.D. Lima, C.P. Bergmann, G. de O Ramminger, N.M. Balzaretti, T.M. Costa, M.R. Gallas, Carbon nanotube/silica composites obtained by sol–gel and high-pressure techniques, Nanotechnology 19(26) (2008) 265607.

F.C. Fonseca, G.F. Goya, R.F. Jardim, N.L.V. Carreño, E. Longo, E.R. Leite, R. Muccillo, Magnetic properties of Ni:SiO2 nanocomposites synthesized by a modified sol–gel method, Applied Physics A 76(4) (2003) 621-623.

Y. Zhang, Y. Shen, D. Han, Z. Wang, J. Song, L. Niu, Reinforcement of silica with single-walled carbon nanotubes through covalent functionalization, Journal of Materials Chemistry 16(47) (2006) 4592-4597.

C. Zheng, X. Zhen, M. Feng, H.-b. Zhan, Composition and structure evo-lution of carbon nanotube/silica xerogel composites during the process of laser irradiation], Guang Pu Xue Yu Guang Pu Fen Xi 26(10) (2006) 1794-1797.

C. Zheng, H.-b. Zhan, W.-z. Chen, Study on structure and spectral properties of carbon nanotubes doped silica gel glass composites], Guang Pu Xue Yu Guang Pu Fen Xi 26(4) (2006) 694-697.

L. Berguiga, J. Bellessa, F. Vocanson, E. Bernstein, J.C. Plenet, Carbon nano-tube silica glass composites in thin films by the sol–gel technique, Optical Materi-als 28(3) (2006) 167-171.

J. Ning, J. Zhang, Y. Pan, J. Guo, Surfactants assisted processing of carbon nanotube-reinforced SiO2 matrix composites, Ceramics International 30(1) (2004) 63-67.

K. Gong, M. Zhang, Y. Yan, L. Su, L. Mao, S. Xiong, Y. Chen, Sol?Gel-De-rived Ceramic?Carbon Nanotube Nanocomposite Electrodes: Tunable Electrode Dimension and Potential Electrochemical Applications, Analytical Chemistry 76(21) (2004) 6500-6505.

T.M.H. Costa, H.S. Hoffmann, E.V. Benvenutti, V. Stefani, M.R. Gallas, Pres-sure-induced changes on the optical properties and microstructure of silica-gel matrices doped with rhodamine 6G, Optical Materials 27(12) (2005) 1819-1824.

T.M.H. Costa, V. Stefani, N.M. Balzaretti, M.R. Gallas, J.A.H. Da Jornada, High-Pressure Entrapment of Rhodamine 6G into a Silica Matrix, Molecular Crys-tals and Liquid Crystals 374(1) (2002) 201-206.

M.J. de Andrade, M.D. Lima, C.P. Bergmann, G.d.O. Ramminger, N.M. Bal-zaretti, T.M.H. Costa, M.R. Gallas, Carbon nanotube/silica composites obtained by sol–gel and high-pressure techniques, Nanotechnology 19(26) (2008) 265607.

M. Pohl, H. Kurig, I. Tallo, A. Jänes, E. Lust, Novel sol-gel synthesis route of carbide-derived carbon composites for very high power density supercapacitors, Chemical Engineering Journal 320 (2017) 576-587.

M. Sharma, K. Behl, S. Nigam, M. Joshi, TiO2-GO nanocomposite for pho-tocatalysis and environmental applications: A green synthesis approach, Vacuum 156 (2018) 434-439.

N. Saijaioup, P. Kajitvitchyanukul, A. Watcharenwong, Preparation of Visible Light Responsive Photocatalyst from Titanium Dioxide Nanotubes Modified with Antimony Trisulfide, Key Engineering Materials 792 (2019) 98-103.

X. Zhang, Y. Wang, B. Liu, Y. Sang, H. Liu, Heterostructures construction on TiO2 nanobelts: A powerful tool for building high-performance photocatalysts, Applied Catalysis B: Environmental 202 (2017) 620-641.

J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Recent progress in de-sign, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review, Chemical Society Reviews 43(20) (2014) 6920-6937.

J. Tian, X. Hu, N. Wei, Y. Zhou, X. Xu, H. Cui, H. Liu, RuO2/TiO2 nanobelt heterostructures with enhanced photocatalytic activity and gas-phase selective ox-idation of benzyl alcohol, Solar Energy Materials and Solar Cells 151 (2016) 7-13.

V.G. Gavalas, R. Andrews, D. Bhattacharyya, L.G. Bachas, Carbon Nanotube Sol?Gel Composite Materials, Nano Letters 1(12) (2001) 719-721.

V.B. Koli, A.G. Dhodamani, S.D. Delekar, S.H. Pawar, In situ sol-gel syn-thesis of anatase TiO2-MWCNTs nanocomposites and their photocatalytic appli-cations, Journal of Photochemistry and Photobiology A: Chemistry 333 (2017) 40-48.

L. Yang, D. He, Q. Cai, C.A. Grimes, Fabrication and Catalytic Properties of Co?Ag?Pt Nanoparticle-Decorated Titania Nanotube Arrays, The Journal of Physical Chemistry C 111(23) (2007) 8214-8217.

L. Yang, W. Yang, Q. Cai, Well-Dispersed PtAu Nanoparticles Loaded into Anodic Titania Nanotubes: A High Antipoison and Stable Catalyst System for Methanol Oxidation in Alkaline Media, The Journal of Physical Chemistry C 111(44) (2007) 16613-16617.

E. Antolini, Photo-assisted methanol oxidation on Pt-TiO2 catalysts for di-rect methanol fuel cells: A short review, Applied Catalysis B: Environmental 237 (2018) 491-503.

L. Deng, G. Dong, Y. Zhang, D. Li, T. Lu, Y. Chen, H. Yuan, Y. Chen, Ly-sine-modified TiO2 nanotube array for optimizing bioelectricity generation in mi-crobial fuel cells, Electrochimica Acta 300 (2019) 163-170.

S. Mao, H. Zhou, S. Wu, J. Yang, Z. Li, X. Wei, X. Wang, Z. Wang, J. Li, High performance hydrogen sensor based on Pd/TiO2 composite film, International Journal of Hydrogen Energy 43(50) (2018) 22727-22732.

Z. Li, Z. Yao, A.A. Haidry, T. Plecenik, L. Xie, L. Sun, Q. Fatima, Resis-tive-type hydrogen gas sensor based on TiO2: A review, International Journal of Hydrogen Energy 43(45) (2018) 21114-21132.

S. Ratan, C. Kumar, A. Kumar, D.K. Jarwal, A.K. Mishra, S. Jit, Fabrication and Characterization of Titanium Dioxide Based Pd/TiO2/Si MOS Sensor for Hy-drogen Gas, IEEE Sensors Journal 18(10) (2018) 3952-3959.

S. Mohd Chachuli, M. Hamidon, M. Mamat, M. Ertugrul, N. Abdullah, A Hydrogen Gas Sensor Based on TiO2 Nanoparticles on Alumina Substrate, Sensors 18(8) (2018) 2483.

H.-F. Cui, W.-W. Wu, M.-M. Li, X. Song, Y. Lv, T.-T. Zhang, A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides, Biosensors and Bioelectronics 99 (2018) 223-229.

B. Çak?ro?lu, M. Özacar, A self-powered photoelectrochemical glucose bio-sensor based on supercapacitor Co3O4-CNT hybrid on TiO2, Biosensors and Bio-electronics 119 (2018) 34-41.

X. Wu, H. Zhang, K. Huang, Y. Zeng, Z. Zhu, Rose petal and P123 dual-tem-plated macro-mesoporous TiO2 for a hydrogen peroxide biosensor, Bioelectro-chemistry 120 (2018) 150-156.

J. Tian, Y. Li, J. Dong, M. Huang, J. Lu, Photoelectrochemical TiO2 nanotube arrays biosensor for asulam determination based on in-situ generation of quantum dots, Biosensors and Bioelectronics 110 (2018) 1-7.

H. Wang, H. Yin, H. Huang, K. Li, Y. Zhou, G.I.N. Waterhouse, H. Lin, S. Ai, Dual-signal amplified photoelectrochemical biosensor for detection of N6-meth-yladenosine based on BiVO4-110-TiO2 heterojunction, Ag+-mediated cytosine pairs, Biosensors and Bioelectronics 108 (2018) 89-96.

H. Liang, Q. Meng, X. Wang, H. Zhang, J. Wang, Nanoplasmonically En-gineered Interfaces on Amorphous TiO2 for Highly Efficient Photocatalysis in Hydrogen Evolution, ACS Applied Materials & Interfaces 10(16) (2018) 14145-14152.

J.-C. Wang, H.-H. Lou, Z.-H. Xu, C.-X. Cui, Z.-J. Li, K. Jiang, Y.-P. Zhang, L.-B. Qu, W. Shi, Natural sunlight driven highly efficient photocatalysis for simul-taneous degradation of rhodamine B and methyl orange using I/C codoped TiO2 photocatalyst, Journal of Hazardous Materials 360 (2018) 356-363.

S. Zhou, N. Bao, Q. Zhang, X. Jie, Y. Jin, Engineering hierarchical porous oxygen-deficient TiO2 fibers decorated with BiOCl nanosheets for efficient photo-catalysis, Applied Surface Science 471 (2019) 96-107.

W. Wang, P. Serp, P. Kalck, J.L. Faria, Visible light photodegradation of phe-nol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method, Journal of Molecular Catalysis A: Chemical 235(1) (2005) 194-199.

Y. Ou, J. Lin, S. Fang, D. Liao, MWNT–TiO2:Ni composite catalyst: A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination, Chemical Physics Letters 429(1) (2006) 199-203.

K. Byrappa, A.S. Dayananda, C.P. Sajan, B. Basavalingu, M.B. Shayan, K. Soga, M. Yoshimura, Hydrothermal preparation of ZnO:CNT and TiO2:CNT com-posites and their photocatalytic applications, Journal of Materials Science 43(7) (2008) 2348-2355.

C.-Y. Yen, Y.-F. Lin, C.-H. Hung, Y.-H. Tseng, C.-C.M. Ma, M.-C. Chang, H. Shao, The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites, Nanotechnology 19(4) (2008) 045604.

F.C. Moraes, M.F. Cabral, L.H. Mascaro, S.A.S. Machado, The electrochemi-cal effect of acid functionalisation of carbon nanotubes to be used in sensors devel-opment, Surface Science 605(3) (2011) 435-440.

C.-H. Wu, C.-Y. Kuo, S.-T. Chen, Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation, Environ-mental Technology 34(17) (2013) 2513-2519.

Z. Li, B. Gao, G.Z. Chen, R. Mokaya, S. Sotiropoulos, G.L. Puma, Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties, Applied Catalysis B: Environmental 110 (2011) 50-57.

W. Wang, P. Serp, P. Kalck, J.L. Faria, Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method, Applied Catalysis B: Environmental 56(4) (2005) 305-312.

Y. Yu, J.C. Yu, C.-Y. Chan, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, P.-K. Wong, Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye, Applied Catalysis B: Environmental 61(1) (2005) 1-11.

K.R. Reddy, M.S. Jyothi, A.V. Raghu, V. Sadhu, S. Naveen, T.M. Aminabhavi, Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostruc-tures as Efficient Photocatalysts for Remediation of Contaminated Wastewater and Hydrogen Production, in: Inamuddin, A.M. Asiri, E. Lichtfouse (Eds.), Nano-photocatalysis and Environmental Applications : Detoxification and Disinfection, Springer International Publishing, Cham, 2020, pp. 139-169.

X.-H. Xia, Z.-J. Jia, Y. Yu, Y. Liang, Z. Wang, L.-L. Ma, Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduc-tion of CO2 with H2O, Carbon 45(4) (2007) 717-721.

M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, Recent Progress on Ti-tanium Dioxide Nanomaterials for Photocatalytic Applications, ChemSusChem 11(18) (2018) 3023-3047.

B. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, Carbon nanotubes syner-gistically enhance photocatalytic activity of TiO2, Catalysis Communications 9(6) (2008) 1410-1413.

D. Zhang, X. Ma, H. Zhang, Y. Liao, Q. Xiang, Enhanced photocatalytic hy-drogen evolution activity of carbon and nitrogen self-doped TiO2 hollow sphere with the creation of oxygen vacancy and Ti3+, Materials Today Energy 10 (2018) 132-140.

M. Sánchez, R. Guirado, M.E. Rincón, Multiwalled carbon nanotubes embed-ded in sol–gel derived TiO2 matrices and their use as room temperature gas sensors, Journal of Materials Science: Materials in Electronics 18(11) (2007) 1131-1136.

T.Y. Lee, P.S. Alegaonkar, J.-B. Yoo, Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes, Thin Solid Films 515(12) (2007) 5131-5135.

H.M. Ghartavol, M.R. Mohammadi, A. Afshar, Y. Li, On the assessment of incorporation of CNT–TiO2 core–shell structures into nanoparticle TiO2 photo-anodes in dye-sensitized solar cells, Photochemical & Photobiological Sciences 18(7) (2019) 1840-1850.

S.M. Sakali, M.H. Khanmirzaei, S.C. Lu, S. Ramesh, K. Ramesh, Investi-gation on gel polymer electrolyte-based dye-sensitized solar cells using carbon nanotube, Ionics 25(1) (2019) 319-325.

D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of Carbon Nano-tubes, Chemical Reviews 106(3) (2006) 1105-1136.

D. Eder, Carbon Nanotube?Inorganic Hybrids, Chemical Reviews 110(3) (2010) 1348-1385.

C.G. Silva, J.L. Faria, Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nano-tubes in a TiO2 matrix, Applied Catalysis B: Environmental 101(1) (2010) 81-89.

M.-l. Chen, F.-j. Zhang, W.-c. Oh, Synthesis, characterization, and photo-catalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources, New Carbon Materials 24(2) (2009) 159-166.

J. Ge, Y. Zhang, Y.-J. Heo, S.-J. Park, Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review, Catalysts 9 (2019) 122.

S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S.-H. Han, S. Ogale, Enhanced Conversion Efficiency in Dye-Sensitized Solar Cells Based on Hydrothermally Synthesized TiO2?MWCNT Nanocomposites, ACS Ap-plied Materials & Interfaces 1(9) (2009) 2030-2035.

Y.-H. Tseng, C.-Y. Yen, M.-Y. Yen, C.-C. Ma, Effects of the acid pretreated multi-walled carbon nanotubes on the photocatalytic capacity of TiO2/multi-walled carbon nanotubes nanocomposites, Micro & Nano Letters 5(1) (2010) 1-6.

M.-Q. Yang, N. Zhang, Y.-J. Xu, Synthesis of fullerene–, carbon nanotube–, and graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a com-parative study, ACS applied materials & interfaces 5(3) (2013) 1156-1164.

E. Soroodan Miandoab, S. Fatemi, Upgrading TiO2 photoactivity under vis-ible light by synthesis of MWCNT/TiO2 nanocomposite, International Journal of Nanoscience and Nanotechnology 11(1) (2015) 1-12.

A.A. Ashkarran, M. Fakhari, M. Mahmoudi, Synthesis of a solar photo and bioactive CNT–TiO2 nanocatalyst, RSC Advances 3(40) (2013) 18529-18536.

O. Akhavan, R. Azimirad, S. Safa, M. Larijani, Visible light photo-induced antibacterial activity of CNT–doped TiO 2 thin films with various CNT contents, Journal of Materials Chemistry 20(35) (2010) 7386-7392.

Q. Wang, Y. Wang, B. Duan, M. Zhang, Modified sol-gel synthesis of carbon nanotubes supported titania composites with enhanced visible light induced photo-catalytic activity, Journal of Nanomaterials 2016 (2016) 1.

S. Da Dalt, A.K. Alves, F.A. Berutti, C.P. Bergmann, Designing of TiO2/MWCNT Nanocomposites for Photocatalytic Degradation of Organic Dye, Partic-ulate Science and Technology 33(3) (2015) 308-313.

X. Fan, T. Wang, Y. Guo, H. Gong, H. Xue, H. Guo, B. Gao, J. He, Synthesis of ordered mesoporous TiO2-Carbon-CNTs nanocomposite and its efficient photo-electrocatalytic methanol oxidation performance, Microporous and Mesoporous Materials 240 (2017) 1-8.

Q. Shen, S.-K. You, S.-G. Park, H. Jiang, D. Guo, B. Chen, X. Wang, Elec-trochemical Biosensing for Cancer Cells Based on TiO2/CNT Nanocomposites Modified Electrodes, Electroanalysis 20(23) (2008) 2526-2530.

C.-Y. Yen, Y.-F. Lin, S.-H. Liao, C.-C. Weng, C.-C. Huang, Y.-H. Hsiao, C.-C.M. Ma, M.-C. Chang, H. Shao, M.-C. Tsai, Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells, Nanotechnology 19(37) (2008) 375305.

H. Abdullah, M.Z. Razali, S. Shaari, M.R. Taha, Enhancement of dye-sen-sitized solar cell efficiency using carbon nanotube/TiO2 nanocomposite thin films fabricated at various annealing temperatures, Electronic Materials Letters 10(3) (2014) 611-619.

K.E. Tettey, M.Q. Yee, D. Lee, Photocatalytic and Conductive MWCNT/TiO2 Nanocomposite Thin Films, ACS Applied Materials & Interfaces 2(9) (2010) 2646-2652.

N. Abbas, G.N. Shao, M.S. Haider, S.M. Imran, S.S. Park, S.-J. Jeon, H.T. Kim, Inexpensive sol-gel synthesis of multiwalled carbon nanotube-TiO2 hybrids for high performance antibacterial materials, Materials Science and Engineering: C 68 (2016) 780-788.

M. Sánchez, M. Rincón, Sensor response of sol–gel multiwalled carbon nanotubes-TiO2 composites deposited by screen-printing and dip-coating tech-niques, Sensors and Actuators B: Chemical 140(1) (2009) 17-23.

L.A.A. Rodríguez, M. Pianassola, D.N. Travessa, Production of TiO2 coated multiwall carbon nanotubes by the sol-gel technique, Materials research 20 (2017) 96-103.

Article DOR: 20.1001.1.26765837.2019.

Graphical Abstract




How to Cite

Bazli, L., Siavashi, M., & Shiravi, A. (2019). A review of carbon nanotube/TiO2 composite prepared via sol-gel method. Journal of Composites and Compounds, 1(1), 1–9. https://doi.org/10.29252/jcc.1.1.1



Review Articles