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1. Introduction

One of the most abundant metallic element in nature, after O2 and Si, 
is aluminum, which makes up 8.13% of the Earth’s crust. Aluminum is 
a white-silvery and soft metal that is a chemical element with an atomic 
number of 13. Also, under normal conditions, it is insoluble in water [1]. 
This metal is found in combination with other elements such as phos-
phate [2], sulfate [3], silicate [4], and hydroxide [5], and there is no pure 
state of this metal due to its high reactivity with other chemical elements. 
Al can also be found in clays, soils, minerals and rocks, and even in food 
and water. The outstanding features of this metal are its malleability and 
ductility. The Greek word alum that means astringent in medicine, is the 
root of the name aluminum [6]. During the reaction of Al with O2, water, 
and other oxidants, an Al2O3 film is formed on its surface which prevents 
corrosion of the metal [7]. Al2O3 is insoluble in water while easily solu-
ble in strong alkalis and mineral acids, unlike aluminum sulfate, nitrate, 
and chloride that are dissolved in water [8, 9].

Due to the good wear resistance, high specific strength-to-weight ra-
tio, superior damping capacity, and excellent dimensional stability of Al-
based metal matrix composites (MMCs) that are reinforced with ceramic 
particles, it has been noticed by researchers [10-12]. The incorporation 
of externally synthesized reinforcements, like TiC, Al2O3, and SiC, to the 
matrix alloys, is commonly applied for preparing Al-based composites 
(ex-situ composites) [13-16]. In this method, without proper modifica-

tion of the ceramic particle, the addition of reinforcements could cause 
poor adhesion at the interface, thermodynamic instability, and segrega-
tion of the reinforcements [17, 18]. The superior bonding in the interface 
of matrix and reinforcement, uniform distribution of smaller particles, 
process economy, and thermodynamical stability of the reinforcing par-
ticles are the advantages of the in-situ synthesized MMCs because the 
reinforcement formation takes place within the matrix [4, 19, 20]. For 
the fabrication of the Al-based MMCs, many in-situ formed ceramic par-
ticulates including TiC, TiB2, and Al2O3 can be used [21-23]. 

 Due to the outstanding wear resistance, high hardness (3400 HV), 
high elastic modulus (534 GPa), and high melting point (3225 °C) of 
TiB2, it is an advanced strengthening phase for Al matrix [24]. More-
over, TiB2 does not show any reaction with Al to form detrimental prod-
ucts at the interface of the matrix and reinforcement and this is a special 
reason for their application [18, 25]. The mechanical erosion resistance, 
oxidation stability, and excellent heat conductivity are the properties of 
TiB2 as a hard ceramic. TiB2 reacts with sulfuric acid, nitric acid, and 
alkalis, however, it is not oxidized in the air above 1100 °C and also in 
hydrofluoric and hydrochloric acids [26-29].

To prepare in-situ composites of Al/TiB2 with enhanced dispersion of 
the reinforcing agent, a new method of mechanical stirring at the inter-
face of Al and the salts was developed by Chen et al. [30]. They reported 
that the improvement in the distribution of TiB2 particles in the alumi-
num matrix was due to the interface mechanical stirring. The speed of 
180 rpm stirring was applied for both first 15 min and last 15min of the 
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In this study, TiB2 reinforced Al-matrix composite was fabricated by in situ stir casting route, and the effect of 
processing parameters was investigated. X-ray diffraction (XRD) and field emission scanning electron microscopy 
(FE-SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) were used to study the composition and 
microstructure of the samples. Finally, to investigate the tribological and electrochemical behavior of the samples, 
wear tests (pin-on-disk) and potentiodynamic polarization tests (PDP) were used, respectively. Results showed 
that by increasing stirring time, both tribological and mechanical behavior of the samples improved. Also, it was 
found that by increasing the stirring speed of the melt to 180 rpm, the mechanical and tribological behavior of the 
samples improved, and by further increasing the stirring speed to 300 rpm, they were decreased. Consequently, 
samples containing lower than 7 wt. % TiB2 showed better metallurgical properties, due to lack of agglomeration.
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60 min for the synthesis process.
Pazhouhanfar et al. [31] synthesized the composite of Al-TiB2 with 

3, 6, and 9 wt. % of  TiB2 reinforcement by the method of stir casting. 
They analyzed the mechanical and microstructure properties of the com-
posites. They reported that using the optimized process parameters leads 
to a uniform distribution without agglomeration for reinforcements in 
the aluminum matrix. Furthermore, preheating of TiB2 powders and the 
addition of K2TiF6 results in a strong bonding.

The clusters of particles in the cast of MMCs are formed due to the 
combination of reinforcement settling effect and the particle rejection by 
the matrix dendrites while growing into the remaining melt during the 
solidification process [32]. In this work, the vortex casting method was 
applied for in-situ preparation of Al/TiB2 composites which is an attrac-
tive method because of flexibility in using raw materials and the condi-
tion of processing. Also it has economic benefits of large-scale manufac-
turing. The amount of reinforcing particles, sample cooling rate, stirring 
start time, and stirring time are the process parameters. 

2. Materials and methods

Aluminum matrix composite reinforced with TiB2 particles has been 
produced through exothermic reactions, using Halide salts of KBF4 – 
K2TiF6 within molten aluminum. This composite is produced through 
the following reactions.

3K2TiF6 + 13Al → 3KAlF4 + K3AlF6 + 3TiAl3		    (1) 
2KBF4 + 3Al → 2KAlF4 + AlB2				      (2)                     
TiAl3 + AlB2 → TiB2 + 4Al				      (3)                      

The aluminum used here was %99.8 pure aluminum. %99 pure KBF4 
and K2TiF6 have been used as well. Fig. 1 displays the schematic rep-
resentation of the equipment used for composite production. For any 
experiment, 1.5kg of aluminum has been melted and maintained in a 
graphite-clay crucible under a temperature of 850 ℃. The powders used 
in this study have been dried up for two hours under a temperature of 
200 ℃. The powders have been mixed afterward with a Ti/B stoichio-
metric ratio of 1.2 and have been added to the molten mixture. After 
the powders have been fully solved in the molten mixture, a pre-heated 
four-bladed stirrer has been used to fully mix the molten material and 
composite-maker powders and stirred the mixture under different con-
ditions. To prevent the entry of impure elements including Fe inside the 
molten mixture, the stirrer blades have been coated with nickel.

Different stirring velocities of the molten mixture were 0, 60, 180, 
and 300 rpm for 5, 15, 30, and 60 minutes respectively. To study the 

impacts of the time starting from the rest time until the start of stirring on 
mechanical and tribological properties of the samples, 0, 15, 30 and 45 
minutes have passed after adding the reinforcing particles to the molten 
mixture and stirring operation has been conducted then. It’s noteworthy 
that the molten mixture’s temperature has been conserved throughout 
these time durations to prevent the solidification of the mixture. To study 
the impact of reinforcing particle’s amount on the properties of compos-
ites being produced, samples with different percentages of reinforcing 
particles (0, 1, 4, 7, and 9 wt. %) have been produced. The first series of 
samples being investigated were samples with different percentages of 
reinforcing materials which have been investigated after identifying the 
best reinforcing percentage of other remaining samples. Table 1 displays 
the characteristics of samples under investigation. 

To study the phases involved in composites being produced, X-Ray 
Diffraction (XRD) procedure has been used. The device used here was 
Empyrean with Cu- Kα and its radiation operated at 40 Kv and 40 mA. 
To study the microstructures, the samples have been sanded with 200-
2000 sand and they have been polished then using felt and alumina pow-
der (in micrometer scale) for 10 minutes. Finally, the FESEM device, 
Quanta 200 model has been used for imaging purposes.

Study the mechanical behavior of the samples, hardness and tensile 
assays have been used. Hardness testing has been undertaken using the 
Brinel device, made in Koopa. The study samples selected for hardness 

Fig. 1. The schematic representation of 
the installed equipment.

Table 1.
The properties of samples produced under different conditions

Time to Mix 
(min)

Time 
(min)

RPMTiB2 wt. %.Sample

---Al PureS1

0151801S2

0151804S3

0151807S4

0151809S5

01507S6

015607S7

0153007S8

051807S9

0301807S10

0601807S11

15151807S12

30151807S13

45151807S14
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testing have been all prepared based on the ASTM E8M-04 standard. 
Finally, to study the tensile behavior of the samples, Universal tensile 
testing device, the TB model has been used. The tensile strength of the 
samples has been tested under a velocity of 0.05 mm/s.

To study the tribological behavior of the samples, a pin on disk wear 
test has been used. The device used to conduct this test was the wear 
device, the Bong Shin model. This test has been conducted under room 
temperature and humidity. The wear velocity was 0.125 m/s and he wear 
distance was 200 m. the pin used in this study was made up of hardened 
steel with a hardness ratio of 50 HRC/ finally to test for the impact of 
reinforcing particles on the electrochemical behavior of the composites 
being produced, potentiodynamic polarization (PDP) test has been con-
ducted in 3.5 wt. % NaCl solution. This test has been implemented using 
Origa Flex, made in France with a three-electrode system. The reference 
electrode used in this test was SCE. The scanning rate in this test was 
0.5 mv/s. To develop balance in the Open Circuit Potential (OCP) of the 
samples, the samples have been immersed in a test solution for one hour.

3. Result and discussion 

3.1. Characterization of composites with different TiB2 content

3.1.1. XRD Analyses

Fig. 2 displays the XRD analysis of the S4 sample. This figure con-
tains the peaks related to TiB2 as a reinforcing particle. This peak il-
lustrates that the produced composite is an in-place type of composite 
because the intended phase has been produced inside the molten ma-
terial and through the reactions between the particles being added and 

the matrix. The rest of the results illustrate that the main phases being 
produced are related to TiB2 and Al phases. Considering the aluminum 
matrix used in this study, the presence of the main Al peak is not surpris-
ing. The presence of TiB2 as the main peak suggests that the generated 
Gibbs energy involved in the formation of TiB2 is far less than the Gibbs 
energy involved in AlTi3 and AlB2 formation [25, 33]. The emergence 
of this peak confirms reactions 1-3. The present study didn’t report any 
intermediate product of TiAl3 or AlB2. Considering the Ti-B proportion, 
only 2.1 will be inferred which suggests that no significant portion of 
KBF4 or K2TiF6 will be synthesized or oxidized during the reactions.

3.1.2. Morphology

Fig. 3 displays the FESEM images produced from S2, S3, S4, and S5. 
It can be inferred from these figures that reinforcing particles are present 
within the aluminum matrix. The presence of such particles leads to sig-
nificant changes in the engineering properties of the samples. According 
to these figures, it can be concluded that in percentages higher than %7 
of TiB2 particle, agglomeration and clotting behavior occurred within 
the system. This may lead to the disappearance of sales’ engineering 
behavior because pieces’ properties are different in various parts of the 
samples and we can’t record a uniform behavior of the sample. Consid-
ering the figures, it can be inferred that the matrix’s particles became 
finer upon the presence of reinforcing particles. The further fineness of 
the matrix under the influence of reinforcing particles can be studied in 
two different parts. The first part concerns the initiation of solidification 
in which the reinforcing particles act as germinating particles and result 
in I further fineness of the system’s particles. The second part concerns 
the process of solidification itself through which the presence of rein-
forcing particles inhibits the growth of germinations being developed. 

Fig. 2. XRD test results for S4 sample

Fig. 3. FESEM images 
taken from aluminum 

matrix composites rein-
forced with different wt. 

% of TiB2

Fig. 4. The results of hardness testing for composites with different percentages 
of reinforcing particles
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To put it differently, the developed particles are surrounded by these 
particles and can’t grow any further. It’s crystal clear that the fineness 
of the matrix will contribute to improving the mechanical properties of 
study samples [34, 35].

3.1.3. Hardness

Fig. 4 displays the hardness test results. From this figure, it can be 
inferred that the presence of reinforcing particles resulted in the higher 
hardness of study samples compared with pure aluminum. This suggests 
that the presence of reinforcing particles under any conditions results in 
increased hardness of the study samples. Besides, the increased number 
of these particles resulted in increased hardness of the samples. The re-
sults of hardness tests illustrated that for values higher than 7 wt. % of 
reinforcing particles, composites’ hardness has been reduced. This may 
be related to agglomeration and clotting of the particles the hardness 
reduction and weakening of composites’ mechanical behavior upon the 
presence of reinforcing particles’ agglomeration has been proved in the 
literature as well [29-32]. The presence of reinforcing particles resulted 
in the development of a higher energy level within the system which will 
finally result in increased hardness upon locking up the misplacements 
and development of blockages against misplacements. The mechanism 
involved in hardness testing is based on the plastic deformity on the sur-
face of the study samples. The plastic deformation required the motion 
of misplacements; meanwhile, in case any factor prohibits the motion 
of misplacements, it will result in plastic deformity which will finally 
contribute to increased hardness.

3.1.4. Tensile

Fig. 5 displays the variations of tensile behavior of the composite 
samples with different percentages of reinforcing particles. It can be in-
ferred that the presence of reinforcing particles up to 7% wt. of TiB2 re-
sulted in increased strength of the study samples and upon increasing the 
amount of reinforcing particles to %9 wt. resulted in decreased strength 
of the amole. The main reason behind the weakness of the sample’s me-
chanical properties for higher percentages of reinforcing particles can be 

traced back to the agglomeration of reinforcing particles, which has been 
approved in FESEM images for %9 wt. of reinforcing particles. It can be 
inferred from Fig. 5 that the use of reinforcing particles resulted in the 
deceased elongation of the composites being produced. It’s clear that the 
presence of reinforcing particles resulted in misplacements being locked 
up and therefore their motion potential will be reduced and this was 
the main reason for higher strength, misplacement lock up and finally 
decreased composite formation.

Finally, to study the mechanical behavior of the composites being 
produced (such as hardness and strength) which vary according to the 
presence of reinforcing particles can be discussed in two main parts [21]. 
First, based on the (continuous) transfer of matrix load to particles which 
has been developed through the favorable linking between the soft ma-
trix and TiB2 particles as strong and non-deficient particles. Whenever 
tension is incurred on a composite, it will be transferred to reinforcing 
particles from the matrix. As a result of such transfer of force, the soft 
and formable matrix will tolerate fewer loads and the reinforced parti-
cles will bear a significant portion of the force which will finally lead to 
improved behavior of the composite behavior. Another related factor is 
the reinforcing impact of TiB2 particles on the surrender strength of the 
aluminum matrix. The impact of reinforcing particles on the composite 
strength (i.e. σys) can be analyzed based on the following equation [11, 21].

σyc = σys [Vp (1+S/2) + (1-Vp)]				     (4)

Where σyc is the matrix’s strength, Vp is the volumetric fraction of the 
reinforcing particles, and S is the superficial proportion of reinforcing 
particles which will be considered as equal to 1 for similar particles. The 
micromechanics involved in the increased strength of the composites 
may be originated from the following.

Any variation in the size of matrix particles (further fineness of the 
matrix) which based on Hall-Petch equation, the boundary of the in-
creased particle will result in the development of obstructions against 
the motion of misplacements and will finally lock up the misplacements 
and decrease their motion which is itself the main origin for increased 
hardness and strength. The second point concerning the boundaries is 
the resource for misplacement generation. In other words, the boundary 
itself results in the development of misplacements and increased mis-
placement density which will lead to misplacement jungle, and lock-
ing up the misplacements will result in increased strength as well (Hall-

PetchΔσ).
Orowan mechanism. based on the Orowan mechanism, the use of 

reinforcing particles will itself contribute to misplacement lock up and 
obstructs their motion. The pinning of the misplacements through using 
reinforcing particles will result in increased strength of the composites 
ΔσOrowan [33, 34].

The difference in heat expansion coefficient between reinforcing 
particles and the matrix leads to irregularities in the crystal and will 
generate misplacements. The increased density of misplacements will 

Fig. 5. The results of tensile strength tests for composites including different 
percentages of reinforcing particles

Fig. 6. Wear rate for composites containing different percentages of reinforcing 
particles

Fig. 7. Polarization diagram related to PDP test
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lead to the formation of different misplacements locks which will finally 
contribute to decreased formability and strength of the samples (CTEΔσ).

3.1.5. Wear

Fig. 6 displays the tribological behavior of the composites being 
produced using different percentages of reinforcing particles. It can be 
inferred from this figure that composites containing different percentag-
es of reinforcing particles displays different tribological behavior. The 
figure suggests that the presence of reinforcing particles resulted in a 
decreased wear rate of the composites. Besides, increasing the amount 
of reinforcing particles up to 7 wt. %. resulted in decreased wear rate and 
improved tribological behavior of the composite. Decreased rate of wear 
and improved tribological behavior of aluminum matrix composites has 
been proved in other studied available in the literature. A review of the 
related literature suggests that TiB2-reinforced composites displayed fa-
vorable wear properties compared with composites reinforced with SiC 
[36-39]. Considering the study conducted by Prasada Rao et al.[40], It 
has been proved that the presence of TiB2 particles resulted in decreased 
wear rate of aluminum matrix composites. According to Prasada Rao et 
al., the wear rate of the Al-7Si / TiB2 composite depends upon the size 
of particles, the distance between dendrites, and the size of Si particles. 
In other words, in case any factors result in further fineness of system’s 
particles during solidification process and finally, particles in lower di-
mensions will be developed, the wear properties will be improved and 
wear rate will be decreased. In this study, the use of reinforcing parti-
cles resulted in a decreased wear rate which will consequently lead to a 
reduction of grains’ size. In other words, the presence of TiB2 particles 
modifies the particles’ morphology and makes them smaller. Finally, the 

produced composite displays improved wear properties. Meanwhile, in-
creasing the number of particles to higher than 7-9 wt. % results in high-
er wear rate and diminished sample’s tribological behavior. The reason 
behind the increased wear rate in higher percentages of TiB2 particles 
can be traced back to the agglomeration of the particles.

Considering the results obtained from mechanical and tribological 
tests, it has been suggested that the best parentage to produce aluminum 
matrix composite reinforced with TiB2 particles, is 7 wt. % of TiB2.

3.1.6. Corrosion

The potentiodynamic polarization (PDP) electrochemical test was 
used to study the effect of TiO2 particles on the electrochemical proper-
ties of the produced composite, which the results are presented in Fig. 
7. As shown, the presence of reinforcing particles results in changing 
the electrochemical behavior of particles. Also, their existence and an 
increase in their amount in composites lead to the formation of Tafel 
branches with low flows. In other words, their presence results in de-
creasing corrosion flow density (Table 2). Based on Fig. 7 and Table 
2, adding the reinforcing particles fails to change the slope of Tafel 
branches and they are produced in lower flow density in parallel, which 
indicates no change in corrosion mechanism in the existence of the re-
inforcing particles. Their presence leads to no change in the mechanism 
of cathodic (e.g., hydrogen reduction) and anodic reactions (e.g., alu-
minum dissolution) although it only results in decreasing their rate and 
kinetics [41]. As represented in Table 7, the change in the amount of the 
reinforcing particles, and their presence or absence fail to vary the cor-
rosion potential of the samples significantly, which represents no change 
in the thermodynamic of electrochemical reactions in the presence of the 

Fig. 8. Variations in samples’ hardness under different conditions for the produc-
tion of Al – 7% wt. TiB2 composite; a) different stirring velocities; b) different 

stirring durations; c) different resting times and reactions between molten 
mixtures and aluminum

Fig. 9. The tensile behavior of the sample under different conditions for the 
production of Al – 7% wt. TiB2 composite; a) different stirring velocities; b) dif-
ferent stirring durations; c) different resting times and reactions between molten 

mixtures and aluminum
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particles [42-44]. Finally, their existence only alters the kinetics of elec-
trochemical reactions. The blockage of the cavities and micro-cracks 
existing in the structure of aluminum-based by TiO2 is considered as 
a reason for reducing the rate of electrochemical reactions (decreasing 
corrosion flow density) in the existence of the particles. The dangerous 
ions such as Cl- can easily pass through each micro-crack due to their 
small radius (angstrom), which leads to corrosion in the system. The 
reinforcing particles reduce the diffusion rate of aggressive ions such 
as Cl- because of blocking the micro-cracks, leading to a decrease in 
corrosion rate.

3.2. Characterization of composites with the different condition of 
fabrication

3.2.1. Mechanical Properties	

Figs. 8-9 display the tensile and hardness behavior of the samples 
produced with different stirring velocity (a), stirring duration (b), and the 
resting time until the beginning of stirring (c). According to this figure, 
one can declare that making changes in any of the above parameters re-
sulted in different tensile and hardness behavior of the samples. In other 
words, making changes in composite production conditions resulted in 
different mechanical properties of the composites.

To study the impact of stirring speed on the properties of the com-
posites being produced, a reinforced version of the composite containing 
7 wt. % of TiB2 has been produced under different stirring velocities. 
According to Figs. 8-a,b, stirring contributes to higher hardness and 
mechanical strength of the composites which suggests that stirring and 

complete mixture of the molten material and reinforcing particles re-
sults in optimized mechanical properties of the samples. It’s also clear 
that upon increasing stirring velocity up to 180 rpm, samples’ hardness 
and strength have been increased. On the other hand, increased stir-
ring velocity didn’t affect hardness and samples’ strength significant-
ly. Improved hardness and strength of the study samples as a result of 
increased stirring velocity up to 180 rpm can be analyzed through two 
different points; first, under higher stirring velocities, more uniform 
scattering of the reinforcing particles will be developed in the matrix 
which will finally contribute to improved mechanical properties of the 
samples. Second, higher stirring velocities lead to the formation of fin-
er-grained structures within the matrix. This fine-grained structure re-
sults in improved mechanical properties of the composite (Hall-Petch). 
It has been turned out that increased stirring velocity up to 180 rpm 
results in decreased mechanical properties of the samples which may 
be due to excessive turbulence and absorption of developed oxides on 
the surface of molten material and their entrance into that, such that un-
der higher stirring velocities, the developed oxides on the surface of the 
molten material will be absorbed and imprisoned which finally results 
in the production of a deficient piece, with its mechanical properties be-
ing weakened. Accordingly, it has been made clear that the best stirring 
speed for the production aluminum matrix composite reinforced with 
7% wt of TiB2 is 180 rpm.

To study the impact of stirring duration, the sample was reinforced 
with 7 wt. % of reinforcing particles has been stirred for different time 
durations. Figs. 8-a, b display the samples’ varied hardness and strength 
upon changing stirring time required for molten material. According 
to this figure, increased stirring duration resulted in higher hardness 
and strength of the composites. Improved strength and hardness of the 
composites upon increased time duration for stirring can be discussed 
in two levels. First, increasing stirring duration will contribute to bet-
ter scatteredness of the particles within the system which will finally 
lead to better mechanical properties of the composite being produced. 
Second, fine-grained particles affect the system to a great extent. It has 
been found that upon increasing stirring duration, the microstructure, as 
well as the matrix’s morphology, became finer and therefore the density 
of particles located on the boundaries will be higher. It’s clear that a 
higher density of the boundary particles results in decreased motion of 
misplacements and therefore sample’s strength will be increased as well. 
Accordingly, it’s expected that samples’ deformity and length increase 
will decrease during the tensile tests. The results of tensile tests all con-
firm this phenomenon.

To study the rest duration and the reactions that occurred between 
the added particles and molten material, different time durations have 
been established and samples have been produced under different resting 
times. In other words, the samples have been located inside the kiln un-
der different time intervals of 0, 15, 30, and 45 minutes of stirring after 
the addition of reinforcing particles to the molten mixture. After these 
times, the mixture has been stirred once again and the molten mixture 
including the reinforcing particles has been loaded. Figs. 8-c and 9-c 
display the hardness and strength variations of the composites produced 

Table 2.
Results obtained from PDP test through tafel method

βc (mV.decade-1)βa (mV.decade-1)ECorr (mV)iCorr (A.cm-2)Sample

-9078-7012.7 × 10-4S1

-8975-7007.9 × 10-5S2

-9174-7031.36 × 10-5S3

-8875-6959.32 × 10-6S4

-9275-6991.02 × 10-6S5

Fig. 10. Wear rate of the study sample under different conditions of Al – 7% wt. 
TiB2 composite production; 1) different stirring velocities; b) different stirring 
durations; c) different resting times and implementation of reactions between 

molten mixture and aluminum
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under different resting times for the molten mixture and addition of re-
inforcing particles. It has been found that during the primary minutes, 
the molten mixture undertook required reactions and after some time has 
been passed, i.e. from 0-15 minutes, no significant changes have been 
made in samples’ mechanical properties. Increased reaction duration be-
tween reinforcing particles and the matrix resulted in decreased mechan-
ical properties of the samples. It suggests that increased duration of the 
reaction between reinforcing materials and the molten mixture results in 
unwanted reactions inside the molten mixture which will consequently 
lead to the production of an unfavorable phase. Finally, the presence 
of such unfavorable phases results in the devastation of the mechanical 
properties of the samples being produced.

Upon the comparison made between the hardness test results in Figs. 
8b-c, it’s clear that higher durations of stirring didn’t result in a signif-
icant change in mechanical properties. Meanwhile, over time in static 
mode, the composite’s hardness is decreased. It suggests that higher stir-
ring durations prohibit the formation of unfavorable phases as well as 
the development of unwanted reactions and will finally contribute to the 
formation of a structure with unfavorable phases.

3.2.2. Wear

Fig. 10 displays the variations in wear rate for the samples being 
produced under different loading conditions. According to Fig. 10-a, it 
can be inferred that increased velocity for stirring the molten mixture 
resulted in lower wear resistance. Besides, increased stirring velocity 
of the molten mixture up to 180 rpm resulted in an increased wear rate. 
Weakened mechanical properties of the samples under increased stirring 
velocities have been confirmed in hardness and tensile tests. The reason 
behind the weakened wear behavior of the composites being produced 
under higher stirring velocities can be related to the ceramic and fragile 
phases which have entered inside the molten mixture from the slag due 
to turbulence. Molten mixture’s turbulence will be increased under high-
er stirring velocities and the paths for oxygen penetration inside the mol-
ten mixture will be increased. Therefore, unfavorable oxidized phased 
will be formed inside the molten mixture which will finally contribute to 
lowered wear quality of the composite.

It’s clear from Fig. 10-b that increased stirring duration resulted in 
a lower wear rate of the composite. The results of mechanical tests il-
lustrated that increased mixing time for molten mixture and reinforc-
ing particles will contribute to the development of a more uniformly 
scattered matrix of the reinforcing materials. This will also lead to a 
decreased risk of formation of reinforcing clots within the matrix and 
will lower down agglomeration risk as well.

Finally, Fig. 10-c displays that increased resting time results in weak-
ened wear properties of the sample and increases the wear rate. This 
can be due to the formation of unfavorable phases under higher resting 
times, such that increased resting time and incomplete mixing of the 
molten mixture through this low time duration results in the formation of 
unfavorable phases which will consequently lead to weakened engineer-
ing properties of the samples including their wear properties.

4. Conclusions

1.	 Production of aluminum matrix composite reinforced with 
TiB2 particles through the in-place method is possible through 
using KBF4 – K2TiF6 Halide salts.

2.	 The presence of reinforcing particles within aluminum matrix 
composite resulted in heightened engineering properties (in-
cluding hardness, wear, tensile, and corrosion) of the sample 
composites being produced.

3.	 The best combination protocol for the production of aluminum 
matrix composite reinforced with TiB2 particles is Al / 7% wt. 
TiB2.

4.	 It has been found out that increasing the percentage of TiB2 

particles up to 7 wt. % resulted in the agglomeration of the 
particles within the composite and weakened its engineering 
properties.

5.	 The reinforcing particles obstruct the entrance of dangerous 
ions such a Cl- upon the obstruction of micro-cracks and pores 
existing on the surface of the composites and improved sam-
ples’ electrochemical properties.

6.	 TiB2 particles resulted in improved engineering properties of 
the samples by blocking the misplacements and blocking the 
particles’ growth during solidification.

7.	 The mechanisms governing the improved strength and hard-
ness of the composites reinforced with TiB2 particles include 
Orowan and Hall-Petch.

8.	 Upon increasing stirring velocity, samples’ engineering prop-
erties have been weakened as a result of the formation of oxi-
dized phases and turbulence and solution of oxygen within the 
molten phase.

9.	 Increased stirring duration improved composites’ engineering 
properties due to uniform scattering of the reinforcing particles 
inside the composite matrix.

10.	 Upon increasing the time interval between the moment of add-
ing reinforcing particles to the loading moment (up to 15 min-
utes), samples’ engineering properties will be weakened due 
to the occurrence of unwanted reactions and the formation of 
unfavorable phases.
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1. Introduction

Due to significant advances in the production of nanostructured 
materials with new properties, many researchers have focused on the 
engineering of multi-functional macroscopic materials by structure de-
sign at the nanometer scale. One of the fast-growing areas of composites 
research is the development of nanocomposites [1, 2]. 

Novel material properties can be achieved by decreasing the parti-
cle size to the nanometer scale [3]. In addition to the properties of the 
matrix and reinforcement, the properties of nanocomposite depend on 
the morphology and interfacial characteristics of the constituents [4, 5].  
The surface area to volume ratio of reinforcements is a morphological 
property determining the relationship between the structure and property 
of nanocomposites [3].

Nanocrystalline ceramics have the potential to be used as catalyst 
supports [6, 7] and adsorbents [8-11] owing to possessing a large sur-
face area and a high number of energetic sites for the interaction with 
contaminants [12, 13]. Due to the excellent properties of Al2O3 nanopar-
ticles, they have found ways to the ceramic industry and high-tech appli-
cations [14]. Crystal phases of Al2O3 include η, δ, θ, γ, and α-Al2O3, and 
among all these phases, the strongest absorption belongs to α and γ due 
to possessing the highest surface area for the majority of photocatalytic 
reactions [15-18].

Owing to properties such as good environmental compatibility, di-
electric permittivity, low toxicity, high retractile indicator, and conve-
nient band gap energy about 2.8 eV, Bi-based oxides, especially Bi2O3, 
have been widely studied. These oxides are good candidates for different 
green applications including remediation of hazardous waste substances 
and photochemical (visible light) degradation of organic contaminants 

in wastewater [18-25] Bi2O3 is used in some industries including optical 
coatings, gas sensors, optoelectronics, and solid oxide fuel cells [26, 27]. 
Trivedi et al. [28] studied the thermal, physical, and atomic properties 
of Bi2O3 treated by biofield energy [29]. According to the results, the 
physical and atomic characteristics of Bi2O3 changed by biofield energy 
treatment, which makes it more useful to be used in solid oxide fuel 
cells [30]. 

Dehkordi et al. [31] used Transient Liquid Phase (TLP) route by 
Bi2O3 reinforcement to join alumina to alumina. Bi2O3 was used because 
of its low melting point [32]. A thin interlayer of Bi2O3 was placed be-
tween the ceramic bodies [33]. The results showed the interfacial com-
pound growth between Bi2O3 and Al2O3 at 880 °C upon the TLP process 
[34]. Higher mechanical properties of the interfaces were observed for 
longer joining times. Neiman et al. [35] studied differences between 
the interaction of microsized Al2O3 or nanosized Al2O3 with microsized 
Bi2O3 [36]. Nano-Al2O3 showed higher reactivity and stronger adhesion 
to micro-Bi2O3 leading to the encapsulation of micro-Bi2O3 in a shell 
composed of Al2O3 and interaction products [37]. Above 400 °C, the 
presence of BiAlO3, Al2Bi24O39, and Al4Bi2O9 phases was confirmed, and 
at higher temperatures, the main complex intermediate was Al4Bi2O9. 
At 730 °C, phase transfer from α-Bi2O3 to δ-Bi2O3 was achieved. By 
further increase in the temperature to 780 °C, the solid phase was de-
composed in interaction products, and the δ-Bi2O3 phase was separated. 
The grains of δ-Bi2O3 [38] with high conductivity formed a connected 
charge percolation resulting in a 2.5-fold conductivity increase between 
770 °C to 800 °C.

Different methods are employed for the production of metal oxide 
nanoparticles including electrodeposition, precipitation, sol-gel, hydro-
thermal, and combustion methods [39, 40]. A common synthesis meth-
od is the sol-gel route. Homogeneity and the production of high purity 
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As a result of great surface area and a great number of energetic sites, ceramic nanocomposites are being consid-
ered as good adsorbents and catalysts. Al2O3 nanoparticles are widely used in high-tech applications owing to their 
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materials are some advantages of the sol-gel method [41, 42]. In this 
study, Bi2O3-Al4Bi2O9 nanocomposite was synthesized using the sol-gel 
method and its mechanical properties were evaluated. Based on previous 
studies regarding the phases formed in Bi2O3 and Al2O3 nanocompos-
ites, this new nanocomposite is expected to have improved mechanical 
properties and can be utilized as novel and efficient materials for various 
applications. 

2. Materials and methods

2.1. Materials

All reagents and chemicals i.e. Bismuth (III) nitrate (Bi(NO3)3, Alu-
minum nitrate nonahydrate (Al(NO3)3) and Ethanolamine (2-Aminoeth-
anol) C2H7NO in this research were obtained from Merck (Darmstadt, 
Germany) without further purification. All Glass containers underwent 
alkali washing and rinsing before application.

Synthesis procedure
To prepare the samples, 300 mmol of 2-aminoethanol was added to 

50 ml of water. Then, the solution was added dropwise to a solution 
containing aluminum nitrate (40 mmol) and Bi(NO3)3 (40 mmol) in dis-
tilled water (200 ml) while the solution was stirred during mixing. Stir-
ring continued for another 60 min. Finally, the precipitates were filtered, 
washed, and heat-treated at 600 °C for 3 h.

2.2. Characterization

The tensile properties of the nanocomposites were evaluated as per 
D3039-ASTM at room temperature at a crosshead speed of 5 mm/min 
using an Instron 6025 device. The samples were prepared by sintering 
(600 °C for 3 h) with dimensions of 150 × 25 × 3 mm. A three-point 
bending tester (Instron 6025) was used to measure the bending strength 
of the nanocomposites. The test was performed according to D790-
ASTM at a crosshead speed of 2 mm/ min at room temperature. The 
length, width, and thickness of the samples were 90 mm, 10 mm, and 
3 mm, respectively. A Zwick pendulum impact tester was used to study 
the impact strength of the samples. The results are the average of five 
repetitions.

The Vickers hardness of the samples was measured at ambient tem-
perature using Instron, Wilson-Wolpert Tukon 2100B. The applied load 

and loading time was 10 N and 10 s, respectively. The samples were 
polished prior to the measurement and the measurement was repeated 
three times for each sample. The structure of the powders was studied 
using X-ray diffraction analysis (XRD) (Philips X’ Pert, The Nether-
lands) operating at 30 mA and 40 kV. Cu-Kα radiation with λ = 15.405 
nm was used, and the step size was 0.02˚. X’Pert HighScore software 
was utilized to identify the crystalline phases of the powder [43].  The 
gold-coated fracture surface of the samples was studied by the scanning 
electron microscopy (SEM) analysis (Hitachi S-3400N, Japan). The op-
erating voltage of the microscope was 15 kV [44, 45].  

   

3. Results and discussion

3.1. Microstructural analysis

To identify the crystal structure and parameters, the quantitative and 
non-destructive method of XRD is widely used. The XRD diffraction 
pattern of the prepared powder is illustrated in Fig.1. The peaks ap-
peared at 2θ of 24.79°, 25.85°, 27.13°, 27.66°, 28.09°, 31.45°, 33.20°, 
and 46.51° are related to the Bi2O3 phase and the peaks at 15.83°, 29.64°, 
30.21°, 35.21°, 41.10°, 48.82, 52.01, 54.91, and 59.35° represent the 
presence of Al4Bi2O9. The Al4Bi2O9 and Bi2O3 phases have monoclinic 
and orthorhombic crystal structures, respectively. Additionally, no im-
purities were detected in the powder composition. The average crystal 
sizes of the powder estimated from the Debye-Scherrer equation was 
obtained to be around 24 nm. The microstructure of the Bi2O3-Al4Bi2O9 
nanopowder is illustrated in Fig. 2. As seen, the particle size of the nano-
powder is in the range of 30-60 nm.

3.2. Mechanical properties 

The results of Vickers hardness for Al2O3, Bi2O3, Bi2O3-Al2O3, and 
Bi2O3-Al4Bi2O9 are represented in Fig. 3. According to the results, the 
Bi2O3-Al4Bi2O9 sample showed the highest hardness compared to other 

Fig. 1. XRD patterns of the (a) Bi2O3-Al4Bi2O9 and (b) Bi2O3 nanopowders.

Fig. 3. Vickers hardness of the Bi2O3, Al2O3, Bi2O3-Al2O3, and Bi2O3-Al4Bi2O9 
samples.

Fig. 2. SEM micrographs of the Bi2O3-Al4Bi2O9 nanopowder.
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samples, revealing that the Bi2O3-Al4Bi2O9 composite can be consid-
ered as a good alternative to the Al2O3-Bi2O3 composite.  The Vickers 
hardness data indicated that Bi-O chemical bonds in Bi2O3-Al4Bi2O9 

composite are considerably strong. The Bi2O3-Al4Bi2O9 samples exhib-
ited 260.29, 302.21, and 37.64 MPa enhancement in Vickers hardness 
compared to Al2O3, Bi2O3, and Bi2O3-Al2O3, respectively. The increase 
in hardness in the composite indicates a good bond between the Bi2O3 

and Al2O3.
The bending test was carried out to measure the flexural modulus 

and flexural strength of the samples. The flexural modulus and flexural 
strength of Al2O3, Bi2O3, Bi2O3-Al2O3, and Bi2O3-Al4Bi2O9 samples are 
observed in Fig. 4. The results show that the highest value of bending 
strength is associated with Bi2O3-Al4Bi2O9. Significant increase in flex-
ural modulus and flexural strength of Bi2O3-Al4Bi2O9 sample exhibited 
in Fig. 4. When we use Bi2O3 its impact on its mechanical properties 
such as flexural modulus and flexural strength can be seen. The good 
effect of Bi2O3-Al4Bi2O9 can be attributed to the proper relationship cre-
ated between Al2O3 and Bi2O3.

Failure toughness of the samples is obtained from the impact test. As 
shown in Fig.5, The fracture toughness of the Al2O3, Bi2O3, Bi2O3-Al2O3, 

and Bi2O3-Al4Bi2O9 samples are 0.5, 0.6, 0.8, and 1.8, respectively. The 
Bi2O3-Al4Bi2O9 samples showed the highest fracture toughness com-
pared to other samples and Bi2O3 show the lowest fracture toughness. 
The most important reason that can be the cause of this result is the for-
mation of agglomerates and agglomerates at Bi2O3, where failure occurs 
earlier than expected.

4. Conclusions

In this research, Bi2O3-Al4Bi2O9 nanocomposite was synthesized via 
the sol-gel method. The formation of the Al4Bi2O9 was confirmed by the 
XRD analysis without any impurities in the composite structure. The 

mechanical properties of the Al2O3, Bi2O3, Bi2O3--Al2O3, and Bi2O3-Al-

4Bi2O9 samples were evaluated and the results showed that Vickers hard-
ness, bending strength, and failure toughness of Bi2O3-Al4Bi2O9 was the 
highest amount among other samples. Therefore, this ceramic composite 
can be a good alternative to the Bi2O3-Al2O3 composite. 
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1. Introduction

The rising energy demands and concerns about environmental pollu-
tions have motivated the engineers to utilize new sources of energy such 
as solar, wind, and biogas [1–4]. The optimization of thermal systems 
is inevitable to increase the efficiency and reduce the cost and air pol-
lution [2, 5–9]. The energy-efficient systems are obtained by enhancing 
the heat transfer rate using different passive or active methods [10, 11]. 
Active methods benefit the external energies such as electric or magnetic 
field, vibrating surface, or a mechanical mixer. However, the passive 
methods don’t need external sources and the heat transfer enhancement 
is obtained by a change in geometry or fluid properties [12, 13]. The 
miniaturization of the channels, using the fins, or utilizing nanofluids are 
some common passive methods [11, 14–17]. In the last decades, due to 
the developments of miniaturized devices, such as computer electron-

ic components, the old techniques of cooling became inadequate [15, 
18–20]. Besides, the evolutions in technology have created an urgent 
demand for new and efficient cooling methods to maintain the device 
temperatures below the critical area. This need for new methods has 
motivated the researchers to study and find a profitable way. Nanofluid, 
which is the mixture of nano-sized particles in the base fluid, proved to 
be a novel heat transfer method in heat transfer issues [21]. 

Nanofluids are known as a new generation of fluids with hidden and 
unknown thermal capabilities. 

Choi [22, 23] introduced nanofluids and claimed that they showed 
better heat transfer characteristics than their base fluids. Adding 
nanoparticles to the base fluid is a passive method for improving heat 
transfer processes [24]. The volume fraction of the nanoparticles as well 
as their size and type are significant factors that result in the mentioned 
improvements. Also, the working temperature and type of fluid play role 
in enhancement [25, 26].
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Heat transfer efficiency has always been at the center of attractions for many researchers and industries, and de-
mand for higher efficiency methods and materials are increased in the last decades. Among the different methods 
of heat transfer enhancement, using nanofluids has proven to be an effective technique. In the present paper, the 
properties of nanofluids including viscosity, thermal conductivity as well as convective heat transfer are discussed 
and useful conclusions about the reported results by different researchers are presented. The effect of volume 
fraction, temperature, size and shape of particles, base fluid properties, and other factors on viscosity, and thermal 
conductivity of nanofluids are reviewed. Also, in the present manuscript, the methods of stable nanofluid prepara-
tion, and the effective factors on the stability of nanofluids are exhibited in detail. Besides, a summarized number 
of experimental and mathematical studies on the properties, and stability of nanofluids are listed, compared, and 
analyzed. The works about the Nusselt number in fluids and nanofluids are presented in detail to determine the 
future challenges of nanofluids.
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Nowadays, nanofluids have been used in many fields of industries 
such as electronic, nuclear, medicine, and transportation systems [27]. 

Nanofluids preparation, stability, characterizations, thermal features, 
conduction, and convection heat transfer processes have been studied 
widely by the researchers [28]. For the first time, Choi [22] dispersed the 
nano-sized particles in a base fluid and called the mixture as nanofluid. 
After introducing nanofluids, Lee et al. [29], Eastman et al. [30], Yu et 
al. [31], and many other researchers investigated the thermal behavior 
of nanofluids, and heat transfer rate enhancement by use of nanofluids 
was proved. It was also shown that the unique behavior of nanofluids 
may originate from some mechanisms such as the Brownian motion of 
nanoparticles and decreases in the thermal boundary layer [32].

As mentioned above, the stability of nanofluids is a crucial factor that 
determines the applicability of nanofluids. Researchers always looking 
for stable nanofluids. So, many stability tests have been accomplished 
and the results showed the three main different methods to prepare a 
stable suspension, that is surfactants, ultrasonic bath, and pH control 
[33–35]. Also, there are other factors such as viscosity that are critically 
related to the pumping power of nanofluid. Although there are a lot of 
experimental studies of the nanofluids behavior, numerical methods are 
still a strong tool to obtain detailed information about the investigated 
phenomenon and have wide applications in heat and mass transfer, bio-
mechanics, and solid mechanics [36, 37, 46, 38–45]. 

In the present paper, a critical review of the preparation, characteri-
zation, and heat transfer enhancement nanofluids has been done. We are 
attempting to provide a comprehensive review of the factors that affect 
the thermos-physical properties of nanofluids. Also, the experimental 
correlations and results have been compiled. The present review mainly 
aims to summarize the recent researches on thermophysical properties 
and the stability of nanofluids and applications of nanofluids in various 
industries and devices.

2. Nanofluids

2.1. Preparation methods

Nanofluids are recognized with their unique thermal properties, such 
as viscosity, thermal conductivity, and many other properties, compared 
to common fluids. Many types of nanoparticles are used for synthesizing 
nanofluids including carbon nanotubes, metals, metal oxides, ceramics, 
etc. metals generally have considerably high thermal conductivities than 
fluids, however, some types of advanced ceramics offer interestingly 
high thermal conductivities even more than common metal, such as ZrB2 
[47, 48, 57–66, 49, 67–76, 50, 77–86, 51, 87–96, 52, 97–102, 53–56], 
TiB2 [103, 104, 113–121, 105–112], SiC, AlN [122–125], TiC [126, 127, 
136, 128–135], and HfB2 [137]. These ceramics have proved remarkable 
thermos-mechanical behaviors in different branches of industry [138, 
139, 148–157, 140, 158–164, 141–147]. One of the important factors, 

Nomenclature

A Area (m2) vol Volume fraction

cp Heat capacity (J/kg.K) wt Weight fraction 

CTAB Cetyltrimethylammonium bromide

d Diameter (m) Greek Letters

EG Ethylene glycol α Thermal diffusivity

EO Engine oil β A constant

GA Gum Arabic μ Dynamic viscosity (Pa.s)

h Convective heat transfer coefficient (W/m2 K) ρ density (kg/m3)

k Thermal conductivity (W/m.K) σ A constant

L Length (m) ϕ Particle volume fraction

n Shape factor ψ Sphericity

Nu Nusselt number

PG Propylene glycol Subscripts

Pr Prandtl number bf Base fluid

PVP Polyvinyl pyrrolidone nanofluids c Critical

R Thermal resistance (m² K/W) eff Effective

r Radius (m) l Laminar

Re Reynolds number p Particle

SDBS Sodium dodecylbenzene sulfonate t turbulent

SDS Sodium dodecyl sulfate

T Temperature (K)

Fig. 1. Synthesizing methods of nanoparticles [21].
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which affects the final properties od nanofluids, is the preparation of the 
nanoparticles [165]. Some of the synthesizing methods of nanoparticles 
are presented in Fig. 1.

Also, there are various methods for analyzing nanoparticles. The 
most common methods are Transmission Electron Microscope (TEM), 
Scanning Electron Microscope (SEM), Optical spectroscopy, X-ray Dif-
fraction (XRD), Infrared and Raman Spectroscopy [166].

The synthesis of a nanofluid is a key role task in researches. The 
main goal of preparing nanofluids is to obtain a stable suspension with-
out any agglomeration in a specified period and temperature. The ag-
glomeration of nanoparticles in a nanofluid is a significant problem in 
all nanofluid investigations. Two main methods involved with preparing 
nanofluids are One-step and Two-step methods [167]. The purpose of the 
mentioned methods is to generate good nanoparticle suspensions. The 
unique heat transfer improvements by using nanofluids directly depend 
on the quality of the suspension. The quality of nanofluid is a function 
of the synthesis method and the homogeneity of nanoparticles in the 
base fluid [166]. Overcoming the mentioned problems has become more 
important in higher nanoparticle concentrations [168].

In the One-step method, in a single process, the nanoparticles are 
formed and dispersed in the base fluid. In the Two-step method, nanopar-
ticles are prepared in the first step and after that, in the second step, the 
prepared particles are dispersed in a fluid [167]. From an economical 
point of view, the Two-step method takes lower costs [169]. In the two-

step method, nanoparticles can be synthesized and dispersed in base flu-
id chemically or mechanically [170]. In chemical dispersion, surfactants 
are commonly are added to the fluid, whereas in mechanical dispersion, 
sonication is often employed to disperse nanoparticles [171]. Besides, 
there are other significant factors that have remarkable effects on a sus-
pension’s quality. According to various studies such as Sonawane et al. 
[172], and Buonomo et al. [173], particle size and sonication time are 

Fig. 2. Effective parameters on thermophysical properties of nanofluids. Fig. 3. Thermal conductivity of various materials at 25°C [211].

Fig. 4. Thermal Conductivity of various fluids at 25°C [211].

Table 1.
Some of the reported synthesis studies of nanofluids

Synthesis 
method

Authors Publish year Nanoparticle/Base fluid Particle size (nm)
Fraction

 (Vol% or wt%)

One-Step

Eastman et al. [30] 2001 Cu/EG 10 0.3

Hong et al. [174] 2005 Fe/EG 10 0.55

Liu et al. [175] 2006 Cu/Water 75~100 0.1

Paul et al. [176] 2012 Ag/Water - 1

De Robertis et al. [177] 2012 Cu/EG - -

Two-Step

Choi et al. [178] 2001 CNT/Poly oil 25*50000 2

Murshed et al. [179] 2005 TiO2/Water 15 5

Meibodi et al. [180] 2010 CNT/Water 1-4 0.12

Lee et al. [181] 2011 SiC/Water <100nm 0.001-3

Singh et al. [182] 2012 Al2O3/EG&Water 130,211,300 0.25-1

Fazeli et al. [183] 2012 SiO2/Water 18 3.5-5

Zeinali Heris et al. [184] 2015 MWCNT/Water 10*20000 0.55

Choudhary et al. [185] 2016 Al2O3/Water 40 0.1-2

Irani et al. [186] 2018 GO/Water+MDEA - 0.1 & 0.2
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other critical factors that affect the dispersion level of nanoparticles and 
lead to better thermophysical properties of nanofluids. Some of the syn-
thesized nanofluids utilizing one-step and two-step methods reported in 
various articles are presented in Table 1.

2.2. Stability of nanofluids

Synthesizing a stable and durable homogenous nanofluid has always 
been challenging for researchers due to the agglomeration of nanoparti-
cles as a result of the van der Waals forces [187]. To avoid particle ag-
glomeration, some physical and chemical methods have been proposed 
and investigated [165]. The most common method that researchers use 
while confronting agglomerations is adding surfactants which is a chem-
ical method [188]. The addition of surfactants makes hydrophobic ma-
terials disperse in an aqueous suspension better than normal situations 
[189]. There are many types of surfactants such as Gum Arabic, CTAB, 
SDS, SDBS, NADDBS, CMC, HCTAB, TX-100, etc. [190]. Besides, 
the fraction of surfactants that are used for making a suspension stable 
is very important. If used less than the limit, causes inadequate stability 
and if overused, causes agglomeration of nanoparticles in the suspension 
due to the osmotic pressure [191].

Also, there are other methods that enhance the stability of nanofluid. 
Li and Xuan [192] suggested the ultrasonic waves for increasing the 
stability of nanofluids in addition to surfactants. Peng et al. [193] defined 
and studied the important factors of the preparation of stable nanofluids. 
They showed that the dispersion method, volume fraction of nanoparti-
cles, the viscosity of the base fluid, the value of pH, density of nanofluid, 
type of nanoparticles, and size of nanoparticles in conjunction with ul-
trasonic waves affect the stability of nanofluids.

The main purpose of all methods is to prevent particle clustering by 
changing the surface properties of particles, which results in a stable 
nanofluid. An ultrasonic bath, which is used widely by researchers [35], 
is a powerful instrument for breaking the agglomerations. A conclusion 
of researches, which has utilized an ultrasonic bath to prepare stable 
nanofluids, is presented Table 2.

The stability of an aqueous nanofluid directly depends on electro-ki-
netic properties. The high surface charge density of the nanoparticles 
may result in strong repulsive forces and consequently, bring up better 
dispersion of nanoparticles in suspensions [35]. 

In the isoelectric point (IEP), the concentration ions that play a role 
in zeta potential is zero. In the isoelectric point, surface charge density 
is equal to electron charge density and because of that, the zeta potential 

is zero. The pH value has to be considered to attain the isoelectric point 
[206]. It has been observed that pH control makes a nanofluid to be 
stable for a long time [207]. By controlling the repulsive force between 
nanoparticles, the zeta potential is decreased to zero at a particular pH 
value at the isoelectric point and it is a negative problem for the stability 
of nanofluids [35]. The pH deviation of a prepared suspension from the 
isoelectric point increases the stability of colloidal particles and causes 
the changes in the thermal conductivity of the nanofluid [208]. Jorge et 
al. [209] investigated the MWCNT/water nanofluid at pH values of 2 
and 5.5 and reported that the mentioned nanofluids were stable because 
of the deposition of amines on the MWCNT surface. Zareei et al. [210] 
evaluated the stability of Al2O3/water nanofluid at various pH values and 
showed that the Al2O3/water nanofluid had the highest stability at pH=4 
while pH=10 showed less stability. Each type of nanoparticle became 
stably dispersed at its optimized pH value that leads to optimum thermal 
properties. At an optimum pH, the repulsive force between nanoparticles 
increases and prevents the sedimentations and agglomerations [211].

Among the various methods to evaluate the stability of nanofluids 
the most common techniques are: zeta potential, absorbency, stratifi-
cation observing, sedimentation observing, and particle size-changing 
[212]. When almost all of the particles have high zeta potential values, 
there is no tendency for agglomeration and consequently, the suspension 
becomes stable [213]. In the zeta potential method, a Laser Doppler Ve-
locimetry (LDV) records the movement of nanoparticles under an elec-
trical field. Nowadays most of the investigations about the stability of 
nanofluids are done with the zeta potential method [181]. The acceptable 
values of zeta potential are shown in Table 3 [214]

2.3. Thermophysical properties of nanofluids

The main idea of the synthesis of nanofluids is to enhance the 
thermophysical behavior of the base fluids. Thermal properties of the 
working fluid play an essential role in the heat transfer rate of a ther-
mal system. The working fluid commonly has weak thermal properties, 
therefore the improvements of these properties increase the efficiency 
of thermal devices, reduce costs, and results in more compact and min-
iaturized devices [20]. The properties of some of the base fluids that 
are utilized commonly in various investigations are presented in Table 
4 [187, 215–218]. The dispersion of nanoparticles in the base fluid is 
one of the attractive methods in the enhancement of the fluid properties. 
Many factors affect the thermophysical properties of nanofluids that are 
presented in Fig. 2 [219]. Kolade et al. [220] investigated the effect of 

Table 2.
Investigations of nanofluid stability

Authors Publish year Nanoparticles/Base fluid Particle size(nm) Fraction 
(vol% or wt%)

Sedimentation surfactant

Patel et al. [194] 2005 Al2O3/Water 11 0.8 - -

Lee et al. [195] 2006 CuO/Water 25 0.3 - -

Zhu et al. [189] 2007 Graphite/Water 20 0.5 - PVP

Li et al. [188] 2008 Cu/Water 25 0.1 - SDBS

Chen et al. [196] 2009 Titanate NT/EG 10*100 0.5-8 >2 months -

Yu et al. [197] 2010 Fe3O4/Kerosene 15 0.1-2 - Oleic acid

Chandareskar [198] 2010 Al2O3/Water 43 033-5 - -

Aravind et al. [199] 2011 MWCNT/Water - 0.005-0.03 - -

Shanbedi et al. [200] 2012 MWCNT/Water 15*10000 0-1.5 >6 months -

Shanbedi et al. [201] 2013 MWCNT/Water 15*10000 0-1 >6 months GA

Amiri et al. [202] 2015 Graphene/Water 3.74*3000 0-0.1 1 month SDBS

Mustafizur [203] 2016 SiO2/Methanol 5-15 0.005-0.05 24 hours -

Cacua et al. [204] 2017 Al2O3/Water - 0.1-0.5 30 days SDBS-CTAB

Krishnan et al. [205] 2019 MgO/Water-EG - 0.05-0.6 20 days -
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the particle fraction on the effective thermal conductivity of Al2O3-water 
and MWCNT-water nanofluids and reported 6% and 10% enhancement 
at 2% and 0.2% fractions, respectively. Das et al. [221] reported that 
temperature increment results in higher thermal conductivity of nanoflu-
ids. Also, Shou et al. [222] indicated that an increase in thermal conduc-
tivity had a linear proportion with temperature. Chon et al. [223] studied 
the effect of nanoparticles size on the thermal conductivity of nanofluids 
for spherical nanoparticles with the size of  10-50 nm and showed that 
the thermal conductivity of nanofluids increased with a decrease in par-
ticles size.

2.3.1. Thermal conductivity

In the last decades, the thermal conductivity of the fluids containing 
nanoparticles has become a point of attraction for many researchers and 
various numerical and experimental studies have done about nanofluids 
[220]. The results of various studies show that the thermal conductivity 
of nanofluids improves by diverse factors like volume fraction, nanopar-
ticle type and size, the thermal conductivity of nanoparticles and base 
fluid, temperature, viscosity, Brownian motion, pH value, and the qual-
ity of dispersion[224]

The Brownian movement of nanoparticles at nano-sized levels and 
molecular scales plays a key role in the thermal behavior of solid-fluid 
suspensions including nanofluids. The increases in thermal conductivity 
of nanofluids are related to local convections that caused by Brownian 
motions of nanoparticles [225].

Solid materials have generally higher thermal conductivities than 
fluids. Metals possess considerably high thermal conductivity, however, 
some types of advanced ceramics offer considerable thermal conductivi-
ties such as ZrB2, AlN, BeO, and TiB2 [226–231]. Since the thermal con-
ductivity of solid nanoparticles is very higher than fluids, it is expected 
that dispersing nanoparticles in a base fluid enhances the thermal con-
ductivity and the heat transfer functions of the fluid. The approximate 
thermal conductivity of some materials and base fluids is shown in Fig. 
3 and Fig. 4, respectively [211].

The experimental studies exhibited that nanofluids do not conform 
with general correlations and the thermal conductivity of nanofluids de-
pends on many factors that some of them are still unknown. Jana et al. 
[232] studied various nanofluids and showed that the Cu-water nanofluid 
brings up to 74% enhancement in thermal conductivity. Xie et al. [233] 
investigated the effect of using CNT, CuO, and Al2O3 nanoparticles in 
a base fluid and showed that regardless of the type of the base fluid, 
Carbon nanotube suspensions demonstrated better thermal conductivity 
values in the same volume fractions [233]. Wang et al. [234] compared 
the diverse data for Al2O3 and CuO nanoparticles by considering water, 
vacuum pump fluid, engine oil, and ethylene glycol as base fluids and 
showed that the thermal conductivity of nanofluids increased with a de-
crease in nanoparticle size. Abareshi et al. [235] investigated the thermal 
conductivity of Fe3O4-water nanofluid and highlighted that the thermal 
conductivity of nanofluids improved with increment in temperature due 
to the increases in the activity of molecules to transfer energy. Lai et al. 
[236] and Zhu et al. [237] claimed that the pH value is very effective on 
the thermal conductivity of suspensions. In Table 5 found., the thermal 

conductivity enhancement reported by some researchers is presented. 
Many studies reported the enhancement of thermal conductivity by 

utilizing and dispersing nanoparticles in the base fluid [220]. Although 
the researchers presented many models to predict the thermal conduc-
tivity of nanofluids, however, comparing the experimental data with 
theoretical models shows the need for more investigations to explain 
the abnormal improvements in the thermal conductivity of nanofluids.

Maxwell [251] for the first time presented a mathematical model to 
determine the thermal conductivity of a solid-fluid suspension by assum-
ing spherical shape for all solid particles as follow:

 
2 2( )
2 ( )

p bf p bf
eff bf

p bf p bf

k k k k
k k

k k k k
φ
φ

+ + −
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+ − −
 			     

(1)

where φ is the volume fraction and kbf and kp are the thermal conduc-
tivity of the fluid and particles, respectively.

Researchers also developed various mathematical models by con-
sidering different parameters that affect thermal conductivity. Hamilton 
and Crosser [252] considered the shape of the particles and justified the 
Maxwell model as below:

( 1) ( 1)( )
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p bf p bf
eff bf
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+ − + − −
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where n is the shape factor given as 

 3n
ψ

=
						        

(3)

ψ is defined as the sphericity of the solid particles. A series of mathe-
matical models considering the different involving factors are presented 
by several researchers. A conclusion of various presented models sug-
gested by researchers is shown in Table 6.

2.3.2. Viscosity

The viscosity is a significant and important characteristic of all types 
of fluids that shows the resistance of a fluid flow against shear stress. 
Because of that, the viscosity has a great effect on the rheological and 
thermal behaviors of nanofluids as a special type of fluids. The viscosity 
affects the friction between the fluid molecules and the contact surface 
of nanoparticles and plays a key role in fluid flow and heat transfer phe-
nomena. The pumping power and convective heat transfer rate are di-
rectly related to the value of viscosity [267]. 

The viscosity depends on various factors such as dispersing method, 
nanoparticle diameter, nanoparticle type, temperature, and nanoparti-
cle concentration which the effect of concentration is more than other 
factors [268, 269]. Ghazvini et al. [270] showed that the viscosity of 
nanofluids increased by up to 20% in high nanoparticle concentrations. 
Ding et al. [271] investigated the viscosity of carbon nanotube-water 
nanofluid as a function of shear stress and indicated that the viscosity of 

Table 3.
The acceptable values of zeta potential [70]

Zeta potential (mv) Stability

0 No stability or little stability

15 Some stability but settling lightly

30 Moderate stability

45 Good stability with settling possibility

60 Excellent stability

Table 4.
Thermophysical properties of common base fluids that utilized in nanofluids [187, 
215–218]

Base fluid cp (J/kg.K) k (W/m.K) ρ (kg/m3) μ (N.s/m2)

Distilled water 4184 0.599 998 1.00E-04

Ethylene 
Glycol

2383 0.25 1117 2.20E-02

Engine oil 1881 0.145 888 8.40E-01

Propylene 
glycol

4019 0.34 1036 4.20E-02

EG + water 
(X=0.5)

3473 0.316 1094 28.00E-04
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nanofluids increases with increments in concentration on the one hand 
and also, decrements in temperature on the other hand. Zeinali Heris 
et al. [272] showed that the viscosity value of CuO-water nanofluid is 
greater than Al2O3-water nanofluid because of the bigger size of CuO 
nanoparticles. 

Nguyen et al. [273] investigated the effect of temperature, concen-
tration, and size of nanoparticles on the dynamic viscosity of Al2O3-wa-
ter and CuO-water nanofluids. The results showed that the viscosity of 
prepared nanofluids was a function of temperature and volume fraction 
of nanoparticles.

A conclusion of experimental researches about the viscosity of nano-
fluids is presented in Table 7. Also, there are some mathematical correla-
tions for predicting the effective viscosity of nanofluids. A summary of 
the significant viscosity correlations is presented in Table 8.

2.4. Convective heat transfer process in nanofluids

Using nanofluids in various devices is an effective method to reach 
high efficiencies in the cooling procedure. In the previous sections, the 
synthesis and some thermophysical properties of nanofluids have been 
explained, however, convective heat transfer needs many studies about 
the flow regime, heat transfer process, and other significant factors 
[295]. The convective heat transfer coefficient of nanofluids increases 
with increment in conductive heat transfer rate, intensification of turbu-
lence, stopping the growth of the boundary layer, etc. [24]. A decrease 
in the thermal boundary layer can lead to the stimulation of the particles 
around the wall and migration of the particles toward the center of the 
duct and this subject will decrease the viscosity near the wall [296]. Nu-
merous studies have been performed to investigate the convective heat 
transfer using nanofluids. A constant heat flux or constant wall tempera-

ture is usually considered as the boundary condition for studying the 
heat transfer of nanofluids [297].

By using nanofluids, complicated behaviors such as Brownian mo-
tion, rotation of the particles, and micro-displacements of nanoparticles 
emerge [297]. These mechanisms make it necessary to find new correla-
tions to cover the convective heat transfer of the nanofluids. 

Jung et al. [298] investigated the Al2O3-water nanofluid in a micro-
channel with considering the laminar flow regime and showed a 32% 
increase in the convective heat transfer coefficient in comparison with 
used base fluids. Zeinali heris et al. [299] investigated the Cu-water 
nanofluids in a tube with a laminar flow regime at constant wall tempera-
ture condition as a boundary condition and indicated that with increases 
in volume fraction, the convective heat transfer coefficient values im-
proved as 45% at 2% volume fraction. Faulkner et al. [300] investigated 
the convective heat transfer in a microchannel by utilizing CNT-water. 
The results showed that the convective heat transfer coefficient improves 
with an increase in volume fraction. Aravind et al [199] synthesized 
the CNT-water nanofluids at 0.005% and 0.03% volume fractions and 
showed that the convective heat transfer coefficient increases with an 
increase in Reynolds number and volume fraction. Naraki et al. [301] 
investigated the CuO-water nanofluid in a car radiator and presented an 
8% enhancement in the heat transfer rate.

Several mathematical correlations are presented by researchers for 
predicting the Nusselt number of single-phase fluids in a tube at laminar 
and turbulent flow regimes. A conclusion of some correlations for the 
Nusselt number is shown in Table 9.

2.5. Future Challenges

As the researches about nanofluid progress over time, many chal-

Table 5.
The overview of the result of some studies on the thermal conductivity of nanofluids

Authors Publish year Particle/Base fluid
Fraction

(vol% or wt%)
Particle size 

(nm)
Additives Enhancement (%)

Xuan & Li [192] 2000 Cu/water 2.5-7.5 100 Laurate salt 22-75

Xie et al. [238] 2002 Al2O3/water 1.8-5 60.4 - 7-21

Patel et al. [239] 2003 Ag/water 0.001 60-70 -
3% at 30°C
4% at 60°C

Das et al. [221] 2003 Al2O3/water 1-4 38.4 -
2-9% at 21°C

10-24% at 51°C

Wen & Ding [240] 2004 Al2O3/water 0.19-1.59 42 SDBS 1-10

Hong et al. [174] 2005 Fe/EG 0.2-0.55 10 - 13-18

Putnam et al. [241] 2006 Au/ethanol 0.01-0.07 4 Alkanrthiolate 0.3-1.3

Lee et al. [195] 2006 CuO/water 0.03-0.3 25 -
4-12% at pH=3
2-7% at pH=6

Li et al. [188] 2008 Cu/water 0.02-1 wt% 25 SDBS 10.7

Godson et al. [242] 2010 Ag/water 0.3-0.9 60 - 10-30% (50 to 90°C)

Kole & Dey [243] 2010 Al2O3/water 0.001-0.035 50 Oleic acid 10.5%

Colla et al. [244] 2012 Fe3O4/water 5-20 wt% 67 -

0-7% at 10°C
1-10% at 30°C
5-11% at 50°C
3-15% at 70°C

Manna et al. [245] 2012 SiC/water 0.01-0.1 60 - 7.5-11.5%

Teng [246] 2013 Al2O3/water 0,0.5,1,3 20 Chitosan 1-9% decrease

Amiri et al. [202] 2015 Geraphene/water 0.025-0.1 wt% 3.74*3000 SDBS Up to 26.2

Sinha et al. [247] 2017 ZnO/water 0.1-5 - - 33

Micali et al. [248] 2018 CuO-water 2.5 - - Up to 18

Ranjbarzadeh et al. [249] 2019 SiO2/water 0.1-3 - - Up to 38.2

Riahi et al. [250] 2020 Al2O3/water 0.7 9 - 8.6
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Table 6.
A conclusion of models proposed for thermal conductivity of nanofluids

Reference Year Correlation
Dependent Param-
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lenges in nanofluid studies and applications still exist. Firstly, the syn-
thesis of nanofluids must take lower costs on the one hand and give more 
stable nanofluids on the other hand. So, there is a critical need for more 
studies about the mechanisms and methods to earn information about the 
unique behavior of nanofluids and give more stable nanofluids that make 
them more commercial and applicable.

Secondly, many mathematical and experimental correlations are 
presented to predict the thermal and rheological properties of nanoflu-
ids. Some of them have properly validated, however, all mechanisms 
involved in the heat transfer of nanofluids are still unknown and unex-
plored. Considering optimal parameters for prospecting the behavior of 
nanofluids is very necessary to extract the maximum potential of nano-

fluids.
From the heat transfer aspect, nanofluids have developed in many 

heat transfer processes and instruments such as medical sciences, bio-
mechanics, electronics, etc. [311]. Researchers are studying and inves-
tigating the various facets of the nanofluids to make nanofluids more 
reliable and marketable [312].

Nowadays, nanofluids are utilizing in heat transfer and other fields 
widely. However, this unique type of suspension is still under the inves-
tigation to be more applicable. Finding ways to give more stable and 
high-efficiency nanofluids will lead to a revolution in the heat transfer in 
industry and many other fields.

Continuation of Table 5

Reference Year Correlation
Dependent Param-

eters
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Table 7.
A conclusion of experimental studies on the viscosity of nanofluids

Authors Year Particles/Base fluid Fraction
Particle 
size(nm)

Additives Viscosity increase

Godson et al. [242] 2010 Ag/water 0.3-0.9 20 - 6-23% at 50°C
10-35% at 70°C
20-43% at 90°C

Aravind [199] 2011 MWCNT/water 0.005-0.03 - - 3-15% at 40°C
4-20% at 60°C
6-11% at 40°C
4-16% at 60°C

Colla et al. [244] 2012 Fe2O3/water 5-20 wt% 67 - 21-36% at 10°C
24-49% at 30°C
21-36% at 50°C
32-72% at 70°C

Syam Sundar et al. [274] 2013 Fe3O4/water 0.2-2 13 CTAB 6.3-108% at 20°C
1.8-107% at 40°C
10-196.6% at 60°C

Shanbedi et al. [275] 2015 MWCNT/water 0.1 wt% 10*30000 GA
SDS

CTAB

Temperature increase led to lower 
viscosity values

Chiam et al. [276] 2017 Al2O3/water+EG 0.2-1 - - Up to 50%

Yashawantha et al. [277] 2019 Graphite/EG 0.2, 0.8, 2 <50 - 58% decrease by increasing tem-
perature (25°C-60°C)
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Table 8.
A conclusion of mathematical correlations for the viscosity of nanofluids

Authors Year Correlation Dependent parameters
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3. Conclusion

Cooling performance is a major demand of many industries and be-
cause of that, the need for fluids with enhanced thermophysical proper-
ties and reliable stability is more vital than the past. The present review 
gives a piece of summarized information about the nanofluids and heat 
transfer phenomena in nanofluids and make nanofluids more under-
standing and displays the recent developments in nanofluids.

Many rheological and thermal properties of nanofluid have taken 
into account to make nanofluids more applicable. Although, the ther-
mal conductivity, viscosity, stability, and heat transfer processes are re-
viewed in the present paper. Also, summarized experimental studies and 
mathematical correlations about the mentioned properties are brought 
in the present review. The parameters that affect the thermal behavior 
of nanofluids are particle size, volume and weight fraction, fluid type, 
nanoparticle type, temperature, viscosity, stability, and preparation 
method. Nanofluids have a huge potential to be used in many fields and 
industries but, there is more need for study on the hidden and unknown 
mechanisms of nanofluids to make them more applicable. Also, more in-
vestigations are needed to simplify the preparation methods and enhance 
the thermos-physical properties of nanofluids. 
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Drug delivery is known as the administration of drugs using suitable vehicle for achieving effective treatment 
with no unwanted effects. In recent years, various composite materials have been developed and evaluated for 
being used in different biomedical fields such as wound dressings, cardiac prosthesis, tissue engineering, and drug 
delivery. Zinc is the second most available element after Fe in our body. Nanoparticles based on metal oxides, such 
as zinc oxides and Zn-containing composites, can be considered as viable platforms for some biomedical uses, 
especially for drug delivery applications. Mg composite biomaterials are also suggested for diverse biomedical 
applications due to their good mechanical properties, biocompatibility, and bioactivity. This paper highlights ap-
plications of zinc and magnesium-based composites in development of drug delivery systems.
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1. Introduction

Drug delivery systems are designed for the administration of a phar-
maceutical compound to promote its therapeutic effects in the animal 
or human body with minimum side effects [1, 2]. Through extensive 
studies on animals and humans, our understanding of pharmacodynam-
ics and pharmacokinetic fundamentals has been improved widely. Based 
on these improvements, several attempts have been implied to improve 
drug effects in treatment. As a result of these attempts, controlled-release 
technology is developed, for instance, sustained release drug delivery 
systems, targeted drug delivery systems, on-demand drug delivery sys-
tems, etc. Such systems include tablets, capsules, liposomes, nanoparti-
cles, hydrogels, microneedles and other medical devices [3, 4]. 

In the past few years, a wide range of composites has been devel-
oped and evaluated for different biomedical applications such as cardiac 
prosthesis, tissue engineering, and drug delivery [5-9]. For instance, for 
delivering a drug to the intestines, the structure of the composite should 
include an acid-resistant fatty acid surface covering the interlayers of 
lactate dehydrogenase (LDH) [10-12]. In recent years, there has been a 
great interest in the development of bioactive mesoporous materials for 
drug delivery and bone repair owing to their high pore volume as well 
as specific surface area. In this regard, a variety of bioactive mesoporous 
materials have been studied including mesoporous amorphous calcium 
silicate [13], silica-hydroxyapatite (HAp) composite [14], silica with 
different pore sizes [15], and CaO–SiO2–P2O5 bioactive glasses [16-19].

Zinc is the second most abundant trace element found in our body 
[20, 21], 85% of which is stored in the bone and muscle [22]. It has 
been estimated that the zinc amount in our bone is between 110 to 300 
mg/kg [23]. The combination of multifunctional properties of zinc and 
high bioactivity of HAp yields attractive characteristics for biomedical 
applications [24]. Zn has been termed ‘calcium of the twenty-first centu-
ry’ [25]. Intrinsic physiological relevance, pro-regeneration properties, 
biocompatibility, and biodegradability of Zn has resulted in the emer-
gence of Zinc-based degradable biomaterials [25]. Zn metal-organic 
frameworks (MOFs), Zn ceramic nanomaterials, and metallic Zn alloys 
are common Zn-based biomaterials [25, 26]. In the field of drug delivery 
systems, nanoparticles (NPs) have exhibited prospective performance 
resulting from facile synthesis and incorporation, high surface area, and 
high stability, making them suitable for targeting specific cell types and 
controlling drug release within various microenvironments [27]. PH-re-
sponsive drug carriers such as ZnS and ZnO nanoparticles can target tu-
mor cells because the pH values of these cells are noticeably lower than 
those of normal cells [28, 29]. Nanocomposites are preferred materials 
for drug delivery due to their adsorption [29].

Mg alloys have attracted great interest among different biodegrad-
able materials owing to their biosafety and desirable mechanical prop-
erties [30-32]. Several studies have concentrated on the application of 
magnesium alloys for temporary cardiovascular stents [33-40]. Further-
more, drug-eluting stents (DESs) have been developed after success-
fully placing temporary Mg-based cardiovascular stents into a preterm 
baby’s left pulmonary artery [41]. Recently, some Mg alloy-based DESs, 
such as DREAMS and DREAMS 2G, have been developed, which have 
lower degradation rate compared to the bare Mg stent and release anti-
proliferative drug including paclitaxel or rapamycin. The BIOSOLVE-I 
and BIOSOLVE-II clinical trials of these stents were reported to be suc-
cessful and no obvious scaffold thrombosis or death was observed, indi-
cating optimal efficacy and biosafety [34, 40, 42]. The mentioned merits 
of biodegradable Mg-based alloys have encouraged researchers to in-
vestigate porous magnesium-based composites that offer higher fracture 
toughness as well as compressive strength for bone tissue engineering 
applications [43, 44]. Mg-based composite scaffolds have also shown 

favorable drug release profiles appropriate for bone infection treatment 
[45].

The objective of this paper is to review the progress and development 
of Mg and Zn-containing composites for drug delivery, their synthesis 
methods, mechanisms, and current challenges and future developments. 

2. Drug delivery system

Controlled drug delivery systems (DDSs) are known as formulations 
or devices that can transport therapeutic agents in the body for their ac-
tion at specific site, at desired rate, for specific time, and release of the 
drugs to the target location [46-48]. Therefore, these systems act as an 
interface between the drug and the patient and help us to develop person-
alized medicine including pharmaco proteomics, pharmacometrics, and 
pharmacogenomics. In addition to active pharmaceutical components, 
an improved delivery process provides a suitable pharmaceutical formu-
lation containing a variety of inactive constituents [49, 50]. Any disease 
is treated by the specific concentration of therapeutic drugs in plasma 
with a special regimen [51], which is achieved by a specific drug dose 
taken at a particular interval in conventional drug therapy. The intervals 
and the dose of the drug are regulated only based on the half-life and 
therapeutic index of the drug. In general, fluctuations occur inevitably 
due to missed dose of the drug, improper patient compliance, over med-
ication or under medication. In order for the drug to be released with an 
effective therapeutic concentration in a controlled release system, a defi-
nite drug release kinetics is required to be followed which is achieved 
through controlled drug delivery systems [52, 53].  

The administration route also influences drug bioavailability. Vari-
ous administration routes namely, parenteral (subcutaneous, intramus-
cular, and intravenous) or enteral (ocular, nasal, oral, or transmucosal) 
can influence the drug bioavailability by altering the biological barrier 
numbers a drug should cross or by altering the drug exposure to meta-
bolic and pumping mechanisms [54, 55]. To overcome these limitations, 
it is required to use existing drug effectively and safely using concepts 
and techniques contributing to controlled/sustained and targeted drug 
delivery systems. Moreover, the attempts towards overcoming negative 
aspects of conventional drug delivery that are formed by compression of 
tablets, coating, and encapsulating bioactive drug molecules have result-
ed in technological advancements in drug delivery systems and revolu-
tion in medication methods [50, 56]. In this regard, computational simu-
lations have also provided a unique insight into the mechanisms of drug 
diffusion and adsorption in porous carriers at the atomic level [57-60]. 

3. Composites in drug delivery

In recent decades, noticeable advancements have been observed in 
the design of chemotherapeutics. However, most chemotherapeutics 
have some limiting drawbacks such as high cytotoxicity, nonspecific 
and uncontrolled delivery, high drug dosing, lower solubility, poor ab-
sorption, and high side effects [61, 62]. Therefore, it is needed to de-
velop ideal drug delivery systems with some particular properties such 
as biodegradability, biocompatibility, high drug loading capacity, and 
capability of drug release in a controlled way. In recent years, different 
drug delivery systems have been designed to address these parameters 
including dendrimer, liposomes, and polymers nanoparticles; however, 
they cannot address the mentioned factors independently [63-66].

The expected characteristics of an ideal drug delivery system could 
be provided by metal substrate composites. A composite system can of-
fer some advantages like controlled drug release over a long time, sta-
bility improvement of drug delivery system, and drug bioactivity preser-
vation in polymeric-based technology. Furthermore, in comparison with 
pure liposome, dendrimer, and polymeric-based systems, this integrated 
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system may increase the delivery efficacy [67, 68]. 

4. Composites containing Mg and Zn in drug delivery

4.1 Zinc and composites containing Zn in drug delivery

Owing to better biocompatibility as well as in vivo biodegrada-
tion rate for tissue therapy and regeneration, zinc is considered a pre-
ferred candidate for biodegradable metallic materials over Fe and Mg. 
The emerging theranostics field, such as drug delivery, cancer therapy, 
bioimaging, and tissue targeting, have extensively benefited from zinc-
based ceramic nanomaterials [69, 70]. These ceramics possess sever-
al promising characteristics including a high surface-to-volume ratio, 
pH-responsive nanostructure, good biocompatibility, antibacterial ac-
tivity, and photoluminescence [71]. Organic biomaterials based on Zn, 
mainly MOFs, are also promising materials for bioimaging, drug de-
livery, and cancer therapy due to pH responsiveness as well as large 
surface/volume ratios [25].

In mesoporous silica nanoparticles (MSNs), the ZnS and ZnO quan-
tum dots, or nanoparticles, are incorporated to cover pores as a compo-
nent in nanocomposites or cappers [25, 72-74]. In addition, ZnO can 
exhibit various nanostructures such as nanobels, nano rods, nano disks, 
nano sheets, nano spheres, quantum dots, etc. It can also be modified to 
provide excellent properties as a nanocomposite. The US Food and Drug 
Administration introduced ZnO as one of the safe metal oxides [75, 76]. 
Moreover, its high energy of excitation-binding around 60 meV, as well 
as its the wide spot gap around 3.37 eV, add positive properties to its 
long list of attractive features. Regarding the rewarding properties of 
ZnO together with its low cost, nanomaterials based on this metal oxide 
attracted attention in applications related to biomedicine [28, 77]. Fur-
thermore, ZnO nanomaterials exhibit a high capacity of drug loading, 
have good biodegradability, and can be synthesized through different 
routes, making them prospective materials for drug delivery. Not only 
ZnO-based nanocarriers have been fabricated into various forms of 
nanostructures to deliver drugs to target sites but also they have designed 
to release the drugs in a controlled manner in response to the pathophys-
iological conditions [78, 79].

4.2. Magnesium and composites containing Mg in drug delivery

Mg, as one of the important elements in bone tissue and body flu-
ids, has some key roles in the improvement of bone mineral density, 
reduction of bone fragility, and enhancement of the growth and adhe-
sion of osteoblast cells leading to bony tissue development [31, 80, 81]. 
Because of the excellent biocompatibility, bioactivity, and mechanical 
properties of Mg-based biomaterials, they have been considered for lo-
cal drug delivery systems as well as bone regeneration materials. These 
systems include forsterite (Mg2SiO4) [82], calcium phosphate bone ce-
ments doped by Mg [83, 84], magnesium-containing bioactive glasses, 
etc. [85]. To make biomaterials suitable for bone repair, they are pre-
ferred to exhibit a controllable drug delivery capacity in addition to 
bioactivity [86, 87]. The Mg alloy surface can be treated by bioactive 
agents to become suitable for this kind of application. Local drug release 
strategies have several advantages over traditional systemic drug deliv-
ery including avoiding systemic drug exposure as well as using a lower 
amount of drugs [88]. Until now, some drug release orthopedic implants 
based on Mg alloys have been reported containing antibiotics, e.g. anti-
microbial peptide [89, 90], gentamicin [91], or gentamicin sulfate [92]. 
Magnesium alloy implants commonly suffer from an easy infection re-
lated to implantation along with the high rate of degradation. Dong et al 
[89] fabricated a surface drug delivery system based on Mg/Epoxy res-
in-ZnO/Polycaprolactone (PCL)-Ibuprofen using a dip coating method 
followed by spraying. It was suggested that the composite coating could 
be a promising alternative for biodegradable Mg-based drug delivery 
and implant applications.

5. Synthesis methods of composites containing Mg and 
Zn

 5.1. Electrospinning method

In order to fabricate composite with well chemical composition and 
controlled morphology, many advanced methods have been employed. 
Meanwhile, electrospinning is considered the simplest and most adapt-
able technique. The fabrication of composites can easily be prepared via 
the electrospinning technique; however, the only restriction is that the 
second phase should be well dispersed or soluble in the primary solu-

Fig. 1. Schematic illustration of composites containing bioactive agents by (a) blend, (b) coaxial, and (c) emulsion electrospinning.
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tion. This technique has been developed approximately for a century and 
can be considered as sub-branches of the electrospray process [93-95]. 
During the electrospinning process, the elongation of the liquid drop oc-
curs by increasing the electric field. A conical shape of the liquid drop is 
created by achieving a balance between the induced charge distribution 
on the drop surface and the liquid surface tension. The process is shown 
schematically in Fig. 1.

In the case of electrospinning, the fundamental setup is easily con-
trolled and very simple. Mainly, it consists of an electrically conductive 
collector (an aluminum foil or silicon part), a high-voltage power sup-
ply, and a spinneret, however, all of these segments are not essential 
[96]. Therefore, to produce fibers instead of droplets, a number of pro-
cessing parameters must be optimized actually e.g. fibers, droplets, or 
a beaded structure that depends on the different processing parameters, 
such as distance between collector and source [97].

5.2. Solvothermal technique

Another synthesis method for the composites is the solvothermal 
technique. The general procedure is similar to the hydrothermal tech-
nique, but organic solvents are utilized instead of water in the solvo-
thermal method [98-100][96]. Through this technique, a transformation 
or chemical reaction occurs under supercritical temperature and pres-
sure in an organic solvent such as toluene [101], 1, 4 butanol [102], and 
methanol [103]. To make the final material crystallized, it is required to 
perform a subsequent thermal treatment [104].

5.3. Co-precipitation method

A commonly used technique for the fabrication of layered double 
hydroxides (LDHs) and similar materials for drug delivery applications 
is co-precipitation [105-107]. For all co-precipitation variations, similar 
materials are required for initiation. The starting materials are composed 
of similar starting materials: 1) a divalent cation soluble source for the 
formation of the layers; 2) a trivalent cation soluble source for the for-
mation of the layers; 3) a soluble ionic compound such as sodium nitrate 
and sodium carbonate as a source of interlayer anions; 4) a strong base 
including sodium hydroxide, urea, ammonia, and potassium hydroxide 
to cause LDH precipitation [105, 108, 109].

5.4. Sol-gel method

The sol-gel technique is an extensively used method to synthesize 
highly pure and homogeny products [93, 110, 111]. Depending on the 
homogeneity degree of the gel, two types of the sol-gel method are 
known: monophasic and diphasic. In case metal ions are dispersed at 
the atomic level, it is called a monophasic gel, while in diphasic one, 

the homogeneity scale is in the range of 1-100 nm [112]. The hybrid gel 
is a combination of monophasic and diphasic gels [113, 114]. The final 
material properties are determined by the rate of hydrolysis and conden-
sation in the sol-gel process, which is dependent on different factors. 
These factors include starting materials, inorganic and organic additive 
addition, pH, water content, etc. [114, 115]. Recent developments in the 
sol-gel process have made it possible to embed organic compounds as 
well as other modified inorganic oxides in SiO2 and also to control the 
release of these compounds from the matrix into the medium [116, 117]. 
Despite the remarkable advantages of these sol-gel carrier systems, they 
are not widely known for drug delivery applications. The sol-gel method 
is facile and versatile; the starting materials are inexpensive, inert, stable 
to heat and light, and benign for the environment or humans [118-121].  

5.5. Water-in-oil-in-water (w/o/w) double emulsion method

According to Sahoo et al. [122] and Jaraswekin et al. [123], the 
most popular method for the preparation of poly(lactic-co-glycolic acid) 
(PLGA) microparticles (MP) or microsphere (MS) is the solvent evap-
oration method. In this technique, elevated temperatures or agents for 
inducing phase separation are not needed, and sterile microcapsules can 
also be produced by scaling up microencapsulation (ME) [124, 125]. 
Based on the drug state in the polymer solution and the dispersion me-
dium, the emulsion method is categorized into oil-in-water (o/w), water-
in-oil (w/o), and water-in-oil-in-water (w/o/w) double emulsion meth-
ods [126, 127]. Among the methods used for MS preparation, the w/o/w 
solvent evaporation is the most commonly practiced technique [128]. In 
order to provide the controlled drug release, degradation protection of 
the drugs, and alleviating adverse effects of the drugs in the body, phar-
maceutical industries extensively use w/o/w by evaporation removal of 
the emulsion solvent technique [129, 130]. In this method, to internalize 
the active ingredient efficiently, the stability of the primary emulsion is 
considered to be a critical factor [131]. Low encapsulation efficiency is 
the result of unstable primary emulsion [132, 133].

5.6. Microemulsion method

The microemulsion method is employed for the preparation of high-
Tc oxide of YBa2Cu3O7, nanocrystalline Al2O3, TiO2, Fe2O3, colloidal 
metals, colloidal AgCl, and colloidal Fe3O4 [134, 135]. Microemulsions 
consist of at least three components including a surfactant, a nonpolar 
phase (usually oil), and a polar phase (usually water). Microemulsions 
are thermodynamically stable solutions, isotropic, and macroscopically 
homogeneous. The polar and the non-polar regions are separated by an 
interfacial film formed by the surfactant molecules [136]. This meth-
od shows some significant advantages such as thermodynamic stability, 

Fig. 2. Free-radical polymeriza-
tion technique for the nanostruc-

tured hydrogel preparation.
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nanoparticle monodispersity, large interfacial area, and ultralow inter-
facial tension [137, 138]. Microemulsion has attracted attention in the 
preparation of nanoparticles mainly due to the versatility of microemul-
sion systems like the very small droplet size production, cost-effective-
ness [139-141], simple procedure, and mild reaction conditions [142, 
143].

5.7. Free radical polymerization method

In bioprinting, free radical polymerization is frequently utilized for 
the creation of cross-linked hydrogels [144]. Through using thermal or 
photo-initiator or redox reaction, polymerization of a polymer consisting 
of vinyl groups occurs leading to the formation of a hydrogel. This meth-
od is not a suitable technique for the fabrication of end-functional poly-
mers. On the other hand, the situation has changed by the emergence of 
living radical polymerization, so that the production of end-functional 
polymers is also possible using this technique. Free radical polymeriza-
tion is employed to synthesize composites containing polymers, metal, 
and metal oxide used in the drug delivery systems  [145]. The processing 
steps are presented in Fig. 2. 

 5.8. Microwave radiation method

As a result of several rewarding properties of microwave stimula-
tion including controllable operability, deep tissue penetration, and good 
thermal efficiency, it is being increasingly used in numerous smart drug 
delivery investigations [146]. Microwave is composed of both magnetic 
and electrical components with high-frequency radiation in the range 
of 300 MHz-300 GHz [147]. By the use of the electromagnetic and/
or heating elements of the microwave, drug delivery systems can be 
processed and modified. The introduction of microwave radiation can 
be carried out directly onto the pre-formed products and/or upon the 
dosage form preparation. Furthermore, the microwave can be used in 
the excipients processing before using them in the drug formulation in 
delivery systems [148].

Qiu et al. [149] designed a microwave-sensitive drug microcarrier 
based on Fe3O4@ZnO@mGd2O3: Eu nanoparticles using poly [(N-iso-
propyl acrylamide)-co-(methacrylic acid)] as the microwave stimulus 
gate-keeper. By using a short-time high-frequency microwave device, 
it is possible to avoid the bulk heating, therefore, the construction of 
drug delivery systems based on MSN responsive to microwave radia-
tion is feasible [150]. Shi et al. [146] fabricated NPs for drug delivery 
based on a doped ZnO@Fe3O4 core surrounded by a mesoporous silica 
shell. The silica shell was used due to its large pore volume and good 
biocompatibility, while the core exhibited high-performance microwave 
absorbance.

5.9. In-situ gelling procedure

The in-situ gel forming polymeric systems have been extensively 
studied as carriers for sustained drug delivery. Before administration in 
the body, these vehicles are in the form of sol or suspension and after 
administration, they undergo in-situ gelation [151-153]. In the formula-
tion of these systems, a gelling agent is used to form a stable suspension/
sol system containing dispersed drugs and other excipients. Due to the 
pH change in the gastric environment, the gelation of the sol/suspen-
sion system is triggered. The adopted formulation is a sodium alginate 
solution or gellan gum containing sodium citrate and calcium chloride, 
in which the free calcium ions turn into complexes and released only 
in the stomach acidic environment. Sodium alginate/gellan gum acts 
as a gelling agent producing textures in the final product, which can 
be in the form of hard, brittle, non-elastic gels of fluid gels [153-155]. 
Ca ions entrapped in sodium alginate or gellan gum polymeric chains 
enable polymer chains crosslinking to form matrix structure. In the ge-

lation process, double-helical junction domains are first formed, then, 
these domains are re-aggregated forming a three-dimensional network 
by hydrogen bonding with water and complexing with cations [156, 
157]. Some advances in the field of in-situ gelling include: overcoming 
the problem of poor conventional ophthalmic solution bioavailability 
by using gel drops that are instilled into eyes; increasing drug contact 
time at the maximum absorption site; reducing systemic drug absorption 
through the nasolacrimal duct and the resulting side effects; reducing the 
frequency of administration, and drug delivery with narrow windows 
of absorption in the small intestinal zone. Gastro-retentive drug delivery 
systems are beneficial for drugs that are absorbed through the stomach 
such as ferrous salts and also for the ones that are used for local treat-
ment in the stomach and peptic ulcer disease treatment (e.g. antacids) 
[158-160].

6. Drug delivery mechanisms of composites containing 
Mg and Zn

There are slightly different ways for the definition of the term “re-
lease mechanism”. It has been used for describing the process that deter-
mines the rate of release and also for describing the procedure through 
which drug molecules are released or transported. A number of process-
es or mechanisms have been demonstrated to be rate-controlling in drug 
release [161]. In recent years, the development of novel approaches for 
designing new controlled-release drug delivery systems has been at the 
center of attention [162]. The traditional drug delivery system works in a 
way that causes a rapid increase in the drug dosage in the blood follow-
ing by a drop in the dosage [163, 164]. Drug plasma levels are described 
as under level and overhead, which are inefficient and toxic, respectively 
[165]. In an ideal drug delivery system, a suitable drug concentration 
should be transmitted to targeting sites while keeping other tissues safe 
[166, 167].The following two formulas (Eq. 1and Eq. 2) are used for the 
calculation of the levels of loaded and released drug [166]:

OR 						        (1)

						        (2)

The efficiency of drug encapsulation can be determined according 
to Eq.(3) [168]:

						        (3)

The drug release of nanocomposite has been studied in the literature 
using mathematical models [169]. Eq.4 can determine the sample liquid 
uptake:

Ms = Ktn                                  				     (4)
where, K and n are constants. By using the mechanism of drug re-

lease, the following power law equation is obtained:
Mt /M∞ = Ktn                                                                                                               	     (5)

where, the drug released fraction at time t and equilibrium is represented 
by Mt and M∞, respectively. The characteristic of the drug and the sam-
ples determines the value of K and the diffusion exponent of n is used 
for the characterization of the drug release mechanism. The values of 
‘k’ and ‘n’ are obtained by calculating the intercept and slope of the plot 
between Mt/M∞ [170]. 

Das et al. [171] designed a colon-specific drug carrier based on Zn/
pectin/chitosan composite microparticles. By studying the drug release, 
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the formulation was optimized. The drug release pattern was shown to 
be significantly affected by formulation parameters. It was reported that 
the specific content of the colon-specific drug could be loaded without 
hampering its behavior. Results showed high encapsulation efficiency 
and stability of the drug in the formulation during storage time. Further-
more, in vivo drug release was observed from the optimized composite 
particle formulation in rats. Company et al. [172] developed a novel 
composite of zinc oxide nanoparticles and citric acid-based polyester 
elastomer (POC–ZnO). Results indicated that the original concentration 
of NPs in the composites affected the ZnO release kinetics for 15 days. 
Among all composites, POC–ZnO 5% was reported to have the zero-or-
der release kinetics.

7. The state-of-the-art of composites containing Zn and 
Mg in drug delivery

Dodero et al. [173] used an electrospinning technique to embed 
ZnO nanoparticles within alginate-based nanofibrous membranes.  In 
order to combine ZnO nanoparticle with the polymer through electro-
spinning, it is preferred to use medium-molecular-mass alginates with a 
low mannuronic and guluronic acid residues (M/G) ratio or low-molec-
ular-mass alginates with a high M/G ratio. Composite scaffolds based 
on ZnO-polyetherimide (ZnO/PEI) with antibacterial activity were 
also developed by the electrospinning process [174]. The effectiveness 
of the developed scaffolds was reported by positive responses against 
gram-negative (Escherichia coli) bacteria as well as gram-positive 
(Staphylococcus aureus).

Javanbakht et al. [166] developed a novel drug delivery bio-nano-
composite based on carboxymethylcellulose (CMC)/zinc MOF/
graphene oxide via the solvothermal method. It was reported that the 
prepared bio-nanocomposite could be used for anticancer drug delivery. 
Bhattacharjee et al. [175] successfully incorporated ZnO into Fe (III) 
trimesate metal-organic framework (MIL-100(Fe)) to deliver anticancer 
drugs of doxorubicin hydrochloride (DOX) by the one-pot in-situ meth-
od. The investigation rendered interesting insights into the incorporation 
of NPs into MIL-100(Fe) and its drug loading capacity as well as release 
rates. Kura et al. [176] loaded L-3-(3,4-dihydroxyphenyl) alanine as 
an anti-parkinsonian drug in a novel layered organic-inorganic nano-
composite based on Al-layered double hydroxide (LDH)/Zn via a direct 
co-precipitation technique. Sustained-release behavior was observed 

in these composites suggesting that they are suitable for controlled-re-
lease formulations. In comparison with pure levodopa, the synthesized 
nanocomposite showed enhanced cell viability of 3T3 cells after 72 h 
of exposure. 

Seyfoori et al. [177] fabricated a robust nanostructure composite of 
ZnFe2O4 and ZnFe2O4-hydroxyapatite using the co-precipitation meth-
od for multiple applications of cancer treatment, bone filler, and drug 
delivery.

Nigam et al. [178]  reported a successful synthesis of ZnxMg(1-x)Fe2O4 

nanoparticles using the sol-gel method with the potential to be used for 
drug delivery. SiO2–CaO mesoporous bioactive glass nanoparticles 
doped with Zn2+ ions were produced by Neščáková et al. [179] using the 
microemulsion assisted sol-gel method. It was reported that the nanopar-
ticles have the potential for being used as drug delivery systems as well 
as bioactive fillers for various applications such as wound healing and 
bone regeneration. Thangaraj et al [180] synthesized superparamagnetic 
Ce4−xSr1+xFe5−xZnxO14+δ (x=0-0.45) nanocomposites by the nitrate-ci-
trate sol-gel route for different applications such as drug delivery, sensor, 
dielectric, conductivity studies, and optical properties. Pathania et al. 
[181] studied the drug release kinetics of chitosan-g-poly(acrylamide)/
Zn (CPA-Zn) nanocomposite synthesized by microwave radiations. The 
nature of the matrix and the pH of the medium were shown to affect the 
drug release behavior. 

Zn-clinoptilolite/GO nanocomposite was introduced by Khatamian 
et al [182] for the preparation of drug delivery systems with high load-
ing capacity. The reflux method and microwave-assisted hydrothermal 
method were used for the fabrication of the nanocomposites. As a cancer 
drug, the nanocomposite exhibited slow release for DOX, high load-
ing capacity, and cytocompatibility. Nanocomposite hydrogel scaffolds 
based on chitosan-gelatin/ZnO with both drug delivery and inherent 
antibacterial properties were prepared using an in-situ method. The pre-
pared scaffolds demonstrated high porosity and no agglomeration in the 
chitosan-gelatin matrix. Additionally, the nanocomposite scaffolds ex-
hibited improved antibacterial, biodegradation, swelling properties, as 
well as a controlled release for naproxen [183]. Yadollahi et al [184] 
synthesized nanocomposite hydrogel beads of chitosan/ZnO by the 
in-situ generation of zinc oxide nanoparticles upon the chitosan bead 
formation. According to the results, the drug release from the chitosan 
beads was prolonged by the addition of ZnO nanoparticles. This was 
reported to be due to a longer drug migration path from the beads to the 

Fig. 3. Hydrogel beads containing ZnO NPs for the drug delivery application.
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media. The nanocomposites showed promising behavior for develop-
ing controlled delivery of drugs. The drug release behavior of hydrogel 
beads containing ZnO particles is demonstrated in Fig. 3.

Yang et al [185] assembled flower-mesoporous carbon (FPCS)-mag-
netic Fe3O4 and pH-sensitive ZnO nanoparticles to construct the FPCS-
Fe3O4-ZnO composite as microwave and pH bi-triggered drug carrier. 
Yang et al. [186] incorporated Mg particles into poly (l-lactic acid) 
(PLLA) microspheres to suppress inflammatory response induced by 
PLLA and regulate the drug release profile. It was shown that the in-
ternal connectivity of the microspheres was altered during hydrolytic 
degradation by changing the Mg particle sizes and contents, resulting 
in manipulating drug delivery with tunable release patterns. Foroughi et 
al. [168] developed a novel synthesis method (one-step modified reverse 
microemulsion) for the preparation of HAp-MgFe2O4 nanocomposite for 
the drug delivery application. It was demonstrated that the drug deliv-
ery rate of the nanocomposite was influenced by calcination temperature 
and textural properties.

In a study by Cheddadi et al. [187], the free radical polymerization 
method was used to synthesize poly (magnesium acrylate) hydrogel for 
drug delivery applications. They were suggested for oral drug delivery 
devices due to prospective drug release properties along with simplicity 
and low cost. In the work performed by Rijal et al. [188], the electrospin-
ning technique was utilized to synthesize Mg incorporated polycapro-
lactone/low molecular weight chitosan (PCL/LMW-CS) composite 
nanofiber. They showed that the obtained nanofibrous were good can-
didates for applications in tissue engineering such as bone regeneration, 
wound healing, regenerative medicine, and drug delivery. Rijal et al. 
[189] used the electrospinning method to prepare composite nanofibers 
of MgO, chitosan (CS), and poly(ε-caprolactone) (PCL). They realized 
that the obtained new composite nanofibrous membranes were able to 
mimic the function and physical structure of the tissue extracellular ma-
trix (ECM). This, in turn, suggested that they can be potentially used for 
various tissue engineering applications e.g. DDSs.

In another study, Mohammad et al. [190] prepared a composite of 
ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO4) via the 
sol-gel technique. Their results proved that the composite could be used 
in the fields of drug delivery, biosensor, bioanalytical, and scaffolding 
applications. Foroughi et al. [191] used a one-step reverse microemul-
sion method to synthesize nanoporous HAp-MgFe2O4 nanocomposite. 
They found that calcining the nanocomposite at 700 °C results in a 
core-shell structure with MS of ~9.5 emu/g. In addition, considering the 
IBU release behavior of all samples, the drug delivery rate of the nano-
composite could be altered by calcination temperature that in turn may 
change the textural properties of samples.

Bakhsheshi-Rad and his colleagues [45] synthesized composite scaf-
folds of Mg-Ca-TiO2 (MCT). They loaded different concentrations of 
doxycycline (DC) in the scaffolds and used the space holder technique 
as a cost-effective, feasible, and novel method to have an appropriate 
corrosion rate, a network of interconnected pores, and appropriate com-

pressive strength. A schematic presentation of this technique is shown in 
Fig. 4. Considering the drug release profiles, they found that DC loading 
MCT scaffolds showed sustained and burst drug release and by increas-
ing the concentration of DC, the drug release rate was increased. 

Tabia et al. [192] fabricated the Mg-doped bioactive glass nanopar-
ticles (BG-NPs) through the sol-gel route. They loaded amoxicillin to 
the synthesized BG-NPs and investigated their drug release behavior. 
They concluded that by increasing Mg content the loading efficiency 
decreased. However, the release kinetics was increased by increasing 
magnesium content. They realized that the specific surface area and po-
rosity were responsible for this advancement.

8. Conclusions and future insights

In this review, the drug delivery composite systems containing Mg 
and Zn either matrix or reinforcement are summarized. Both Zn and 
Mg have been applied in various areas of DDSs due to their amazing 
intrinsic properties i.e. biocompatible and biodegradable as well as be-
ing abundantly available. This has made them remarkably advantageous 
over their conventional counterparts. Besides, the synthesis methods of 
these excellent composites are also reviewed and their mechanism of 
drug release is discussed. It should be noted that studying the drug deliv-
ery properties of zinc/magnesium and their composites might lead to the 
realization of more effective drug delivery systems in the future.
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1. Introduction

The earth’s 8th most abundant element is Mg, which makes up about 
0.13% of the mass of oceans and 1.93% of the mass of the earth’s crust. 
Owing to some favorable advantages of Mg, it is considered a promising 
metal for various applications. Mg has a high value of strength to weight 

ratio, which is 1/4 of that of iron and 2/3 of that of aluminum. Other 
properties of Mg include good dimensional stability, acceptable ma-
chinability, great thermal conductivity, good electromagnetic shielding, 
high damping characteristics, as well as recyclability. Because of these 
characteristics, Mg is used in different applications such as computer 
and automobile parts, household equipment, handheld tools, sporting 
goods, mobile phones, and aerospace components. Inherent biocompati-
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Magnesium has little resistance to corrosion and therefore its production and use are quite limited. The problem 
of corrosion associated with these alloys has been alleviated to some extent by the advantages obtained from fine 
coatings. An additional dense barrier against corrosion is created, using coatings obtained from sol-gel. As an 
alternative for Cr-based conversion coatings, rare-earth elements-based ones are been increasingly investigated 
for Mg and its alloys due to being eco-friendly. Because of chemical inertness, low friction, and high hardness, 
diamond-like carbon (DLC) coatings have exhibited the best protection for Mg and its alloys. In this review, we 
shed light on recent advancements in novel coatings for Mg alloys including hybrid, rare-earth conversion, com-
posite polymeric (polymer composite is a multi-phase material in which reinforcing fillers are integrated with a 
polymer matrix), and DLC coatings.   
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bility and low weight of Mg made it also a suitable material for implant 
applications [1-4]. 

 However, extensive use of Mg in many applications is hindered 
because of several undesirable features including high chemical reac-
tivity, weak corrosion resistance, weak creep resistance, as well as poor 
resistance to wear. The poor corrosion resistance is the main challenge 
limiting the use of Mg [5, 6]. Coating the base metal is considered an ef-
fective solution for the prevention of corrosion [7, 8]. The protection of 
the substrate is provided by the barrier formed between the metallic sub-
strate and the surrounding environment and/or through some chemicals 
that act as corrosion inhibitors [9, 10]. The coating properties for render-
ing satisfying corrosion protection include uniformity, good adherence, 
being pore-free, and having self-healing ability for the occurrence of 
physical damage is possible [1].

The development of sol-gel coatings based on organic-inorganic hy-
brids with a low thickness in the range of 0.2-10 µm has been an appeal-
ing method for alleviating corrosion problems [11, 12]. Sol-gel coatings 
enhance the adherence of the organic paint system to the metal surface; 
therefore, they create additional dense barriers for corrosive substances. 
Another practiced coating is rare-earth conversion coating. This process 
is known for its simple electrolytic substances that usually contain chlo-
ride, sulfate, and nitrate of rare-earth metals such as neodymium, lan-
thanum, and cerium. Because of the simple electrolyte, its maintenance 
and recycling are easy. Another important issue is that these coatings are 
eco-friendly surface treatments [13-15]. 

Recently, composite polymer coatings and their performance in 
the corrosion protection of Mg have attracted the attention of many 
researchers. The good corrosion resistance of super-dispersed polytet-
rafluoroethylene (SPTFE) [16-18], a composite of diethylenetriamine, 
polyetherimide, and hydroxyapatite [19], and composites graphene 
oxide (GO)-containing 4-ethylene dioxythiophene (PEDOT) has been 
reported for the protection of Mg and its alloys. Coatings based on di-
amond-like carbon (DLC) are also among recently-developed coatings 
for the protection of Mg alloys owing to their chemical inertness, low 
friction, and high hardness [20]. An interlayer metallic film such as Si or 
Cr is usually used between the substrate and DLC film for the enhance-
ment of coating adhesion [21, 22]. In this article, new coating materials 
for the protection of magnesium and its alloys including rare earth con-
version coatings, hybrid coatings, DLC coating, and composite poly-
meric coatings, have been discussed and recent advancements in these 
fields have been reviewed.

2. Mg and its alloys

Among engineering metals, Mg is the lightest metal and its density 
is 1.74 g.cm-3 [23, 24]. Its density is about four times less than steel 
(7.86 g.cm-3) and 35% less than Al (2.7 g.cm-3) [25-28]. Mg metal is 
obtained by either the electrolysis of seawater magnesium chloride melts 
or magnesium oxide reduction with silicon. About 1.3 kg magnesium is 
founded in 1 m3 of seawater 

(0.3%) [29]. Mg has better vibration and noise dampening proper-
ties than Al and shows excellent castability and good ductility [30-32]. 
By alloying magnesium with zirconium [33], zinc [34], thorium [35], 
manganese [36], aluminum [37], or rare earth metals [38], the ratio of 
strength to weight increases, making these materials suitable choices 
where lightweight and the reduction of inertial forces are required. Due 
to this characteristic, denser cast iron, steel, copper-based alloys, and 
even Al-based alloys are replaced with Mg-based alloys [39, 40]. Mg is 
very appealing to the electronic and audio industry owing to its signifi-
cant electromagnetic interference shielding [41, 42]. 

Important commercial Mg alloys are the AM series (Mg-Al-Mn), 
AZ series (Mg-Al-Zn), EZ series (Mg-RE-Zn), AE series (Mg-Al-RE), 

WE series (Mg-RE-Zr), and ZK series (Mg-Zn-Zr). Different casting 
processes are used for the production of Mg alloys. Gravity casting (per-
manent mold and sand casting) together with high-pressure die-casting 
are the most applicable fabrication techniques. Thixomolding, Thixo-
casting, and squeeze casting are other production methods [43-46]. Ac-
cording to the Mg consumption analysis by the International Magne-
sium Association (IMA), automotive components fabricated based on 
die casting Mg alloys are increasing significantly. In other words, the 
dominant production approach for Mg alloys with long-term potential 
growth is expected to be high-pressure die-casting [47].  

Although the most common casting technique is die casting, the low 
density of Mg together with other advantages are important for aero-
space applications using the sand cast method. Special Zr-containing 
magnesium casting alloys with yttrium, zinc, silver, and rare earth el-
ements are utilized between 250 ˚C to 300 ˚C [48-50]. Also, wrought 
products including forgings, plates, sheets, and extrusions have been 
applied for numerous applications [39].

2.1 Application of Mg and its alloys

By applying magnesium alloys, it is possible to design lightweight 
engineering systems such as positive implications in reducing energy 
consumption. Moreover, these alloys have been used in the form of 
battery electrodes and viable biodegradable materials [51, 52]. The mi-
croelectronics industry benefits from Mg alloys in various components 
used in computer disk drives, CVD/DVD chassis, cellphone, and camera 
casings [53-55].

The primary reason to use Mg alloys in the automotive industry 
is environmental and energy concerns. As a result of a high ratio of 
strength/weight, Al and steel alloys can be replaced with Mg alloys in 
the automotive industry [56, 57]. A considerable number of research on 
auto manufacturing companies has been focused on the development 
of magnesium and its alloys [47, 58]. The first auto company that used 
Mg in its products was Volkswagen. The company used 22 kg of Mg in 
each Beetle model [59].In 1928, Porsche first used magnesium in the car 
engine [60]. The Mg average usage in 2005, 2010, and 2015 was 3 kg, 
20 kg, and 50 kg per car, respectively [61].

In addition to fiber-reinforced polymers and composites, modern 
aircraft need structural metals. Al and its alloys have been already op-
timized as the traditional aerospace materials and there are limitations 
in the further enhancement of their strength together with the reduc-
tion of weight and the component dimension. Although Mg alloys have 
high strength-to-weight ratios and other promising properties, their high 
surface reactivity is a significant challenge [62-64]. In aerospace appli-
cations, the coating of Mg with nickel has also been suggested. It was 
shown that coating nickel on ZM21 alloy by direct electroless plating 
provided coatings with good soldering, optical, environmental, and me-
chanical characteristics [36].

Recently, Mg alloys have been of great interest as new degradable 
biomaterials. The properties that offer Mg alloys as promising materials 
for temporary implants include: (1) Mg is a necessary element for hu-
man metabolism. In terms of the abundance of the cations in the human 
body, cationic magnesium is in fourth place and the stored amount of 
this element in our body is 25 g. Half of this value is stored in the bone 
tissue. (2) The density of Mg and its alloys (1.74-2.0 g.cm-3) is lower 
than the density of Ti alloys (4.4-4.5 g.cm-3) and close to the density 
of bones (1.8-2.1 g.cm-3). (3) The elastic moduli of Mg alloys (41-45 
GPa) are close to that of the bone resulting in the alleviation of the stress 
shielding effect. Moreover, these alloys show greater fracture toughness 
compared to ceramic biomaterials. Mg is also a cofactor for different 
enzymes in the body and acts as a stabilizer for the structures of RNA 
and DNA [65-70]. (4) The standard electrode for magnesium has a po-
tential of -2.37 V, and in a physiologic environment containing Cl, Mg 
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metal shows even poorer corrosion resistance. Hence, biodegradable Mg 
alloys can be developed by benefitting from their high-rate corrosion in 
physiologic environments [70-72]. Fig. 1 shows the schematic illustra-
tion of the Mg and its alloys applications in various fields.  
2.2 Corrosion process in Mg and its alloys

Although magnesium alloys exhibit good properties suitable for 
different applications, the problem of their poor corrosion resistance is 
still a concern [73-75]. Because of the low standard electrode potential 
of Mg, this metal is the most reactive one. A galvanic corrosion sys-
tem is formed between Mg and another metal and even micro-galvanic 
corrosion could occur between Mg and some secondary phases and/or 
impurities in aqueous environments [53, 76]. Therefore, the discussion 
of the possible current density of galvanic corrosion and micro galvanic 
corrosion over-potential is useful. The negative difference effect (NDE) 
of Mg and its alloys, which is different from most metals like copper 
and iron, lies at the center of the magnesium corrosion process. Overall, 
shedding light on the main causes of the Mg corrosion process could 
lead to progress in corrosion-related research. The galvanic current as 
well as its distribution can determine the galvanic corrosion rate as fol-
lows [74, 77]:
Ig=(Φc-Φa)/(Ra+Rc+Rs+Rm)				      (1)

Where the galvanic current between the cathode and anode was de-
noted by , the potentials of the open circuit for the anode and cathode are 
represented by and , the anode and cathode resistances were denoted by  
and , respectively.  is the solution resistance between the cathode and an-
ode and  is the metal resistance from the surface of anode to the surface 
of the cathode across a metallic path. In fact, Mg alloys are mostly used 
as structural materials in atmospheric environments; however, there are 
limited reports about the atmospheric corrosion of these alloys. Most 
studies are oriented towards an electrochemical approach in solutions 
[78, 79]. Oxygen reduction and water reduction are thought to contrib-
ute to the cathodic reaction on Mg in the atmospheric environment and 
under immersion condition [80]:

Anodic reaction:
Mg(s) → Mg2+ (aq) + 2e̅  				      (2)
Cathodic reaction:
2H2O + 2e̅ → H2 (g) + 2OH ̅ (aq) 			     (3)
O2 + 2 H2O + 4e̅ → 4OH ̅ (aq)				     (4)
The general reaction has been shown as the following:
Mg2+ (aq) + 2 H2O (aq) → Mg (OH)2 (s) + H2		     (5)
2Mg2+ (aq) + 2 H2O (aq) +O2→ 2Mg (OH)2 (s) 		    (6)

At the ordinary atmosphere CO2 level, a direct reaction occurs be-
tween brucite and CO2, and magnesite is formed. The reaction is:

Mg(OH)2 (s) + CO2 → MgCO3 (s) + H2O 			    (7)
Fig. 2 shows a schematic illustration of the magnesium corrosion 

mechanism in the atmospheric environment. Compared to conventional 
metals like Mn, Al, and Zn alloys, Mg and its alloys have higher chem-
ical activity due to their corrosion potential between -1.73 and -1.67 
V-NHE. As a result, Mg alloys often act as an anode in contact with other 
metals and exhibit low corrosion resistance. Hence, galvanic corrosion 
is prevalent in Mg alloys that are in contact with other metals. Localized 
corrosion, fatigue corrosion, galvanic corrosion, stress corrosion crack-
ing (SCC), and intergranular corrosion are different kinds of corrosion in 
Mg alloys [1, 81, 82]. These drawbacks constrain the application of Mg 
alloys in various engineering fields [83]. If unprotected Mg is in contact 
with an aqueous solution or moisture containing SOx or Cl ions, it will 
be corroded severely due to the lack of sustainability and self-healing 
capability of the hydroxide-oxide-carbonate film formed on the surface 
of Mg [79, 83, 84]. Therefore, the prominent reasons for weak corrosion 
of these alloys are the formation of unstable, quasi-passive hydroxide 
film on their surface and the presence of impurities or secondary phases 
in their structure leading to internal galvanic corrosion [77, 79, 85].

2.3. Corrosion-resistant coatings for Mg and its alloys

Most light metals such as Ti and Al can form a passive oxide film on 
their surfaces; however, Mg cannot form such a protective film. Hydrox-
ide/oxide/carbonate films are rapidly formed on the surface of Mg when 
exposed to the atmospheric environment [86-88]. These films have po-
rous structures, are inhomogeneous and poorly bonded, and are unable 
to inhibit the corrosion of the underlying metal [89]. The formation of a 
coating on the metal surface that can form or add functional barrier lay-
ers leads to the isolation of the metal from the surrounding environment. 
This is an effective approach for the improvement of the corrosion resis-
tance of Mg and its alloys. Besides, a good base is formed for applying 
subsequent organic coatings [90]. Some other coating treatment meth-
ods have been also developed such as vapor-phase processes, hybrid 
coatings, anodizing, conversion coatings, and electrochemical plating 
(electroplating) [1, 91-93].

There are two basic problems regarding single-layer coatings applied 
on the surfaces of Mg alloys: Firstly, conversion coatings are unable to 
provide Mg alloys with prolonged protection against corrosion [1, 13]. 
Secondly, the presence of an interface between the substrate and coat-
ings cannot provide long-term protection. Hydroxide/oxide/carbonate 
precipitate forms a layer on the magnesium surface, weakening the ad-
herence of applied coatings to the metal substrate. Thus, as the corrosive 
agent penetrates the interface between the substrate and the coating, the 
top coat is rapidly delaminated. The high volume of corrosion products 
under the top coat results in the detachment of the coating from the sub-

Fig. 1. Schematic of the applications of Mg and its alloys.

Fig. 2. Schematic of magnesium corrosion mechanism in the atmospheric 
environment.
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strate [94, 95]. Considering these issues, it is concluded that applying a 
single-layer coating on the surface of Mg alloys cannot provide enough 
corrosion protection [85].

3. New coating materials for corrosion protection

3.1 Hybrid coatings 

Combining organic and inorganic materials in a single-phase hybrid 
network makes it possible to tune the desired coating characteristics for 
various applications [96]. The synthesis of materials containing hybrids 
of inorganic and organic compounds by various methods is a new field 
of research in materials science. The considerable attention paid to this 
field has led to the new hybrid material emergence with promising prop-
erties for novel applications [97-99]. The strength and nature of organic/
inorganic interactions determine the properties of hybrid materials. The 
interaction strength increases when strong bonding, such as covalent 
bonding, replace weak van der Waals forces. Organic/inorganic hybrids 
may be categorized into two groups depending on the interaction type 
or the chemical bonding nature between the components: hybrids with 
poor interactions between the two constituents are classified into class I, 
and the ones with strong chemical interactions are classified into class II 
[100, 101]. Structural properties can be measured for distinguishing be-
tween different organic/inorganic hybrids. An ancient painting of Maya 
blue is an old example of a class I hybrid material made by ancient Mex-
ican people. They prepared Maya blue by encapsulating the natural blue 
indigo within clay mineral channels. This approach made it resist the 
severe environments for more than twelve centuries; this could not be 
achieved by simply mixing the two components [102]. The sol-gel tech-
nique could be used as a proper synthetic process to prepare the thin-film 
hybrid coatings. It is possible to produce transparent hybrid coatings in 
which molecular-scale interactions exist between the constituents with 
the sol-gel process [103, 104].

A group of the hybrid materials that have the potential to be used 
in a variety of industrial materials is organically modified silicates (or 
mosils). They can be used for catalyst supports, porous materials for 
chromatography, corrosion protection coatings, anti-fogging coatings, 
anti-soiling, abrasion-resistant, colored glasses, hard coatings, and opti-
cal materials with high reflection due to the facile process depending on 
the molecular scale [105]. The mechanical behavior of these materials is 
also promising, owing to the combination of tough organic phases and 
rigid inorganic phases [106, 107]. In these systems, dispersed organic 
groups throughout the film enhance the coating hydrophobicity, render 
them water-repellent, and improve the corrosion resistance [108-110]. 
Fig.3 schematically shows the protective effect of the silicate-modified 
hybrid coating against corrosion.

To enhance the corrosion resistance of AZ31 Mg alloy, Li et al. [111] 
prepared a hybrid coating of poly(lactic-co-glycolic acid) (PLGA) and 

dicalcium phosphate dihydrate (DCPD). First, a DCPD coating was 
applied on the substrate using electrochemical deposition and then a 
PLGA coating was deposited to form the coating. This hybrid coating 
was effective to increase the magnesium alloy resistance against cor-
rosion. Gao et al. [112] developed an effective biomimetic approach to 
coat AZ91 with a hydroxyapatite/graphene oxide (HA/GO) hybrid. Ac-
cording to the results, the hybrid coating decreased the corrosion current 
density of the metallic substrate by one order of magnitude in compari-
son with bare alloy. 

Peres et al. [113] added different amounts of silica nanoparticles to 
(3-glycidoxypropyl)trimethoxysilane (GPTMS) and tetraethylorthosili-
cate (TEOS) hybrid films to improve the corrosion properties of AZ31. 
The results suggested that the hybrid coating provided corrosion protec-
tion for Mg alloys and adding the SiO2 nanoparticles further increased 
the corrosion resistance. Lamaka et al. [114] used the sol-gel approach to 
form an organic-inorganic hybrid coating on AZ31B magnesium alloy. 
The coating was applied through copolymerization of Ti or Zr alkox-
ides and epoxy-siloxane. The additive of tris (trimethylsilyl) phosphate 
was also utilized for the provision of additional corrosion protection. 
It was proposed that hydrolytically stable chemical bonds of Mg–O–P 
was formed in the coating doped with tris(trimethylsilyl)-phosphate, and 
increased the magnesium alloy resistance to corrosion. 

Zhang et al. [115] employed a chemical conversion route for apply-
ing a crack-free hybrid coating of HA/phytic acid (PA) on the AZ31 
surface. After the formation of the precursor coating, the coating was 
hydrothermally treated in the saturated CaO solution. It was shown that 
the hybrid coating had stable barrier properties and could effectively 
protect the Mg alloy. To enhance biological behavior and obtain tunable 
degradation, Kang et al. [116] deposited a hybrid coating of poly(ether 
imide) (PEI)-SiO2 on Mg. An increase in the content of SiO2 resulted in 
the enhancement of coating hydrophilicity and thereby the corrosion rate 
of the substrate increased.  In these systems, dispersed organic groups 
throughout the film enhance the coating hydrophobicity, render them 
water-repellent, and improve the corrosion resistance. The magnesium 
alloys coated with such films have a good resistance to corrosion. 

3.2. Rare earth conversion coatings

Due to the simple and low-cost procedure, conversion coating 
treatment has been considered for different applications. The con-
version coatings for Mg are typically applied for the provision of en-
hanced paint-base properties and corrosion protection [117]. Because 
of the excellent corrosion resistance as well as a simple coating pro-
cess, chromate conversion coatings have been favored greatly in recent 
years. Nevertheless, the application of these coating is limited due to 
the hexavalent chromium ion toxicity. Other conversion coatings on Mg 
alloys such as stannate [118-121], phosphate-permanganate [122, 123], 
phosphate [124-126], and rare earth metals [127-130] conversion coat-

Fig. 3. Illustration of the protective effect of the silicate-modified hybrid coating 
against corrosion.

Fig. 4. Illustration the deposition mechanisms of the Cr conversion coating on the 
metal in the treatment bath (a) immersion of the pretreated alloy, (b) reaction of 

redox, (c) the coating deposition, and (d) complete coating deposition..
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ings have been investigated. The process of preparing rare-earth conver-
sion coatings is accompanied by simple electrolytic constituents, mainly, 
chloride, sulfate, and neodymium, cerium, nitrate, and lanthanum rare 
earth metals. Therefore, its maintenance and recycling would be easy. 
Another important advantage of the rare-earth conversion coatings is 
that they are considered as environment-friendly treatment [13].

Rudd et al. [127] coated Mg and WE43 alloy with praseodymium, 
lanthanum, and cerium conversion coatings. The coating decreased the 
magnesium dissolution in a buffer solution with pH=8.5, however, af-
ter 60 min of immersion, a deterioration in the coating was observed. 
The reason was stated to be the formation of corrosion products of Mg 
hydroxide together with mixed coatings composed of rare earth/Mg 
oxide and hydroxides. In another research, Brunelli et al. [131], pro-
duced a conversion coating of cerium for the corrosion protection of 
Mg, AZ91, as well as AM50. It was reported that by reducing the ca-
thodic and anodic currents and ennobling the corrosion potential, the 
corrosion resistance of bare Mg and its alloys could be increased. Fur-
thermore, a further increase in the corrosion resistance was achieved by 
acid pre-treatment. The result of corrosion investigations in the chloride 
environment showed that after five days, the coated samples were unaf-
fected while localized corrosion was observed in the untreated samples.

Montemor et al. [132] studied the effect of conversion film of ra-
re-earth metals (cerium and lanthanum) on the corrosion behavior of the 
AZ31 Mg alloy. The AZ31 substrate showed reduced corrosion activity 
in the presence of chloride ions. Moreover, the treatment time affected 
the efficiency of corrosion protection. On the other hand, Li et al. [133] 
reported weak adhesion of cerium conversion coatings to the AZ31 
substrate and limited corrosion resistance enhancement of the coating. 
Lin et al. [13] also found the inherent weakness in adhesion of cerium 
conversion coatings to the surface of AZ31 leading to coating partial 
detachment when dried at room temperature. Cross-sectional observa-
tions exhibited three layers with porous, compact, and fibrous structures 
formed sequentially on the surface of the substrate. Among the interfac-
es, the interface between the fibrous and compact layers was identified 
to be the weakest bonding.

According to Lin et al. [134], conversion coatings of lanthanum and 
cerium could improve the corrosion resistance of AZ63 alloy. An incre-
ment in immersion time resulted in the improvement of the inhibition 
effect provided by the dual rare-earth film. Laleh et al. [135] used the 
micro-arc oxidation (MAO) method to apply oxide coatings on AZ91D 
magnesium alloy and then the samples were soaked in a Ce bath for 
sealing the pores of the MAO coatings. The results revealed that the 
pore sealing for 10 min exhibited a remarkable improvement of the sub-
strate corrosion resistance.  Fig.4 shows a schematic illustration of the 
deposition mechanisms of the Cr conversion coating on the metal in the 
treatment bath. 

Many works were reported on rare-earth coatings for Mg and its al-
loys. According to the results of corrosion studies, the rare-earth coat-
ings can provide good corrosion resistance. 

3.3. Polymeric nanocomposite coatings 

Polymers and polymer composites are widely used in different en-
gineering applications [136-139]. A range of physical and tribological 
features are offered by polymeric nanocomposites [140]. The addition 
of nanoparticles in polymers leads to the improvement of properties 
such as anti-corrosion performance, thermal conductivity, mechanical 
strength, and electronic and optical properties [141, 142]. Fig. 5 shows a 
schematic illustration of the production of polymer composites contain-
ing nanoparticles and their anti-corrosion properties.

Metallic components used in engineering, energy, defense, and bio-
medical applications are encountered with the problem of corrosion 
[143]. In this regard, wear and abrasion resistance, anti-corrosion re-
sistance, and barrier properties of polymeric nanocomposite are used. 
Restriction of electron flow from the metallic substrate to oxidizing 
agents occurs within doped conducting polymers preventing corrosion 
of the substrate. However, neat polymers as metal coatings are unable to 
provide good wear properties and corrosion protection [144]. Nanopar-
ticles such as titania, silica, nanoclay, carbon black, carbon nanotube, 
graphene oxide (GO), graphene, nanodiamond, and fullerene nanopar-
ticles have been added to various polymeric matrices to improve their 
corrosion resistance. To enhance interfacial adhesion and load transfer-
ring of matrix/nanofiller, functionalization has been considered [145]. 
Functional nanoparticles can increase the strength of nanocomposites 
and restrict the diffusion of corrosive species within the polymer matrix 
to prevent corrosion [146]. The underlying material can be also protect-
ed against friction and wear [147, 148].

Nazeer et al. [149] added GO and TiO2 nanoparticles to poly (bu-
tyl methacrylate) (poly(BMA)) to prepare a nanocomposite coating for 
AZ31 magnesium alloy. The results demonstrated that the nanocompos-
ite coating was able to act as an excellent passivation layer to prevention 
diffusion and corrosion so that the corrosion current decreased signifi-
cantly and the charge transfer resistance increased noticeably. Soleyma-
ni et al. [150] incorporated different amounts of baghdadite mineral to 
polycaprolactone (PCL)/chitosan (Ch) for improving the resistance to 
corrosion, biocompatibility, as well as bioactivity of the anodized AZ91 
alloy. According to the results, the nanocomposite coating containing 3 
wt % baghdadite showed hydrophobic behavior that led to decreasing 
the corrosion current density for the magnesium alloy and the enhance-
ment of its corrosion resistance.

A corrosion control layer of 3,4-ethylenedioxythiphene (PEDOT)/
GO nanocomposite was coated on magnesium in research by Catt et 
al. [151]. The results indicated that the corroding samples exhibited an 
increment in the polarization resistance, reduction of corrosion current, 
and more positive corrosion potential. It was reported that three factors 
contributed to corrosion protection of PEDOT/GO including redox cou-
pling with magnesium corrosion resulting in the creation of a protective 
magnesium phosphate layer, inducing negative charges in the film, and 
the formation of an initial passive layer that prevents solution uptake. In 
the research of Rahimi et al. [152], cellulose nanoparticles (CNs) were 
added to polylactic acid (PLA) coating to protect the AZ31 alloy. The 
outcome of adding CNs to the coating was the enhancement of the PLA 
corrosion resistance. The most promising result of corrosion resistance 
improvement was attributed to the coating containing 5 wt. % of CNs.

Zhang et al. [153] coated AZ91D Mg alloy with polyaniline (PANI)/ 
organophilic montmorillonite (OMMT) polymer nanocomposite. They 
reported that after 6000 h of immersion in the corrosive environment, 
the Mg alloy coated by PANI/OMMT maintained its high corrosion re-
sistance. A dense Ch/hydroxyapatite (HA) composite coating was ap-
plied on AZ31 Mg alloy by Hahn et al. [154]. A high adhesion strength 
range of 24.6-27.7 MPa was reported for the coating and it exhibited 
higher corrosion resistance compared to the bare Mg substrate. To im-
prove bone-implant integration and control the degradation of Mg-based 

Fig. 5. Illustration of the polymer composites’ production containing nanoparti-
cles and their anti-corrosion properties.
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substrates, Johnson et al. [155] developed PLGA/nanostructured hy-
droxyapatite (nHA) coatings using the spin coating method. Nano-scale 
features of the coatings were retained with the dispersion of nHA in the 
PLGA matrix. According to the corrosion behavior studies in the revised 
simulated body fluid, Mg substrates coated by the composite showed an 
enhancement of the corrosion potential and reduction of the corrosion 
current.

Nanocomposite coatings of the addition of inorganic nanofillers into 
the polymer matrix are a new method for corrosion protection that ex-
hibit excellent mechanical performance and corrosion resistance in com-
parison to conventional composite coatings

3.4. DLC coatings 

DLC involves a broad range of amorphous carbon coatings having 
different hydrogen levels and sp2 and sp3 bonded carbon ratios. A variety 
of properties can be obtained by changing the ratio of the three com-
ponents. There are similarities in the properties of DLC and diamond, 
however, DLC has an amorphous matrix in which sp3 nodules exist in 
a matrix of bonded sp2 [156, 157]. DLC coatings have a dense micro-
structure, chemical inertness, and high mechanical hardness [158]. Due 
to the structure of DLC coatings, high residual stress is built within these 
coatings [159]. Consequently, surface adhesion would be weak resulting 
in the delamination of the coatings at early stages. By the deposition of 
interlayers, the surface adhesion can be improved. The interlayers are 
thin coating layers that are applied for the promotion of DLC adhesion 
[160, 161]. The interlayer is required to have a strong bonding with both 
the DLC top coat and the substrate.  Silicon nitride (Si3N4), chromium 
carbide (CrC), and titanium (Ti) are common interlayer materials. The 
interlayer can also contribute to the enhancement of the corrosion resis-
tance because DLC could be both conductive and porous. Hence, the 
layer can act as a physical barrier between the corrosive environment 
and the substrate and decrease the delamination risk [162].

Recently, DLC coatings have been considered by many researchers 
for the promotion of the anti-corrosion and mechanical properties of 
magnesium alloys [161, 163]. Nevertheless, the direct deposition of hard 
materials like DLC coatings on Mg-based soft substrates is a challenge. 
Considerable differences in physical properties including thermal ex-
pansion coefficient, plasticity, and elastic modulus between the coating 
and substrate lie at the center of the problem [164-166]. Wu et al. [164] 
applied a three-layer coating composed of aluminum, aluminum nitride, 
and diamond-like carbon (from bottom to top) on the surface of AZ31. 
The results indicated the enhancement of the corrosion resistance of the 
coated alloy so that the presence of 3.5 wt% NaCl in solution reduces the 
current density from 2.25 × 10-5 A.cm-2 to 1.28 × 10-6 A.cm-2. Anti-corro-
sion behavior of the Si-incorporated DLC (Si-DLC) films on AZ31 Mg 
alloy was studied by Choi et al. [20]. The prepared Si-DLC films yielded 
noticeable corrosion protection for the Mg alloy. The improved anti-cor-
rosion performance of the Si-DLC films is the result of very low internal 
stress within the coatings. Wu et al. [167] deposited columnar layers of 
Cr and CrN with preferred textures of (110) and (111), respectively as 
interlayers for applying a DLC coating on AZ31. Although the adhesion 
between the substrate and coating was improved significantly by apply-
ing the interlayers, the enhancement of the DLC/AZ31 corrosion resis-
tance was not observed. This was reported to be the result of the galvanic 
cell formation between interlayer and substrate in the through-thickness 
defects in a solution of 3.5 wt. % NaCl. 

Masami et al. [168] also incorporated Si into DLC coatings to pro-
vide corrosion protection for AZ91 magnesium alloy. Results indicated 
that the Si-DLC coating had higher corrosion resistance in comparison 
with DLC coating. Applying Ti interlayer promoted adhesion between 
the AZ91 substrate and DLC coating, however, it negatively affected 
corrosion protection. Corrosion resistance, as well as adhesion strength 

of Mg alloy, was improved by treating the surface of the substrate with 
ozone. In a research study by Uematsu et al. [169], it was shown that the 
corrosion fatigue strength of AZ80A in distilled water was not improved 
by applying single-layer and multilayer DLC films. The films contained 
some defects facilitating the access of the corrosive water to the sub-
strate. The thicker multilayer DLC coating showed no degradation of 
fatigue strength in the corrosive environment revealing its effectiveness 
for corrosion protection.  According to the reports of Yamauchi et al. 
[170], it was found that the diamond-like carbon coating on the Mg-14 
mass% Li alloy could not withstand the corrosive alkaline and acidic 
solutions. 

4. Conclusions and future insights

Mg and its alloys suffer from low corrosion resistance. Mg alloys, 
unlike other light metals such as Ti and Al, are not capable of forming 
naturally passivating oxide films. Porous, poor-bonded oxide/hydrox-
ide/carbonate layers are rapidly developed on the Mg surface under 
atmospheric exposure that are unable to protect the substrate. Differ-
ent coatings are being used for Mg alloys to isolate the substrate from 
corrosive environments. Organic-inorganic hybrid coatings, polymeric 
nanocomposite, rare earth conversion coatings, and DLC coatings have 
been demonstrated to have great impacts on the promotion of corro-
sion resistance of Mg alloys. These new coatings have shown promising 
results in terms of corrosion protection of Mg alloys in different cor-
rosive environments, however, they still need to be improved. Future 
studies might concentrate on the promotion of these coatings as well as 
the development of novel coating materials for the corrosion protection 
of magnesium and magnesium-based alloys. The development of inex-
pensive coating processes and accessible coating materials are favored 
for the industry and this issue should be considered in future research. 
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1. Introduction

Nanocarbons involve a diverse structural family, one of which is 
nanodiamonds (NDs). NDs can be found in the form of nano-sized di-
amondoids, fullerenes, amorphous carbon, foam, platelets, whiskers, 

bells, peapods, cones, rods, horns, onions, and tubes [1-4]. A detailed 
investigation of NDs was initiated in Russia in the 1960s. Since then, 
these nanoparticles have attracted significant attention because they 
can be produced on large scale by cost-effective processes based on the 
detonation process of carbon-containing explosives. Moreover, nanodi-
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Due to promising properties such as low toxicity against different cell lines, being highly stable fluorescent with-
out showing photobleaching, and good surface properties, nanodiamonds have gained ever-increasing attention 
for various biomedical applications including bioimaging and therapeutic applications. Various methods are used 
for the fabrication of nanostructured diamond, the commonly used of which is the denotation technique. Newer 
approaches are being practiced for the modification and functionalization of their surfaces by different biomol-
ecules suitable for interaction with considered targets. In this review, the scope and recent advancement in the 
field of nanodiamonds for biomedical applications particularly their application for nanocomposite scaffold and 
implants are discussed.
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amonds are highly biocompatible, they can be easily functionalized like 
bioconjugation, and they have a small particle size of about 5 nm. A few 
products based on carbon nanomaterial such as derivatized fullerenes [5-
8] or adamantane derivatives (e.g. memantine, amantadine, and rimanta-
dine) have found ways to medicinal practice; however, ND suspensions 
have offered promising outcomes when used in animals and human pa-
tients suffering from cancer [9-12].

Similar to other nanoparticles such as metallic nanoparticles, carbon 
nanoparticles, and quantum dots, NDs can be used for the production 
of therapeutic agents for tissue scaffolds, anti-bacterial treatments, an-
ti-viral treatments, gene therapy, delivery vehicles, diagnostic probes, as 
well as the preparation of new medical devices like nanorobots [13-19]. 
Moreover, the prospective exploitation of nanodiamonds can be applied 
for bioanalytical purposes including purification of proteins or biolabel-
ing by the application of NDs with high fluorescence properties [20, 21]. 
The limitless potential of bio nanotechnology is demonstrated by the 
interaction of engineered nanostructured materials (e.g. ceramic, metal-
lic, polymeric, and composite materials) at the molecular level which 
acts highly specific [22, 23] Nevertheless, the establishment of novel 
analytical methods, development of diverse nanofabrication approaches, 
and miniaturization of devices, e. g. BioMEMS is required for taking 
advantage of the advances of NDs in clinical trials [24-29]. 

This paper presents an overview of the processing and purification of 
nanodiamond particles, their properties, as well as their biomedical ap-
plications. In this review, the focus will be on the biological applications 
of NDs, especially in scaffolds and implants. Lastly, existing challenges 
and prospective directions in the development of NDs in biotechnology, 
engineering, and medicine will be discussed. 

2. Nanodiamonds

At ambient pressure and temperature, the most stable allotrope of 
carbon is known to be graphite and diamond has a metastable state [30-
32]. Besides the subtle difference in the energy state of graphite and 
diamond (0.02 eV), the energy barrier existing between the two phases 
is high (~0.4 eV per atom). Therefore, the transformation of the phases 
requires high pressure and temperature and/or catalyst [33, 34]. Due to 
the dependence of the Gibbs free energy on the surface energy, the clus-
ter size should be included in the nanoscale carbon phase diagram in ad-
dition to temperature and pressure[35, 36]. Nanoscale diamonds consist 
of a core with sp3 carbon structures together with disorder/defect and 
sp2 carbon on the surface, which is available with single-digit nanoscale 
individual particles in colloidal suspension [37-39]. 

Diamond nanostructures in the size range of 1 to 100 nm are in the 

forms of pure-phase particles, 2-D diamond nanoplatelets, 1-D diamond 
nanorods, and diamond films. Ultra-nanocrystalline diamond (UNCD) 
is a special group of nanodiamonds with a size of a few nanometers, 
and their characteristics can be distinguished from other nanostructured 
diamonds with sizes larger than 10 nm [40-42]. In the 1960s, “deto-
nation nanodiamond” (DND) or ultradispersed diamond” (UDD) with 
characteristic sizes of 4 to 5 nanometer were fabricated in the former 
USSR using detonation of carbon-containing explosives. At the end of 
the 1990s, Argon National Laboratory in the U. S. developed pure-phase 
UNCD films via chemical vapor deposition (CVD). Their characteristic 
grain sizes were between 2 to 5 nm [42-44]. 

Today, baffling nanodiamond arrays are available for investigations. 
Various methods have been developed for the fabrication of these nano-
materials including the detonation method (Fig.  1), high-energy ball 
milling of diamond microcrystals produced at high temperature and high 
pressure (HPHT) [45, 46], laser ablation [47], ultrasound cavitation [48], 
electron irradiation of carbon ‘onions’ [49], ion irradiation of graphite 
[50], chlorination of carbides [51], autoclave preparation from super-
critical fluids [52], and chemical vapor deposition (CVD) with plasma 
assistance [53]. Among these techniques, the first three methods are em-
ployed commercially. 

According to astronomical observations, the presence of NDs in the 
protoplanetary disks of some star types has been demonstrated [54, 55]. 
However, scientists are still investigating the origins of these cosmic 
sources. For using NDs for research and industrial applications, the 
large-scale production of nanodiamonds is needed. In this paper, we will 
review the production, modification, and applications of NDs, while 
concentrating on their application for tissue engineering. 

3. Synthesis and purification of nanodiamonds

Carbon-containing explosives can provide a source of energy for the 
transformation of carbon to nanodiamonds (Fig. 1a) [34, 56, 57]. This 
method is eco-friendly and by using this technique, we can dispose of 
old munitions, like Composition B, while using other explosives might 
be possible. The detonation of explosives occurs in a closed chamber 
that is filled by water/ice coolant (wet synthesis) or an inert gas coolant 
(dry synthesis). Detonation soot that is used for naming the resultant 
products is composed of diamond particles in the range of 4 to 5 nm 
(~75 wt%) accompanied by other allotropes of carbon and impurities. 
Based on cooling media, the carbon yield is about 4 to 10 wt% of the 
explosive [56-59].

The mechanism of ND formation by detonation was proposed by 
Danilenko [34, 56]. The Jouguet point temperature and pressure (point 

Fig. 1. Fabrication of nanodiamonds through detonation.
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A in Fig. 1b) do not reach the point to form liquid bulk carbon, however, 
they are enough for the production of liquid carbon at the nanoscale (Fig. 
1b). For nanocarbon, the liquid carbon region is shifted to lower tem-
peratures, and there is a slight shift in the nanodiamond stability region 
to higher pressures (Fig. 1b). Therefore, the nucleation of NDs occurs 
by liquid carbon condensation and crystallization in the supersaturated 
carbon vapor (Fig. 1c). Other explosive-based methods, such as using 
waves for the production of NDs from graphite, fabricate NDs with crys-
tallite sizes greater than 10 nanometers.    

As mentioned, about 25–85 wt% of the detonation soot is graphitic 
carbon, and about 1–8 wt% of that is composed of incombustible impu-
rities such as metals and oxides. Therefore, for most applications, it is re-
quired to be purified [57, 60]. The sources of the metallic impurities are 
the steel walls of the chamber (iron and other metals) where detonation 
occurs and the igniter that initiates detonation (typical azides of copper, 
lead, or silver). These impurities can be found on the outer surface of ND 
aggregates or inside them; hence, the aggregates must be disintegrated 
for the removal of the trapped impurities [61, 62]. 

For the removal of non-diamond carbon on an industrial scale, liq-
uid oxidants such as HNO3, HClO4, H2O2/HNO3 under pressure, Na2O2, 
KOH/KNO3, K2Cr2O7 in H2SO4, or a mixture of HNO3 and H2SO4, are 
used for the purification of detonation soot [56, 57]. To reduce the con-
centration of non-carbon impurities to less than 0.5 wt%, further expo-
sure to HCl and other treatments are carried out. Using a liquid phase for 
purification is hazardous and expensive so that 40% of the product cost 
is contributed to this process. An alternative environmentally-friendly 
approach for the removal of non-diamond carbon is its oxidation by air 
or ozone-enriched air at a high temperature [60, 63]. Oxidizing in the air 
is an eco-friendly, robust, and cost-effective purification method, which 
can change the content of diamond from ~25 wt% to more than 95 wt%. 
Because of oxidation, different presented functional groups are removed 
from the surface of NDs, and oxygen-containing surface functional 
groups, mainly carboxylic acids and anhydrides are produced. Conse-
quently, different nanodiamond grades can be converted to materials that 
contain a high diamond content with unified surface chemistry [3, 60]. 

In comparison with the acid-purified NDs, the aggregate size of 
ozone-purified ones in aqueous dispersions is about 160-180 nm and a 
higher amount of faceted particles in the range of 3 to 5 nm is produced 
[63, 64]. Moreover, due to highly acidic surface groups in the hydrosols 
purified by ozone, their pH is very low; for instance, the pH value for 
10 wt% hydrosol is between 1.6 and 2. Additionally, the electrokinetic 
potential (ζ-potential) varies from -50 mV for polydispersed specimens 
to -100 mV for the fraction with the size of 20-30 nm and the potential 
remains constant between the pH values of 2 to 12. Thus, the most prom-
ising technique for the purification of NDs is gas oxidation. The reduc-

tion of surface in a hydrogen atmosphere has been practiced, however, 
the removal of non-diamond carbon was not complete [65].

4. Surface modification and de-agglomeration of nano-
diamonds

Commercial NDs are often required to undergo further processing 
and modification. This is due to their high content of non-diamond car-
bon and incombustible impurities, the large average size of aggregates, 
and unsuitable surface chemistry for proposed applications [19, 66, 67]. 

Even though the diameter of NDs is between 4 to 5 nm, there is a 
tendency to aggregation in the particles and the size of the aggregates 
is larger in common commercial ND suspensions, which are sometimes 
resistant to ultrasonic treatment. Even though the presence of the aggre-
gates could be beneficial for some application such as drug delivery [68] 
or chromatography [69], de-aggregation of the particles into individual 
primary ones are often required for exploiting the advantages of NDs 
[70].

Osawa et al. [71] developed a microbead (SiO2 or ZrO2)-assisted 
ultrasonic de-aggregation process using the suspension of NDs, which 
was reported to be able to yield individual ND colloidal solutions with 
diameters of 4-5 nm. Using microbeads bring about some complica-
tions, mainly contamination with bead material and the graphite layer 
that forms on the surfaces of nanodiamonds [72]. It is also required 
to remove metal contaminants and amorphous carbon that was released 
from the aggregates during milling. On the other hand, the re-aggrega-
tion of the particles occurs during the purification of milled diamonds 
with the help of liquid oxidizers [72]. According to recent studies, suf-
ficiently purified and oxidized particles in the air are allowed for subse-
quent isolation of stable hydrosol nanoparticles with a diameter of 4-5 
nm by centrifugation [73].

Recently, the de-aggregation of particles from microscale aggregates 
to stable nanoparticles with a diameter in the range of 5-20 nm has been 
practiced by dry milling in cheap and abundant media like sugar and 
water-soluble salts. These media do not produce contaminants [74]. The 
reduction of NDs in borane with the help of ultrasonic treatment was 
reported to yield finer aggregates [75]. Aggregates with a diameter of 
~20 nm were also obtained with surface graphitization and subsequent 
functionalization [76]. Nanodiamond aqueous colloids containing stable 
single particles were also obtained by hydrogen treatment at high tem-
peratures and the nanoparticles with the size of 2-4 nm were isolated 
using a centrifugation process at above 10,000 rpm [77, 78].

Re-aggregation of NDs after additional surface functionalization is 
a concern regarding the processing of nanodiamonds. Because of capil-

Fig. 2. Processing stages of NDs.
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lary forces that attract the particles together, re-aggregation may also be 
promoted by drying (for storage). It could be caused by attractive van 
der Waals forces, which make the functionalization an arduous task. An 
approach for the prevention of re-aggregation after drying is the treat-
ment of NDs in NaCl solution with the assistance of ultrasound [61, 79]. 
The prevention results from the attachment of Na+ ions to the surfaces of 
NDs. Halting re-aggregation of NDs fabricated via NaCl-assisted mill-
ing can also be explained by this reason [74].    

NDs can be separated into fractions by their size and weight using 
centrifugation [80, 81]. Unlike methods that introduce contamination 
(e.g. bead milling), centrifugation is contamination-free and ND frac-
tions (different sizes) are possible to be isolated suitable for various 
applications. For instance, only small particles can be used for drug de-
livery, while NDs that can form photonic structures for light diffraction 
are required to have aggregate sizes above 100 nm [82]. Obtaining small 
NDs by centrifugation is economically feasible when NDs purified by 
air or ozone are used rather than acid-purified NDs. This is because of 
a higher fraction of fine aggregates achieved by the former approaches. 
Although single-digit NDs can be extracted by ultracentrifugation, the 
yield is low. Therefore, the dispersion of NDs into individual particles 
requires the development of facile, scalable, and non-contaminating 
techniques. The processing of NDs from synthesis to de-aggregation is 
illustrated in Fig. 2.

NDs are superior to carbon nanotubes (CNTs) and other graph-
ite-based nanoparticles in terms of the possibility to attach various func-
tional groups to their surfaces [44]. This capability not only provides 
complex surface functionalizations but also preserves the promising 
characteristics of the diamond core [83]. Nevertheless, understanding 
their interaction mechanism with their surrounding materials and the al-
leviation of adverse effects such as aggregation is essential [84, 85]. The 
different functional groups that exist on the surface of commercial NDs 
can be utilized for covalent functionalization; however, starting with 
carboxylated NDs prepared by ozone and air purification methods, and 
then making use of the COOH groups’ rich chemistry is more conve-
nient. As a result of the hydrogen microwave chemical vapor deposition 
plasma treatment at temperatures higher than 700 °C, COOH groups are 
completely removed and hydrogenated NDs are produced by the com-
plete removal of oxygen from the surface [86].  

In comparison with gas treatments in the temperature range of 400-

850 °C, milder conditions are required for wet chemistry. An enhanced 
selectivity is provided by this approach through the conversion of plenty 
of functional groups known in organic chemistry (Fig. 3). In several wet 
chemical reactions, reactive C–Cl and C–F bonds on the surface gen-
erated by photochemical chlorination and halogen annealing have also 
been used [87, 88]. Long alkyl chain terminations were produced on the 
surface of NDs by esterification of O-H terminations with acylchlorides 
[89]. O-H terminates are also involved in silanization/de-aggregation 
[90]. Also, the modification of NDs by taking advantage of the graphitic 
carbon chemistry can be performed. Graphite carbon can be either in-
trinsically present or formed by surface graphitization. Strong bonds of 
C–C can be formed between the surface group and the graphitic shell, 
while C–X bonds (where X is S, O, N, etc.) are created by methods that 
work based on the chemistry of ND functional groups [91, 92].

Diazonium chemistry and Diels–Alder reactions have been used for 
the functionalization of nanodiamond graphitic shells. Diazonium chem-
istry has been utilized with hydroxylated nanodiamond for the produc-
tion of C–O–C bonds between the diamond core and the attached moi-
ety, and also with hydrogenated NDs for the C–C bond formation [93]. 
Even though there are different options for surface functionalization of 
NDs, the uniformity and purity of the starting materials surface chemis-
try strongly affect the outcome [94, 95]. The development of quantitative 
analysis for the evaluation of different groups present on the surface of 
NDs is a challenge in this regard. 

5. Properties of nanodiamond

5.1. Fluorescence

The promising fluorescence properties of NDs results from nitrogen 
atoms next to a vacancy called nitrogen-vacancy (NV) centers in NDs. 
To create NV centers, NDs are irradiated with high-energy particles 
such as protons, electrons, and helium ions, and then vacuum annealed 
at 600-800 °C  [96, 97]. During irradiation, vacancies are formed in the 
diamond structure, and the annealing treatment leads to the migration 
of the vacancies and their entrapment by N atoms present in NDs [98]. 
Different spectra are emitted based on the NV center types that would be 
either negatively charged (NV–) or neutral (NV0). The spin ground state 
of S = 1 of NV– centers provide the possibility of spin polarization by 

Fig. 3. Surface modification of NDs.
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optical pumping and manipulation through electron paramagnetic reso-
nance. Additionally, NV– centers possess long spin coherence times. In 
isotopically clean diamonds, fluorescent NV centers have been favored 
for quantum computing [99], while in NDs, NV centers are being stud-
ied for biomedical imaging [96], high-resolution magnetic sensing [100-
102], and fluorescence resonance energy transfer applications [103].     

Diamond synthesized at high temperatures and high pressures con-
tain about hundreds of ppm of native substitutional nitrogen and thereby 
they are the candidate for developing bright photoluminescent [45, 96]. 
These materials are then ground to nanoparticles containing single-digit 
NDs [45]. The concentration of electron-irradiation-generated fluores-
cent NV defects is not significantly affected by the nanocrystal size; 
however, the produced fraction of NV-defects is reduced with the de-
crease in the nanodiamond size due to electron traps at the surface [104].

With the help of medical imaging, it is possible to detect and diag-
nose a variety of diseases, and thereby the healthcare industry is seeking 
innovations in the imaging field [105-108]. Up to now, NDs fabricated 
by explosives have not been considered as promising materials for NV-
center-based imaging applications. In recent years, individual pristine 
NDs with a diameter of 5 nm synthesized by the detonation of TNT 
and hexogen precursors have shown NV-center-based intermittent lu-
minescence [102]. Additionally, larger NDs (above 20 nm) with trapped 
NV centers fabricated by graphite and hexogen [109] and TNT and hex-
ogen [110] precursors have exhibited stable luminescence. Doping of 
nitrogen into the ND core and the in situ creation of NV centers are 
influenced by numerous factors including the cooling conditions and the 
nitrogen amount in the precursors. The reasons for the low intensity of 
fluorescence in NDs synthesized from explosives are the existence of 
internal defects and the proximity of surface defects dependent on their 
size [102, 109].

Adsorbing [111] or linking [66, 112] of different fluorophores onto 
NDs can also produce fluorescent particles. NDs with fluorophore link-
age can move through cellular sections with varying pH values without 
changing cell viability or causing degradation of fluorophore linked to 
the surface over a long period [113]. Octadecylamine was linked to car-
boxylic groups on the surfaces of NDs and thus, bright blue fluorescent 
NDs were formed [114]. Not only do fluorescent NDs benefit from the 
promising properties of semiconductor quantum dots, namely, high pho-
tostability, small size, and bright multicolor fluorescence, but also they 
show rich surface chemistry, biocompatibility, and non-toxicity. These 
properties would probably revolutionize in vivo imaging [96, 115, 116].

Zhang et al. [117] prepared the multimodal nanodiamonds by at-
taching monoclonal antibodies and drug‐oligonucleotide conjugates 
labeled by fluorescent onto the surface of ND. They reported that by 
these linkers, it is possible to quantify the ND conjugates and observe 
intercellular regions. Dong et al. [118] prepared fluorescent nanodia-
mond-based composites by a simple and novel method. The hydrophilic 
polymer/ functionalized ND composite was reported to be suitable for 
different biomedical applications because of their good potential and 
physicochemical properties. Also, they reported that these samples have 
strong fluorescence intensity, low toxicity, and high water dispersibility. 
According to the result of cell uptakes, the cells could internalize the 
fluorescent nanodiamond-based composites. Sarkar et al. [119] used a 
new background-free imaging method and reported that this technique 
enhances the ratio of signal-to-background up to 100 times. Also, an 
improvement was observed in the fluorescent nanodiamond imaging ca-
pabilities on diverse fluorescence imaging platforms.

5.2. Biocompatibility  

Although glassy carbon and diamond are not toxic, carbon nanopar-
ticles cannot be assumed also non-toxic. Because of a variety of pro-
cesses for purification and different options for surface modification 

used by various manufacturers, the toxicity caused by NDs is a concern 
[120-122]. In vitro and in vivo properties such as gene program activity, 
cell viability, and in vivo physiological and mechanistic behavior in the 
presence of NDs have been investigated [66, 120, 123-127].

Researchers demonstrated that instilled NDs within the trachea had 
a low level of pulmonary toxicity. The ND amount decreased with time 
in the alveolar region. Moreover, after 28 days after exposure, ND-bur-
dened macrophages were observed in the bronchia [9, 125, 128, 129]. 
Systemic toxicity and serum indicators of the liver were not affected by 
using high dosages of intravenously administered ND complexes [127].

Mohan et al [126] studied worm reproduction, cytotoxicity, and 
stress response activity of fluorescent NDs with an average hydrody-
namic size of about 120 nanometers in Caenorhabditis elegans worm. 
They reported that bare ND particles remained in the lumen of the worm, 
while NDs coated with bovine serum albumin or dextran were adsorbed 
into its intestinal cells. Transferring NDs injected into worm gonads to 
the larvae and offspring was observed, however, this did not affect the 
survival or reproductivity of the worms. It was also indicated that flu-
orescent NDs are non-toxic and do not cause stress in the worm, thus, 
they are suitable for in vivo imaging. Overall, the biocompatibility and 
toxicity of newly developed NDs should be carefully investigated.

6. General applications

ND additives have been utilized for metal plating (electrolytic/elec-
troless) for a long time [130, 131]. In recent years, these particles have 
found ways to other applications. In this section, different applications 
of NDs are addressed.

Tribology and lubrication: Adding detonation soot containing 
diamond to lubricants causes about 5% reduction in fuel consumption 
and prolongs the engine life [130]. Two reasons contribute to this effect: 
1) the existing graphite has a lubrication effect: 2) friction is reduced 
on sliding surfaces by NDs through polishing away asperities. The en-
hancement in tribological performance is provided when purified NDs 
are dispersed alone or together with metal nanoparticles or polytetrafluo-
roethylene (PTFE) in oils or greases [132]. The initial assumption about 
the lubrication mechanism was acting as ‘ball bearings’, however, recent 
studies suggested different contributing mechanisms. For instance, the 
wear mechanism for Al alloys is significantly affected by the viscosity of 
the ND suspension, while a decrease in wear and friction of carbon steel 
is the result of the embedment of NDs from the lubricant into the surface 
of the carbon steel [114]. It is possible to tailor the surface chemistry of 
NDs so that they can be dispersed in various systems such as water and 
oil  [133]. 

Because of the microscopic ball-bearing effect, carbon onions can 
offer an efficient lubrication effect. Generally, in contrast to expecta-
tions, the lubrication mechanism is more complex, but it can be accepted 
that both carbon onions and NDs embed into the surfaces of metals and 
thereby leading to the separation of sliding surfaces and prevention of 
wear resulting from metal-metal adhesion [134, 135].   

Nanocomposites: Nanocomposites have shown promising prop-
erties suitable for a variety of applications [136-139]. NDs have been 
suggested as excellent fillers for composites owing to their rich surface 
chemistry, and good thermal and mechanical characteristics. Also, the 
fillers can tailor these composites for biomedical applications due to 
the diamond core’s chemical stability and biocompatibility. It has been 
reported that the ND addition to polymers caused the enhancement of 
their thermal conductivity  [140, 141], electromagnetic shielding [142], 
adhesion [143], wear resistance [144], and mechanical strength  [47, 
141, 145-148]. On the other hand, in the case of using aggregated or 
non-purified NDs, degradation in properties has been observed, which 
confirms the necessity of proper functionalization and well dispersion 
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of these particles. 
The addition of small amounts of NDs to transparent poly(vinyl alco-

hol) showed improved mechanical properties [149]. Surface chemistry 
can control the interfacial interaction between the matrix and NDs as 
well as their dispersion in the matrix. If NDs are modified, they can 
covalently bond with metal, ceramic, polymeric matrices, and further 
enhancement can be provided for composites [146, 150, 151]. 

Drug delivery: A drug delivery system is required to have some 
properties including scalability, dispersibility in water, the capability of 
carrying various therapeutics, and biocompatibility [152-156]. Another 
important property is the targeted therapy potential combined with im-
aging possibility. Most of these requirements are met by NDs [157-161]. 

Delivery of doxorubicin (Dox) by ND-based systems has been 
shown to be safe and effective [162-164]. ND-Dox complexes were uti-
lized for the treatment of liver cancer (LT2-M) and breast cancer (4T1) 
models. The application of ND-Dox complexes increased the circulation 
half-time to 10 times of unmodified doxorubicin, and the doxorubicin 
expelling capacity of tumors decreased. Other benefits of drug delivery 
systems based on ND-Dox are reported to be a noticeable decrease in the 
tumor size, the absence of myelosuppression, and the absence of mortal-
ity in the case of high delivery doses [123, 165, 166]. Besides, deliver-
ing small molecules polyethyleneimine 800 (PEI800)-coated NDs were 
investigated for the delivery of nucleic acids. Different loadings have 
been delivered by NDs such as siRNA for specific cancers [158], small 
molecules in acidic environment [3], proteins [3, 157], and covalently 
bonded drugs [167, 168].   

The functional groups are present on the surface of ND, especially 
oxygenated moieties including hydroxyl, ether, ketone, lactone, carbox-
ylic acid. ND is a widely applicable nanocrystalline due to its structural 
stability, natural biocompatibility, and non-toxic nature. According to 
previous works, ND has a role as a drug carrier of dexamethasone, 4-hy-
droxytamoxifen, purvalanol A, and doxorubicin for blood cancer, breast 
cancer, liver cancer, and colon cancer therapies, respectively [169].

Protein mimics: Owing to promising properties such as low cyto-
toxicity, ability to self-assemble, rich surface chemistry, stable core, and 
small size, NDs are being used for mimicking globular proteins [170, 
171]. Besides the ability to deliver drugs, other molecules such as ge-
netic material can be delivered across cellular membranes. NDs are also 
able to mimic other functions of proteins. For instance, proteins that 
are involved in the folding/unfolding of DNA are highly alkaline his-
tones. During this process, a nucleosome that contains histones in its 

core, spool the DNA strand around itself. NDs not only can be increased 
close to the size of histones by selective air oxidation [172] but also by 
employing covalent bonding of amino groups, their surface alkalization 
is possible [146]. The alkaline NDs can then be folded with DNA to 
form artificial nucleosomes. Functionalized NDs can also mimic some 
proteins’ enzymatic functions due to their catalytic properties [173].

Tissue scaffolds and surgical implants: Due to the restoring poten-
tial for damaged tissue, regenerative medicine, and tissue engineering 
are of great interest [174-177]. Like protein-coated materials, ND mono-
layers have been indicated to act as a suitable platform for the growth 
of neuronal cells  [178]. Reinforcement of biodegradable polymers with 
NDs provides prospective advantages for the synthesis of multifunction-
al tissue engineering scaffolds due to their biocompatibility, superior me-
chanical properties, delivering biologically active molecules and drugs, 
and tunable surface chemistry [179]. One of the ND-containing polymer 
composites studied for biomedical applications is ND octadecylamine 
(ODA)-poly (l-lactic acid) (PLLA). PLLA is a biodegradable and bio-
compatible polymer, however, its mechanical properties cannot satisfy 
the requirements for load-bearing implants. It has been reported that the 
incorporation of ND-ODA and its good dispersion enhanced Young’s 
modulus and hardness of the composites close to those obtained for hu-
man cortical bone. Also, no changes in proliferation and morphology of 
murine 7F2 osteoblast cells cultured on the ND-ODA-PLLA scaffold 
were observed. Therefore, clinically relevant properties are obtained by 
these composites while offering high scalability and non-toxicity [123, 
179-181]. The remarkable enhancement of properties caused by the ad-
dition of NDs could suggest these materials to be used in a wider range 
of biomaterials.

7. Scaffolds based on nanodiamond composites  

7.1. Fabrication methods

Selective laser sintering (SLS): In this method, polymer/ND pow-
ders first are poured on a workbench, and then the powders are sintered 
selectively by laser-based layer-by-layer sintering following a pre-de-
signed scaffold model. At the final step, the sintered scaffold is achieved 
by removing the residual powder [67]. This process is schematically 
illustrated in Fig. 4. 

Feng et al. [182] synthesized poly(3-hydroxybutyrate-co-3-hydroxy-
valerate) PHBV/ND, PHBV/MoS2, and PHBV/ND/MoS2 composite 

Fig. 4. Schematic illustration of the 
selective laser sintering method.



Y. Zamani et al. / Journal of Composites and Compounds 2 (2020) 215-227 221

powders via a solution mixing technique. Selective laser sintering with 
laser power of 2 W, scanning speed of 200 mm/s, and a spot diameter 
of 50 µm was used for the fabrication of cylindrical scaffolds with a 
height of 10 mm and a diameter of 8 mm. PLLA/ND composite scaffolds 
were also prepared by Shuai et al. [67] using the selective laser sintering 
method. 

Electrospinning: This technique is a facile, efficient, fast, and 
cost-effective route for the production of nanofibers from a polymeric 
melt or solution via applying electrostatic forces [183, 184]. This meth-
od is used for the fabrication of fibrous polymeric scaffolds [185, 186]. 
In this technique, ND particles are dispersed in a polymer solution, and 
then the polymeric solutions are loaded into a syringe equipped with a 
metallic needle. The electric potential is applied to the metallic needle 
and aluminum foil is used to collect the as-spun nanofibers. The param-
eters that contribute to the electrospinning method are temperature, feed 
rate, polymer concentration, voltage, and distance between the collector 
and needle [179, 187, 188]. The synthesis of poly (lactic-co-glycolic 
acid)/nanodiamond (PLGA-ND) composite was reported using the elec-
trospinning of a dimethylformamide and methylene chloride solution. In 
comparison with pure PLGA fibers, PLGA-ND fibers were noticeably 
thicker. The results demonstrated that cell spreading of human mesen-
chymal stem cells (hMSCs) improved compared to pure PLGA. This is 
due to the presence of oxygen termination of NDs that provides hydro-
philicity in ND-containing scaffolds [189, 190]. Houshyar et al. [187] 
performed wound healing dresses based on polycaprolactone (PCL) and 
ND using electrospinning. Enhanced moisture and wicking management 
in NDs results from different hydrophilic groups on their surfaces. Fur-
thermore, excellent cellular activities and no cytotoxicity were exhibited 
by the composites.

In-situ polymerization: ND nanocomposite scaffolds can be pre-
pared by in-situ polymerization. ND particles are usually functionalized 
and the nanodispersion is added to a monomer-containing solution. Fi-
nally, self-assembly and polymerization of monomers occur in the pres-
ence of functionalized ND [179, 191]. Alishiri et al. [192] polymerized 
acrylate-terminated polyurethane-acrylate diluents (APUA) in the pres-
ence of 2- hydroxyethyl methacrylate (HEMA)-grafted ND. This meth-
od led NDs to well dispersion in APUA resulting in the enhancement 
of mechanical properties. Ultra-high molecular weight polyethylene 
(UHMWPE)/ND nanocomposites were also successfully synthesized by 
in-situ polymerization based on bi-supported Ziegler-Natta catalyst. The 
results showed that the mechanical properties of both silane-modified 
and unmodified NDs were improved [193].

Solvent casting: Due to the solubility of biopolymers in various sol-
vents, solvent casting has been considered as a facile and commonly 
used technique for biopolymer film synthesis. Solubilization, casting, 
and drying are the steps that are involved in this approach [167]. For the 
preparation of ND-containing nanocomposites by solvent casting, nan-
odiamonds are first ultrasonically dispersed in a solution. The polymer 
then is added to the prepared solution; afterward, the mixture is poured 
on a glass substrate or in a mold followed by the complete evaporation 
of the solvent [194]. 

Maitra et al. [195] incorporated acid purified ND in a PVA film to 
improve the mechanical properties of the polymer for applications in 
broader biomedical areas [196]. Fox et al. [148] also used the solvent 
casting method to reinforce the polycaprolactone (PCL) film with flu-
orescent ND. In this regard, a mixture of PCL and fluorescent ND in 
methanol was prepared followed by casting for the production of free-
standing films. Sun et al. [144] synthesized chitosan and ND-COOH 
composite films by using a solvent of acetic acid. The results showed the 
improvement of mechanical properties owing to a strong interaction be-
tween chitosan polymer chains and carboxyl groups of ND. Zhang et al. 
[123] added ODA-grafted ND to a mixture of chloroform and PLLA and 
showed that the addition of nanodiamonds enhanced Young’s modulus 

and hardness of PLLA. 
The preparation of nanocomposites by solvent casting is a suitable 

method; however, selecting an appropriate solvent that can dissolve both 
ND particles and polymer would be a critical issue affecting ND aggre-
gation. Thus, the functionalization of ND is necessary in most cases to 
achieve uniform distribution in polymeric films [197, 198].

7.2. Nanocomposite scaffolds and implants 

ND-containing composite scaffolds are gaining increasing attention 
for biomedical research and applications. Shuai et al. [67] modified 
ND by phospholipid and incorporated the modified particles in PLLA 
scaffolds using selective laser sintering. The hydrophilic head (‒OH) 
of phospholipid was adsorbed on ND surfaces (‒COOH), while its 
hydrophobic tails were arranged toward the polymeric PLLA matrix. 
Therefore, a layer of phospholipid covered ND particles. Because of 
the repulsive force between the hydrophobic tails, phospholipids are 
forced away from each other leading to better dispersion of NDs in the 
PLLA matrix. Compared to unmodified scaffolds, phospholipid-modi-
fied composite scaffolds showed an increase in Vickers hardness, the 
compressive modulus, and compressive strength by 88.2%, 163.2%, and 
162.8%, respectively. It was reported that the prepared scaffolds acted 
as a proper platform for cell adhesion, growth, and migration, indicating 
their potential for bone tissue engineering.          

Houshyar et al. [187] used the electrospinning technique for the 
fabrication of PCL/ND nanofibrous scaffolds. It was proposed that the 
scaffolds possessed the requirements for wound healing including the 
restriction of microbial activities and the promotion of epithelial cell 
proliferation. The outcomes of adding ND to PCL were a delay in the 
scaffolds’ thermal degradation, better moisture management, and higher 
thermal stability. The proliferation of Chinese hamster ovarian (CHO) 
cells for PCL-5%ND after 1, 3, and 7 incubation days exhibited 43%, 
38%, and 22% enhancement. Also, microbial activity decreased with the 
increase in the ND content. Fox et al. [177] also reported the synthe-
sis of PCL/ND composites by the solvent casting method.  The results 
demonstrated that hydrophilicity and surface roughness of the ND-PCL 
composite films were higher than those of PCL alone. Moreover, their 
degradation was slightly enhanced and the tensile strength decreased. 
Osteoblast adhesion increased with an increase in the ND loading. Fi-
nally, a 3D composites scaffold was produced by extrusion revealing the 
promising potential for tissue regeneration. 

Apicella et al. [199] fabricated bio-mechanical scaffolds based on 
ND and poly (hydroxy-ethyl-methacrylate) hydrophilic matrix for tissue 
engineering. The hybrid material was reported to be potent for biomi-
metic, osteoinductive, and osteoconductive applications as biomechan-
ical bones. Owing to the enhanced mechanical strength, these hybrid 
materials can be a replacement for traditional hydrogels with lower 
mechanical properties for bone regeneration; they can also be used as 
coatings onto metal trabecular scaffolds. Recreation of micro-and mac-
ro-distribution of bone deformations and stresses occur in osteoinduc-
tive ceramic/polymer-coated micro-trabecular metal scaffolds.

Nunes-Pereira et al. [143] used solvent casting to add different types 
of ND into Poly (vinylidene fluoride) (PVDF). According to the results, 
the thermodynamic stability as well as the optical properties of the sam-
ples could be tailored by the addition of ND nanofillers. Also, the di-
electric losses of the nanocomposites remained constant, and the dielec-
tric constant increased while was independent of the filler concentration. 
Moreover, ND nanoparticles were found to be non-toxic. It was con-
cluded that the prepared nanocomposites were promising material for 
biomedical applications owing to cell culture properties of the polymer 
and nanodiamond potential for drug delivery and protein functionaliza-
tion.

Feng et al. [182]  embedded ND particles into MoS2 nanosheets and 
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Table 1.
 ND-containing composites for scaffolds and implants

Matrix
ND size  

(nm)
Functionalization

Fabrication 
method

Cell type Conclusion Ref.

PCL 45 - Solvent Casting Human osteoblasts

Incorporation of ND resulted in increased hydro-
philicity and tailored degradation of the composites 

compared to base PCL
No cytotoxicity

[177]

PCL -
Acid treatment+octa-

decylamine
Electrospinning

Human lens epithelial 
(HLE)

Tensile Strength of FND/PCL composites increased 
compared to pure PCL

No cytotoxicity
[151]

PVDF <10 - Solvent casting
MC3T3-E1 pre-osteo-

blast cells
No toxicity [143]

PLGA - - Electrospinning
Human mesenchymal 
stromal cells (hMSCs)

PLGA-ND membranes exhibited higher hardness and 
Young’s modulus.
No cytotoxicity

[189]

PVDF/bioglass 
scaffold

5–10 -
Selective laser 

sintering
MG 63 cells

Tensile strength of the scaffolds increased by 23.01%
Bioactivity of the samples increased
Improved osteoinductive properties

[201]

Chitosan 5 Acid treatment Solvent casting
Cell

wall of fungi

Addition of 1 wt % nanodiamond improved the 
young’s modulus and hardness of the composites by 

239% and 69% respectively.
[144]

PCL <10 - Electrospinning CHO

The surface energy of the PCL-ND composite 
increased by the addition of ND which resulted in 

better moisture management, proliferation, and cell 
attachments.

No cytotoxicity
More thermal stability

Increased crystallization temperature

[187]

Polydiallyldi-
methylammo-
nium chloride 

(PDDA)

4
-

Coating of 
NDs using 

Polyelectrolyte 
multilayers 

(PEMs)

Human fetal osteoblasts 
(hFOBs)

Cell Viability increased by 40%
Increased cell adhesion

Feasibility of NDs as a coating material for biomedi-
cal applications and drug delivery vehicles.

[202]

Magnesium <10 -
Powder metal-

lurgy
Fibroblast (L-929)

The corrosion resistance of the MG-5ND composites 
increased by 4.5% compared to pure Mg

Biocompatible and No Cytotoxicity
[203]

PLLA 5 -

Solution casting
followed by 
compression 

molding 

-

10 wt% of ND-ODA led to an increase in the strain to 
failure by 280% and an increase in fracture energy by 

310% in comparison to pure PLLA.
Bonelike apatite is formed on the ND-ODA/PLLA 
scaffolds when tested in SBF Solution, which may 

increase the osteoinductive properties.

[204]

PCL - Electrospinning NIH/3 T3 cells

The addition of 1 wt% of ND resulted in increased 
young’s modulus, Tensile Strength, and percentage 

elongation to break.
High cell proliferation rate for 1 wt% ND/PCL

No cytotoxicity

[205]

Poly(lactic acid) 
(PLA)

<10 - Electrospinning -
Incorporation of 1 wt % nanodiamond in PLA im-

proved the tensile strength and young’s modulus of the 
composites by 239% and 161% respectively.

[161]

Poly (L-lac-
tide-co-e-capro-

lactone) 
(poly(LLA-co-

CL))

-
Anionic polym-

erization
stem cell line UE7T-13

Young’s modulus of 10 wt% composites increased by 
6 times.

Biocompatible and no cytotoxicity for all contents (i.e. 
1, 5, 10, 50 wt%)

[206]

APU - Quaternary ammonium
In-situ polymer-

ization
MC3T3-E1 cells

Improved mechanical properties
Hydrophilicity increased by incorporation of NDs
Crystallinity improved which resulted in tailored 

degradation rates
No cytotoxicity

[200]

Gelatin - - Electrospinning
Human adipose-derived 

stem cells (hASCs)

Enhanced cell viability and proliferation
Increased scaffold stiffness

No cytotoxicity
[207]
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then the co-dispersion nanostructure was added to poly(3-hydroxybu-
tyrate-co-3-hydroxyvalerate) (PHBV) by selective laser sintering to pro-
duce scaffolds for bone regeneration. The restacking of the molybdenum 
oxide nanosheets was restrained by the placement of NDs between ad-
jacent nanosheets. Additionally, the aggregation of NDs was prevented 
by the steric hindrance effect of the MoS2  nanosheets. Consequently, 
the compressive and tensile strengths of scaffolds containing ND and 
MoS2 were increased by 52% and 94%, respectively. The mechanisms 
that contribute to the strengthening of the scaffolds include crack pin-
ning, crack bridging, crack deflection, as well as pulling out of ND par-
ticles and MoS2 nanosheets. Moreover, the scaffolds showed good cell 
viability.

Wang et al. [200] added polycation-modified ND loaded with Ag to 
acrylate-terminated polyurethanes (APU) for cartilage tissue implants 
using in-situ polymerization. The results indicated that the crystallini-
ty of the nanocomposites increased compared to pure APU, showing a 
strong interaction between APU and nanodiamonds. Release-killing of 
the Ag nanoparticles and contact-killing of cationic polymers resulted 
in excellent antibacterial activity of the nanocomposites. Additionally, 
the addition of polyethylene glycol to APU increased its degradability 
rates significantly. Moreover, the synthesized scaffolds showed low tox-
icity. Overall, the combined effects of hydrophilicity and crystallinity 
provided proper degradation rates for APU, which was reported to be 
adaptable to the cartilage tissue-healing rate. Some research studies fo-
cusing on the development of ND-containing composites for scaffolds 
and implants have been summarized in Table 1. 

Table 1. ND-containing composites for scaffolds and implants

8. Conclusions and Future insights

NDs have shown all the ideal properties needed for biomedical ap-
plications. Many research activities in various biomedical applications 
have focused on the application of nanodiamonds. However, some chal-
lenges should be addressed including re-aggregation prevention, cost re-
duction, poor cell affinity, controlling by-product degradation, and con-
trolling surface chemistry. As a result, scientists continuously study NDs 
to shed light on the surface structure and chemistry to develop functional 
materials with improved properties. Composites containing biopolymers 
and NDs are also attracting the attention of scientists leading to the in-
troduction of novel materials and methods into this area. In the near fu-
ture, the approval of ND application in implants is expected. Therefore, 
a new era for the application of nanodiamonds in the biomedical field 
will be opened. The prospective applications of nanodiamonds will be 
in various multifunctional devices for simultaneous cell targeting, drug 
delivery, and image reactions. 
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[103] J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P.R. Hem-
mer, F. Reinhard, J.r. Wrachtrup, Highly efficient FRET from a single nitrogen-va-
cancy center in nanodiamonds to a single organic molecule, Acs Nano 5(10) (2011) 
7893-7898.
[104] J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, 
J.-P. Boudou, P.A. Curmi, M. Sennour, A. Thorel, Fluorescence and spin properties 
of defects in single digit nanodiamonds, ACS nano 3(7) (2009) 1959-1965.
[105] A. Sanaat, H. Arabi, I. Mainta, V. Garibotto, H. Zaidi, Projection Space Im-
plementation of Deep Learning-Guided Low-Dose Brain PET Imaging Improves 
Performance over Implementation in Image Space, Journal of nuclear medicine : 
official publication, Society of Nuclear Medicine 61(9) (2020) 1388-1396.
[106] A. Sanaat, H. Arabi, M.R. Ay, H. Zaidi, Novel preclinical PET geometrical 
concept using a monolithic scintillator crystal offering concurrent enhancement in 
spatial resolution and detection sensitivity: a simulation study, Physics in Medicine 
& Biology 65(4) (2020) 045013.
[107] A. Sanaat, H. Zaidi, Depth of interaction estimation in a preclinical PET 
scanner equipped with monolithic crystals coupled to SiPMs using a deep neural 
network, Applied Sciences 10(14) (2020) 4753.
[108] A. Sanaat, A. Ashrafi-Belgabad, H. Zaidi, Polaroid-PET: a PET scanner with 
detectors fitted with polaroids for filtering unpolarized optical photons: a Monte 
Carlo simulation study, Physics in Medicine & Biology  (2020).
[109] O.A. Shenderova, I.I. Vlasov, S. Turner, G. Van Tendeloo, S.B. Orlinskii, 
A.A. Shiryaev, A.A. Khomich, S.N. Sulyanov, F. Jelezko, J. Wrachtrup, Nitrogen 

control in nanodiamond produced by detonation shock-wave-assisted synthesis, 
The Journal of Physical Chemistry C 115(29) (2011) 14014-14024.
[110] I.I. Vlasov, O. Shenderova, S. Turner, O.I. Lebedev, A.A. Basov, I. Sildos, M. 
Rähn, A.A. Shiryaev, G. Van Tendeloo, Nitrogen and luminescent nitrogen‐vacan-
cy defects in detonation nanodiamond, Small 6(5) (2010) 687-694.
[111] L.-C.L. Huang, H.-C. Chang, Adsorption and immobilization of cytochrome 
c on nanodiamonds, Langmuir 20(14) (2004) 5879-5884.
[112] S.C. Hens, G. Cunningham, T. Tyler, S. Moseenkov, V. Kuznetsov, O. Shen-
derova, Nanodiamond bioconjugate probes and their collection by electrophoresis, 
Diamond and related materials 17(11) (2008) 1858-1866.
[113] A.M. Schrand, J.B. Lin, S.C. Hens, S.M. Hussain, Temporal and mechanistic 
tracking of cellular uptake dynamics with novel surface fluorophore-bound nano-
diamonds, Nanoscale 3(2) (2011) 435-445.
[114] V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluo-
rescent nanodiamond, Journal of the American Chemical Society 131(13) (2009) 
4594-4595.
[115] O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Ges-
set, J.-C. Arnault, A. Thorel, J.-P. Boudou, Photoluminescent diamond nanopar-
ticles for cell labeling: study of the uptake mechanism in mammalian cells, ACS 
nano 3(12) (2009) 3955-3962.
[116] L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclau-
rin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, Quantum measurement and 
orientation tracking of fluorescent nanodiamonds inside living cells, Nature nano-
technology 6(6) (2011) 358-363.
[117] X.Q. Zhang, R. Lam, X. Xu, E.K. Chow, H.J. Kim, D. Ho, Multimodal nan-
odiamond drug delivery carriers for selective targeting, imaging, and enhanced 
chemotherapeutic efficacy, Advanced materials 23(41) (2011) 4770-4775.
[118] J. Dong, R. Jiang, H. Huang, J. Chen, J. Tian, F. Deng, Y. Dai, Y. Wen, 
X. Zhang, Y. Wei, Facile preparation of fluorescent nanodiamond based polymer 
nanoparticles via ring-opening polymerization and their biological imaging, Mate-
rials Science and Engineering: C 106 (2020) 110297.
[119] Wide-field in vivo background free imaging by selective magnetic modula-
tion of nanodiamond fluorescence, Biomed. Opt. Express 5(4) (2014) 1190-1202.
[120] A. Schrand, J. Johnson, L. Dai, S.M. Hussain, J. Schlager, L. Zhu, Y. Hong, 
E. Osawa, Safety of Nanoparticles, From Manufacturing to Medical Applications, 
Nanostructure Science and Technology  (2009) 159-187.
[121] J. Kowalczyk, M. Madej, D. Ozimina, K. Milewski, The influence of 
non-toxic cutting fluid on the diamond-like carbon coatings, AIP Conference Pro-
ceedings, AIP Publishing LLC, 2018, p. 020009.
[122] K.-H. Yang, R.J. Narayan, Biocompatibility and functionalization of dia-
mond for neural applications, Current Opinion in Biomedical Engineering 10 
(2019) 60-68.
[123] Q. Zhang, V.N. Mochalin, I. Neitzel, I.Y. Knoke, J. Han, C.A. Klug, J.G. 
Zhou, P.I. Lelkes, Y. Gogotsi, Fluorescent PLLA-nanodiamond composites for 
bone tissue engineering, Biomaterials 32(1) (2011) 87-94.
[124] A.M. Schrand, H. Huang, C. Carlson, J.J. Schlager, E. Ōsawa, S.M. Hussain, 
L. Dai, Are diamond nanoparticles cytotoxic?, The journal of physical chemistry 
B 111(1) (2007) 2-7.
[125] Y. Yuan, X. Wang, G. Jia, J.-H. Liu, T. Wang, Y. Gu, S.-T. Yang, S. Zhen, 
H. Wang, Y. Liu, Pulmonary toxicity and translocation of nanodiamonds in mice, 
Diamond and Related Materials 19(4) (2010) 291-299.
[126] N. Mohan, C.-S. Chen, H.-H. Hsieh, Y.-C. Wu, H.-C. Chang, In vivo imaging 
and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans, 
Nano letters 10(9) (2010) 3692-3699.
[127] E.K. Chow, X.-Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. 
Schaffer, E. Osawa, A. Goga, D. Ho, Nanodiamond therapeutic delivery agents 
mediate enhanced chemoresistant tumor treatment, Science translational medicine 
3(73) (2011) 73ra21-73ra21.
[128] K. Yonezawa, M. Kawaguchi, A. Kaneuji, T. Ichiseki, Y. Iinuma, K. 
Kawamura, K. Shintani, S. Oda, M. Taki, N. Kawahara, Evaluation of Antibacte-
rial and Cytotoxic Properties of a Fluorinated Diamond-Like Carbon Coating for 
the Development of Antibacterial Medical Implants, Antibiotics 9(8) (2020) 495.
[129] L. Moore, J. Yang, T.T.H. Lan, E. Osawa, D.-K. Lee, W.D. Johnson, J. Xi, 
E.K.-H. Chow, D. Ho, Biocompatibility assessment of detonation nanodiamond in 
non-human primates and rats using histological, hematologic, and urine analysis, 
ACS nano 10(8) (2016) 7385-7400.
[130] S. Kurtz, S. Kurtz, A Primer on UHMWPE UHMWPE biomaterials hand-
book: ultra high molecular weight polyethylene in total joint replacement and med-
ical devices, Boston: Elsevier/Academic Press, 2009.
[131] Z. Karaguiozova, J. Kaleicheva, V. Mishev, G. Nikolcheva, Enhancement in 
the Tribological and Mechanical Properties of Electroless Nickel-Nanodiamond 
Coatings Plated on Iron, Tribology in Industry 39(4) (2017).



226 Y. Zamani et al. / Journal of Composites and Compounds 2 (2020) 215-227

[132] T. Takimoto, T. Chano, S. Shimizu, H. Okabe, M. Ito, M. Morita, T. Kimura, 
T. Inubushi, N. Komatsu, Preparation of fluorescent diamond nanoparticles stably 
dispersed under a physiological environment through multistep organic transfor-
mations, Chemistry of materials 22(11) (2010) 3462-3471.
[133] O. Shenderova, N. Nunn, T. Oeckinghaus, M. Torelli, G. McGuire, K. Smith, 
E. Danilov, R. Reuter, J. Wrachtrup, A. Shames, Commercial quantities of ultras-
mall fluorescent nanodiamonds containing color centers, Advances in Photonics of 
Quantum Computing, Memory, and Communication X, International Society for 
Optics and Photonics, 2017, p. 1011803.
[134] L. Joly-Pottuz, N. Matsumoto, H. Kinoshita, B. Vacher, M. Belin, G. Mon-
tagnac, J. Martin, N. Ohmae, Diamond-derived carbon onions as lubricant addi-
tives, Tribology International 41(2) (2008) 69-78.
[135] V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and appli-
cations of nanodiamonds, Nature nanotechnology 7(1) (2012) 11-23.
[136] L. Bazli, A. Khavandi, M.A. Boutorabi, M. Karrabi, Correlation between 
viscoelastic behavior and morphology of nanocomposites based on SR/EPDM 
blends compatibilized by maleic anhydride, Polymer 113 (2017) 156-166.
[137] L. Bazli, A. Khavandi, M.A. Boutorabi, M. Karrabi, Morphology and visco-
elastic behavior of silicone rubber/EPDM/Cloisite 15A nanocomposites based on 
Maxwell model, Iranian Polymer Journal 25(11) (2016) 907-918.
[138] S. Saadi, B. Nazari, Recent developments and applications of nanocompos-
ites in solar cells: a review, Journal of Composites and Compounds 1(1) (2019) 
48-58.
[139] H.W. Jang, A. Zareidoost, M. Moradi, A. Abuchenari, A. Bakhtiari, R. Pou-
riamanesh, B. Malekpouri, A.J. Rad, D. Rahban, Photosensitive nanocomposites: 
environmental and biological applications, Journal of Composites and Compounds 
2(1) (2020) 50-60.
[140] O. Shenderova, A. Panich, S. Moseenkov, S. Hens, V. Kuznetsov, H.-M. 
Vieth, Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies, The 
Journal of Physical Chemistry C 115(39) (2011) 19005-19011.
[141] W. Ma, X. Yu, X. Qu, Q. Zhang, Functionalization of agglomerating nanodi-
amonds with biodegradable poly (ε-caprolactone) through surface-initiated polym-
erization, Diamond and Related Materials 62 (2016) 14-21.
[142] A. Krüger, Y. Liang, G. Jarre, J. Stegk, Surface functionalisation of detona-
tion diamond suitable for biological applications, Journal of Materials Chemistry 
16(24) (2006) 2322-2328.
[143] J. Nunes-Pereira, A. Silva, C. Ribeiro, S. Carabineiro, J. Buijnsters, S. 
Lanceros-Méndez, Nanodiamonds/poly (vinylidene fluoride) composites for tissue 
engineering applications, Composites Part B: Engineering 111 (2017) 37-44.
[144] Y. Sun, Q. Yang, H. Wang, Synthesis and characterization of nanodiamond 
reinforced chitosan for bone tissue engineering, Journal of functional biomaterials 
7(3) (2016) 27.
[145] A. Stacey, I. Aharonovich, S. Prawer, J.E. Butler, Controlled synthesis of 
high quality micro/nano-diamonds by microwave plasma chemical vapor deposi-
tion, Diamond and related materials 18(1) (2009) 51-55.
[146] V.N. Mochalin, Y. Gogotsi, Nanodiamond–polymer composites, Diamond 
and Related Materials 58 (2015) 161-171.
[147] D. Wang, Y. Tong, Y. Li, Z. Tian, R. Cao, B. Yang, PEGylated nanodiamond 
for chemotherapeutic drug delivery, Diamond and related materials 36 (2013) 26-
34.
[148] K. Fox, P.A. Tran, D.W. Lau, T. Ohshima, A.D. Greentree, B.C. Gibson, 
Nanodiamond-polycaprolactone composite: A new material for tissue engineering 
with sub-dermal imaging capabilities, Materials Letters 185 (2016) 185-188.
[149] A.D. Salaam, M. Mishra, E. Nyairo, D. Dean, Electrospun polyvinyl alcohol/
nanodiamond composite scaffolds: morphological, structural, and biological anal-
ysis, Journal of biomaterials and tissue engineering 4(3) (2014) 173-180.
[150] H. Gomez, M.K. Ram, F. Alvi, E. Stefanakos, A. Kumar, Novel synthesis, 
characterization, and corrosion inhibition properties of nanodiamond− polyaniline 
films, The Journal of Physical Chemistry C 114(44) (2010) 18797-18804.
[151] L. Cao, Y. Hou, K. Lafdi, K. Urmey, Fluorescent composite scaffolds made 
of nanodiamonds/polycaprolactone, Chemical Physics Letters 641 (2015) 123-
128.
[152] M. Abniki, A. Moghimi, F. Azizinejad, Fabrication of bionanocomposite 
based on LDH using biopolymer of gum arabic and chitosan-coating for sustained 
drug-release, Journal of the Serbian Chemical Society 85(5) (2020).
[153] M. Abniki, A. Moghimi, F. Azizinejad, Synthesis of calcium‐layered double 
hydroxide based nanohybrid for controlled release of an anti‐inflammatory drug, 
Journal of the Chinese Chemical Society  (2020).
[154] A. Bakhtiari, A. Cheshmi, M. Naeimi, S.M. Fathabad, M. Aliasghari, A.M. 
Chahardehi, S. Hassani, V. Elhami, Synthesis and characterization of the novel 80S 
bioactive glass: bioactivity, ‎ biocompatibility, cytotoxicity, Journal of Composites 
and Compounds 2(4) (2020) 110-114.

[155] B.F. Dizaji, M.H. Azerbaijan, N. Sheisi, P. Goleij, T. Mirmajidi, F. Chogan, 
M. Irani, F. Sharafian, Synthesis of PLGA/chitosan/zeolites and PLGA/chitosan/
metal organic frameworks nanofibers for targeted delivery of Paclitaxel toward 
prostate cancer cells death, International Journal of Biological Macromolecules 
164 (2020) 1461-1474.
[156] A. Nouri, B. Faraji Dizaji, N. Kianinejad, A. Jafari Rad, S. Rahimi, M. Irani, 
F. Sharifian Jazi, Simultaneous linear release of folic acid and doxorubicin from 
ethyl cellulose/chitosan/g‐C3N4/MoS2 core‐shell nanofibers and its anticancer 
properties, Journal of Biomedical Materials Research Part A  (2020).
[157] N. Nunn, M. Torelli, G. McGuire, O. Shenderova, Nanodiamond: a high 
impact nanomaterial, Current Opinion in Solid State and Materials Science 21(1) 
(2017) 1-9.
[158] T. Kondo, I. Neitzel, V.N. Mochalin, J. Urai, M. Yuasa, Y. Gogotsi, Electrical 
conductivity of thermally hydrogenated nanodiamond powders, Journal of Applied 
Physics 113(21) (2013) 214307.
[159] S. Mukhopadhyay, B. Deopura, High-modulus polypropylene fibers—
through postspinning operations, Structure and Properties of High-Performance 
Fibers, Elsevier2017, pp. 187-198.
[160] M. Mahdavi, N. Mahmoudi, F. Rezaie Anaran, A. Simchi, Electrospinning of 
nanodiamond-modified polysaccharide nanofibers with physico-mechanical prop-
erties close to natural skins, Marine drugs 14(7) (2016) 128.
[161] N. Cai, Q. Dai, Z. Wang, X. Luo, Y. Xue, F. Yu, Preparation and properties 
of nanodiamond/poly (lactic acid) composite nanofiber scaffolds, Fibers and Poly-
mers 15(12) (2014) 2544-2552.
[162] J. Xiao, X. Duan, Q. Yin, Z. Zhang, H. Yu, Y. Li, Nanodiamonds-mediated 
doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer, Biomate-
rials 34(37) (2013) 9648-9656.
[163] T.-F. Li, K. Li, Q. Zhang, C. Wang, Y. Yue, Z. Chen, S.-J. Yuan, X. Liu, Y. 
Wen, M. Han, Dendritic cell-mediated delivery of doxorubicin-polyglycerol-nan-
odiamond composites elicits enhanced anti-cancer immune response in glioblasto-
ma, Biomaterials 181 (2018) 35-52.
[164] A.N. Bokarev, I.L. Plastun, Possibility of drug delivery due to hydro-
gen bonds formation in nanodiamonds and doxorubicin: molecular modeling, 
Наносистемы: физика, химия, математика 9(3) (2018).
[165] M. Radmansouri, E. Bahmani, E. Sarikhani, K. Rahmani, F. Sharifianjazi, M. 
Irani, Doxorubicin hydrochloride-Loaded electrospun chitosan/cobalt ferrite/tita-
nium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug 
release, International journal of biological macromolecules 116 (2018) 378-384.
[166] P. Abasian, M. Radmansouri, M.H. Jouybari, M.V. Ghasemi, A. Moham-
madi, M. Irani, F.S. Jazi, Incorporation of magnetic NaX zeolite/DOX into the 
PLA/chitosan nanofibers for sustained release of doxorubicin against carcinoma 
cells death in vitro, International journal of biological macromolecules 121 (2019) 
398-406.
[167] J.W. Rhim, A.K. Mohanty, S.P. Singh, P.K. Ng, Effect of the processing 
methods on the performance of polylactide films: Thermocompression versus sol-
vent casting, Journal of applied polymer science 101(6) (2006) 3736-3742.
[168] N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication 
technique, Biotechnology advances 28(3) (2010) 325-347.
[169] U. Roy, V. Drozd, A. Durygin, J. Rodriguez, P. Barber, V. Atluri, X. Liu, T.G. 
Voss, S. Saxena, M. Nair, Characterization of Nanodiamond-based anti-HIV drug 
Delivery to the Brain, Scientific reports 8(1) (2018) 1-12.
[170] M.H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A.A. Rampersaud, R. 
Brick, C.L. Gomes, M.O. Scully, P.R. Hemmer, Fluorescent nanodiamonds: past, 
present, and future, Nanophotonics 7(8) (2018) 1423-1453.
[171] J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers 
for drug delivery applications, Acta biomaterialia 9(12) (2013) 9243-9257.
[172] P. Chandrasekhar, CNT applications in drug and biomolecule delivery, Con-
ducting Polymers, Fundamentals and Applications, Springer2018, pp. 61-64.
[173] H. Girard, T. Petit, S. Perruchas, T. Gacoin, C. Gesset, J.-C. Arnault, P. Ber-
gonzo, Surface properties of hydrogenated nanodiamonds: a chemical investiga-
tion, Physical chemistry chemical physics 13(24) (2011) 11517-11523.
[174] S. Nasibi, K. Alimohammadi, L. Bazli, S. Eskandarinezhad, A. Mohamma-
di, N. Sheysi, TZNT alloy for surgical implant applications: A systematic review, 
Journal of Composites and Compounds 2(3) (2020) 62-68.
[175] Z. Goudarzi, A. Ijadi, A. Bakhtiari, S. Eskandarinezhad, N. Azizabadi, M.A. 
Jazi, Sr-doped bioactive glasses for biological applications, Journal of Composites 
and Compounds 2(3) (2020) 105-109.
[176] J. Daraei, Production and characterization of PCL (Polycaprolactone) coated 
TCP/nanoBG composite scaffolds by sponge foam method for orthopedic applica-
tions, Journal of Composites and Compounds 2(1) (2020) 45-50.
[177] K. Fox, R. Ratwatte, M.A. Booth, H.M. Tran, P.A. Tran, High Nanodiamond 
Content-PCL Composite for Tissue Engineering Scaffolds, Nanomaterials 10(5) 



Y. Zamani et al. / Journal of Composites and Compounds 2 (2020) 215-227 227

(2020) 948.
[178] O.S. Adeyemi, F.A. Sulaiman, Evaluation of metal nanoparticles for drug 
delivery systems, Journal of biomedical research 29(2) (2015) 145.
[179] P. Karami, S.S. Khasraghi, M. Hashemi, S. Rabiei, A. Shojaei, Polymer/nan-
odiamond composites-a comprehensive review from synthesis and fabrication to 
properties and applications, Advances in Colloid and Interface Science 269 (2019) 
122-151.
[180] Q. Zhang, I. Neitzel, V.N. Mochalin, I. Knoke, D.M. Wootton, Y. Gogotsi, 
P.I. Lelkes, J.G. Zhou, PLLA-nanodiamond composites and their application in 
bone tissue engineering, Global Congress on NanoEngineering for Medicine and 
Biology, 2010, pp. 241-242.
[181] X. Xu, X. Wang, L. Yang, H. Yu, H. Chang, Structure and surface charac-
terization of co-adsorbed layer of oleic acid and octadecylamine on detonation 
nanodiamond, Diamond and Related Materials 60 (2015) 50-59.
[182] P. Feng, Y. Kong, L. Yu, Y. Li, C. Gao, S. Peng, H. Pan, Z. Zhao, C. Shuai, 
Molybdenum disulfide nanosheets embedded with nanodiamond particles: co-dis-
persion nanostructures as reinforcements for polymer scaffolds, Applied Materials 
Today 17 (2019) 216-226.
[183] T.C. Yadav, A.K. Srivastava, P. Mishra, D. Singh, N. Raghuwanshi, N.K. 
Singh, A.K. Singh, S.K. Tiwari, R. Prasad, V. Pruthi, Electrospinning: An Efficient 
Biopolymer-Based Micro-and Nanofibers Fabrication Technique, Next Generation 
Biomanufacturing Technologies, ACS Publications2019, pp. 209-241.
[184] B. Pant, M. Park, S.-J. Park, Drug delivery applications of core-sheath nano-
fibers prepared by coaxial electrospinning: a review, Pharmaceutics 11(7) (2019) 
305.
[185] I. Jun, H.-S. Han, J.R. Edwards, H. Jeon, Electrospun fibrous scaffolds for 
tissue engineering: Viewpoints on architecture and fabrication, International jour-
nal of molecular sciences 19(3) (2018) 745.
[186] F. Pereira, G. Salles, B. Rodrigues, F. Marciano, C. Pacheco-Soares, A. 
Lobo, Diamond nanoparticles into poly (lactic acid) electrospun fibers: Cytocom-
patible and bioactive scaffolds with enhanced wettability and cell adhesion, Mate-
rials Letters 183 (2016) 420-424.
[187] S. Houshyar, G.S. Kumar, A. Rifai, N. Tran, R. Nayak, R.A. Shanks, R. 
Padhye, K. Fox, A. Bhattacharyya, Nanodiamond/poly-ε-caprolactone nanofibrous 
scaffold for wound management, Materials Science and Engineering: C 100 (2019) 
378-387.
[188] L. Bazli, B. Eftekhari Yekta, A. Khavandi, Preparation and Characterization 
of Sn-Containing Glasses for Brachytherapy Applications, Transactions of the In-
dian Ceramic Society 76(4) (2017) 242-246.
[189] M.A. Brady, A. Renzing, T.E. Douglas, Q. Liu, S. Wille, M. Parizek, L. 
Bacakova, A. Kromka, M. Jarosova, G. Godier, Development of composite poly 
(lactide-co-glycolide)-nanodiamond scaffolds for bone cell growth, Journal of na-
noscience and nanotechnology 15(2) (2015) 1060-1069.
[190] M. Parizek, T.E. Douglas, K. Novotna, A. Kromka, M.A. Brady, A. Renzing, 
E. Voss, M. Jarosova, L. Palatinus, P. Tesarek, Nanofibrous poly (lactide-co-gly-
colide) membranes loaded with diamond nanoparticles as promising substrates for 
bone tissue engineering, International journal of nanomedicine 7 (2012) 1931.
[191] V. Kumar, R. Mahajan, I. Kaur, K.-H. Kim, Simple and mediator-free urea 
sensing based on engineered nanodiamonds with polyaniline nanofibers synthe-
sized in situ, ACS Applied Materials & Interfaces 9(20) (2017) 16813-16823.
[192] M. Alishiri, A. Shojaei, M.J. Abdekhodaie, Biodegradable polyurethane ac-
rylate/HEMA-grafted nanodiamond composites with bone regenerative potential 
applications: structure, mechanical properties and biocompatibility, RSC advances 
6(11) (2016) 8743-8755.

[193] S.A. Haddadi, A.R. SA, M. Amini, A. Kheradmand, In-situ preparation and 
characterization of ultra-high molecular weight polyethylene/diamond nanocom-
posites using Bi-supported Ziegler-Natta catalyst: Effect of nanodiamond silaniza-
tion, Materials Today Communications 14 (2018) 53-64.
[194] J. Nunes-Pereira, A.R. Silva, C. Ribeiro, S.A.C. Carabineiro, J.G. Buijnsters, 
S. Lanceros-Méndez, Nanodiamonds/poly(vinylidene fluoride) composites for tis-
sue engineering applications, Composites Part B: Engineering 111 (2017) 37-44.
[195] U. Maitra, K.E. Prasad, U. Ramamurty, C.N.R. Rao, Mechanical properties 
of nanodiamond-reinforced polymer-matrix composites, Solid State Communica-
tions 149(39) (2009) 1693-1697.
[196] U. Maitra, K.E. Prasad, U. Ramamurty, C. Rao, Mechanical properties of 
nanodiamond-reinforced polymer-matrix composites, Solid State Communica-
tions 149(39-40) (2009) 1693-1697.
[197] O. Shenderova, T. Tyler, G. Cunningham, M. Ray, J. Walsh, M. Casulli, S. 
Hens, G. McGuire, V. Kuznetsov, S. Lipa, Nanodiamond and onion-like carbon 
polymer nanocomposites, Diamond and related materials 16(4-7) (2007) 1213-
1217.
[198] E. Tamburri, V. Guglielmotti, S. Orlanducci, M.L. Terranova, D. Sordi, D. 
Passeri, R. Matassa, M. Rossi, Nanodiamond-mediated crystallization in fibers of 
PANI nanocomposites produced by template-free polymerization: Conductive and 
thermal properties of the fibrillar networks, Polymer 53(19) (2012) 4045-4053.
[199] A. Apicella, R. Aversa, F.I. Petrescu, Hybrid Ceramo-Polymeric Nano-Dia-
mond Composites, American Journal of Engineering and Applied Sciences 11(2) 
(2018) 766.782.
[200] L. Wang, W. Cao, X. Wang, P. Li, J. Zhou, G. Zhang, X. Li, X. Xing, Biode-
gradable silver-loaded polycation modified nanodiamonds/polyurethane scaffold 
with improved antibacterial and mechanical properties for cartilage tissue repair-
ing, Journal of Materials Science: Materials in Medicine 30(4) (2019) 41.
[201] C. Shuai, W. Huang, P. Feng, C. Gao, D. Gao, Y. Deng, Q. Wang, P. Wu, X. 
Guo, Nanodiamond reinforced polyvinylidene fluoride/bioglass scaffolds for bone 
tissue engineering, Journal of Porous Materials 24(1) (2017) 249-255.
[202] S. Balakin, Y.-S. Yun, J. Lee, E.-H. Kang, J. Spohn, I.-S. Yun, J. Opitz, G. 
Cuniberti, J.-S. Yeo, In vitro characterization of osteoblast cells on polyelectrolyte 
multilayers containing detonation nanodiamonds, Biomedical Materials  (2020).
[203] H. Gong, B. Anasori, C.R. Dennison, K. Wang, E.C. Kumbur, R. Strich, 
J.G. Zhou, Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodia-
mond composites for implant application, Journal of Materials Science: Materials 
in Medicine 26(2) (2015) 110.
[204] Q. Zhang, V.N. Mochalin, I. Neitzel, K. Hazeli, J. Niu, A. Kontsos, J.G. 
Zhou, P.I. Lelkes, Y. Gogotsi, Mechanical properties and biomineralization of mul-
tifunctional nanodiamond-PLLA composites for bone tissue engineering, Bioma-
terials 33(20) (2012) 5067-5075.
[205] G.Y. Ahn, T.-K. Ryu, Y.R. Choi, J.R. Park, M.J. Lee, S.-W. Choi, Fabrica-
tion and optimization of Nanodiamonds-composited poly (ε-caprolactone) fibrous 
matrices for potential regeneration of hard tissues, Biomaterials research 22(1) 
(2018) 1-8.
[206] Y. Sun, A. Finne‐Wistrand, T. Waag, Z. Xing, M. Yassin, A. Yamamoto, K. 
Mustafa, D. Steinmüller‐Nethl, A. Krueger, A.C. Albertsson, Reinforced degrad-
able biocomposite by homogenously distributed functionalized nanodiamond par-
ticles, Macromolecular Materials and Engineering 300(4) (2015) 436-447.
[207] A. Şelaru, D.-M. Drăgușin, E. Olăreț, A. Serafim, D. Steinmüller-Nethl, E. 
Vasile, H. Iovu, I.-C. Stancu, M. Costache, S. Dinescu, Fabrication and biocom-
patibility evaluation of nanodiamonds-gelatin electrospun materials designed for 
prospective tissue regeneration applications, Materials 12(18) (2019) 2933.



Available online at www.jourcc.com

Journal homepage: www.JOURCC.com

Journal of Composites and Compounds

Journal of Composites and Compounds 2 (2020) 228-240

Application of composite conducting polymers for improving the 
corrosion behavior of various substrates: A Review

Leila Bazlia*, Mohammad Yusufb, Ali Farahanic , Morvarid Kiamarzid , Zahra Seyedhosseinie,

Mehran Nezhadmansarif , Maryam Aliasgharig, Marjan Iranpoorh

a School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
b Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Malaysia

c Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
d Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran

e Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
f Department of Engineering and Materials Science, Sharif University of Technology, Tehran, Iran

g Department of Chemistry, College of Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
h Department of Agricultural Machinery Mechanics, University of Tehran, Alborz, Iran

* Corresponding author: Leila Bazli; E-mail: leilabazli64@gmail.com
https://doi.org/10.29252/jcc.2.4.7          This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0)

1. Introduction

In the electronic and metallurgical industries, corrosion control is 
a challenge with great importance worldwide [1]. To protect metals 
from corrosion, various methods have been used. A widely practiced 

technique is the application of conducting polymer coatings [2, 3]. An 
active area of research in electrochemistry in the last decades has been 
the electrodeposition of CPs on the surfaces of metallic electrodes. In 
contrast to other coatings, such as paints, CPs do not contain toxic and 
hazardous constituents for the environment. Additionally, compared to 
other coatings that only provide physical barriers against corrosive envi-
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

One of the most important problems in the manufacturing industry is metal corrosion. Recently, conductive poly-
mers (CPs) have attracted attention due to their economic viability and widespread industrial applications. Upon 
adsorption, long-chain carbon bonds of polymers provide a blockage for large surface areas of corroding metals. 
The adsorbed thin films create a barrier between the surrounding environment and the metal substrate. Polypyrrole 
(PPy), polyaniline (PANI), and polythiophene (PTh) are conducting polymers that are utilized to protect metals 
and metal alloys against corrosion. A proper selection of synthesis parameters for CPs can improve the anticor-
rosion behavior of the coatings for metals and metal alloys. This paper has an overview of conducting polymer 
composite coatings on substrates based on steel, copper, magnesium, aluminum, and their alloys.
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ronments, CPs provide physical and electronic barrier effects and elec-
tromagnetic interference (EMI) shielding which enhances the protection 
behavior [4-6].

These composite materials are strongly adsorbed onto active sites of 
the metal substrate leading to suppression of the dissolution process and 
production of a protective film layer. In fact, corrosion protection of CPs 
is a kind of anodic protection. According to studies, coating a metal with 
a conducting polymer places the potential of the electrode in the passive 
zone in the absence of redox reactions [7]. CPs have been applied on 
the surface of metals such as zinc [5], copper [6, 7], aluminum [8, 9], 
iron [10, 11], stainless steel (SS) [12], mild steel (MS) [13], etc. Mostly, 
polyaniline, polypyrrole, and polythiophene are used for coating met-
al substrates [8-19]. This review article has an overview of conducting 
polymers and composites and the state-of-the-art findings in the field of 
composite conducting polymers coated on various metal substrates are 
presented.

2.1. Conducting polymers 

CPs can be used as a protective coating for the prevention of met-
al surface corrosion and enhancement of PE values [20]. Intrinsically 
conducting polymers are organic polymers with electrical conductiv-
ity. These compounds can either be semiconductors or show metallic 
conductivity. Their great advantage is the processability of conductive 
polymers, mainly by dispersion. Generally, these polymers are not ther-
moplastics and thereby they are not thermoformable. However, they are 
organic compounds like insulating polymers. Mechanical properties of 
conducting polymers are not similar to other commercial polymers, but 
they exhibit high electrical conductivity [21]. Using organic synthesis 
methods as well as advanced dispersion techniques, the electrical prop-
erties of these polymers can be fine-tuned [22, 23]. 

Different CPs are commercially available including PANI, PPy, PTh 
[24-26]. The chemical composition of these polymers is illustrated in 
Fig. 1. To synthesize CPs, electrochemical or chemical oxidation meth-
ods are used [27, 28]. PANI and its derivatives are extensively utilized 
for anticorrosion coatings due to facile synthesis, enhanced environmen-
tal stability, as well as various redox states that allow property regula-
tion. Localized/delocalized polarons and bipolarons may be present in 
the PANI structure in various proportions, which depends on the meth-
ods of synthesis and isolation. PANI is practically applied to protect con-
crete steel bar reinforcement [28, 29].

Among all known CPs, one can consider PPy as promising material 
due to its high conductivity, easy and flexible preparation, good me-
chanical properties, and stability. Potential technological application of 
PPy include membrane separation [30], electronic and electrochromic 
devices [31], light-weight batteries [32], chromatographic stationary 
phases [33], sensors [34], and counterelectrode in electrolytic capacitors 
[35]. In recent years, it has been reported in several studies that PPy can 
protect metals and their alloys from corrosion [36-38].

An important class of conjugated polymers is PTh polymers that 
have a wide range of applications including field-effect transistors, elec-
trochromic, and conducting films [39]. Few reports have demonstrat-
ed the use of PTh for the corrosion protection of metals. Among CPs, 

some PTh derivatives have shown good performance, which ultimately 
depends on the environment nature that CPs are in contact with. It is 
feasible to generate PTh and its derivatives on other CPs such as PPy 
by applying proper voltage. The combination of these two conducting 
polymers has led to better corrosion performance [40].

It is possible to formulate CP-based coatings to inhibit corrosion of 
metals even in damaged areas where the surface of the metal is direct-
ly exposed to the corrosive environment. Conducting polymers can be 
whether in the reduction-nonconductive state or oxidation conductive 
state. Under appropriate conditions, they can easily switch between 
the two states. Redox processes occur in CPs; therefore, the expelling/
binding of dopants (counterions) is conducted in response to the metal 
surface potential variation. The potential variation is initiated by local 
electrochemical reactions resulting from the corrosion. Based on the lo-
cal corrosive conditions, the dopants can be expelled or inserted by the 
CP, which often act as inhibitors that prevent the local corrosion reac-
tions upon release [41, 42]. This is considered as a strategy suggested for 
taking advantage of CP-based corrosion-resistant coatings [43].

3. Corrosion protection mechanisms of CPs

For the provision of electronic conductivity in CPs, oxidative po-
lymerization and anion doping are performed into the polymer. The 
penetration of aggressive anions into CP coating is prevented by con-
trolling the doping ions. When CP-coated metal substrates are immersed 
in aggressive environments, such as the sodium chloride solution, the 
chloride anions present in the medium is exchanged with doped anions 
in the CP coating. The corrosion protection mechanisms of CPs have not 
been precisely revealed. Four possible hypotheses have been proposed: 

Ι) Mechanism of controlled inhibitor release: In this mechanism, the 
anion dopant may be released upon reduction from the oxidized and 
hence doped CP-based coating on a metallic substrate, which is driven 
by a coating defect. As far as doped PANI is concerned, the anions are 
released either through a reduction mechanism or a simple acid-dopant 
elimination if it is soluble in water [44, 45]. 

ΙΙ) Mechanism of anodic protection: according to this mechanism, 
protective metal oxide layers are formed on the metal surface as a result 
of CPs providing corrosion protection [46].

ΙΙΙ) It is proposed that an electric field is produced when there is a 
contact between a doped semiconductor or a conducting polymer and a 
metal resulting in a reduction in the corrosion rate due to the restriction 
of the electron flow from the metal to an oxidizing species [47]. 

ΙV) CPs create an adherent, dense, low porosity film on the metal 
surface limiting the access of oxidant agents and prevent metal surface 
oxidation [48] (Fig 2).

A denser CP layer provides a better barrier effect and decreases the 
rate of H2O and O2 transport into the polymer. The reaction site on which 
O2 reduction occurs moves from the metal/CP interface to the CP/solu-
tion interface by the enhancement of the compactness of the coating and 
its adherence to the substrate [49]. The change in the O2 reduction site 
on the surface of the polymer leads to a decrease in reduction products 
such as OH across the metal/CP interface, and thereby prevent the coat-
ing disbondment and delamination [50]. Furthermore, oxygen reduction 
requires the local reoxidation of the coating and its active role in the 
case that local small-size defects or pinholes are generated. Therefore, 
the improvement of the barrier effect should not inactivate CPs. The 
open-circuit potential of the metal/CP-based coating/solution system 
will be is in the passive state as far as the conducting polymer is in the 
conductive form. The site of the O2 reduction and its kinetics are import-
ant factors to determine the prolonged protective properties of the coat-
ing. Generally, it has been reported that the barrier effect is improved by 

Fig. 1. FChemical composition of PANI, PPy, and PTh.
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the dehydration of CP film electrodeposited on metal surfaces from an 
aqueous medium [43].

Mechanisms Ι and ΙΙ are the most important contributing mecha-
nisms that can rationalize corrosion inhibition by CPs. For a specific 
metal substrate/CP-based coating/solution system, the other two mech-
anisms contribute to the corrosion process simultaneously with the con-
trolled inhibitor release or the anodic protection mechanism [10, 43]. 

3.1. Corrosion inhibitors

Different ways of CP doping can be used for controlling the electro-
lytic environment near the surface of the metal substrate in case a scratch 
is formed. In this condition, a galvanic coupling exists between the CP 
coating and the metal. The anodic reaction involves the metal oxidation, 
while the cathodic reaction is the CP reduction resulting in the release of 
the doping anions. However, oxygen is reduced simultaneously on both 
the metal surfaces and CP coating resulting in the OH production and the 
CP reoxidation, respectively. Based on the nature of doping anions and 
the metal, a self-healing process may be triggered. In some metals such 
as steel, copper, and aluminum, the doping anions such as molybdates 
and phosphonic acid derivatives act as inhibitors, or oxide formation is 
initiated [43]. 

In the inhibition mechanism, a monomolecular barrier is formed by 
the organic species adsorption onto the surface of the metal. The pres-
ence of the adsorbed molecules results in the limitation of the cathodic 
and/or anodic corrosion reactions such as electron transfer and decreases 
the rate of corrosion [51, 52]. According to Brycki et al. [53], the in-
hibitor action involves the replacement of the adsorbed water from the 
surface of the metal by soluble organic species (Org):
Orgsol+nH2Oads→Orgads+nH2Osol				      (1)

Several investigations have reported that monomeric aniline, as well 
as functionalized aniline derivatives, act as potential corrosion inhibitors 
for steel and iron [54-56]. 

3.2. Anodic protection

The anodic protection activity involved the ways wherein general 
corrosion of the metal substrates and alloys is prevented by CPs mostly 
in solutions free of halides [43]. According to Kinlen et al. [57], the elec-
troactive conducting polymer (ECPs) electrochemistry provides anodic 
protection for the substrate and also prevents cathodic debonding of the 
polymer coating. In this protection mechanism, the corrosion potential 
of the metal substrate in the electrolyte of interest moves to the passive 
region. The proposed reaction between the metal (M) and the oxidized 
state of the polymer coating (ECPm+) is:

	   (2)
reoxidation of the ECP can occur by dissolved or atmospheric ox-

ygen:
			     (3)

4. Composite conducting polymers (CCPs)

Polymer nanocomposites have found increasing attention in various 
engineering applications [58-60]. The essential characteristic of this pro-
cedure is that CPs make it possible to maintain the substrate surface 
potential into a passive state wherein a protective oxide film is generated 
on the surface of metal substrates [43, 61]. As a result, CPs-based coat-
ings are pinhole and defect resistant in such a way as that of the hexava-
lent chromium coatings. It is due to the replenishing of CP charges con-
sumed by oxidation of metal by O2 reduction within the CP coating. 
The corrosion process of metal is prevented by switching the CP-based 
coating into the oxidation state and thereby changing the potential into 
the passive region [62]. 

Expanded studies have focused on the anti-corrosive features of CPs; 
however, there are still numerous problems to be resolved regarding the 
fulfillment of mechanical and physico-electrochemical requirements of 
high performance anticorrosive CP-based coatings exposed to various 
practical conditions. Anticorrosive CP-based coatings have some lim-
itations such as poor adhesion to the metallic substrate, anion-exchange 
properties, poor barrier effect due to porous structure, and irreversible 
consumption of stored charges within the coating, which can oxidize 
the substrate and form a passive oxide layer. The mentioned drawbacks 
show their effect more significantly under harsh environments. In case 
chloride ions are present, these ions can either penetrate through the CP 
coating or undergo anion-exchange (replacement of chlorides with CP 
doping anions) and reach the metal-substrate interface. Extended local-
ized corrosion may be induced by chloride ions and during the redox 
reactions, the charge stored in the CP layer might be irreversibly con-
sumed. 

Using CP-based composites consisting of a conducting polymer and 
different inorganic fillers like metal oxides has been offered as an effi-
cient strategy for the elimination of the disadvantages. In CP-based com-
posites, the CP self-healing properties are combined with qualities of 
inorganic materials. Therefore, the composite coatings exhibit improved 
physicochemical and mechanical properties including enhanced hydro-
phobicity, barrier effect, and adhesion [43, 63-65]. The improvement of 
these properties leads to the enhancement of corrosion protection. Nano-

Fig. 2. Barrier effect of CPs for the diffusion of corrosive agents.
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technology has gained dramatic attention in recent years and is expected 
to make advancements in the design and development of commercially 
viable CP-based composite coatings [66]. It seems that CP-based nano-
composite can combine the properties of CPs and inorganic materials 
more effectively compared to microcomposites [67].

5. CCPs coatings on metals

5.1. CCPs coated on steels

Structural steel is corroded through an electrochemical process in 
the presence of oxygen and moisture. Rust is produced by the oxida-
tion of iron in the steel, which has a volume of six times the original 
material [68]. The corrosion mechanism is presented in Fig. 3. There 
are numerous reported focusing on the corrosion protection effect of CP 
coatings on metals, especially iron and mild steel, and stainless steel 
and significant advancements have been made [69-76]. Most conduct-
ing polymers form conducting films directly on the substrate surface by 
anodic oxidation [77, 78]. Changing from an insulating state to a con-
ducting state by different doping methods including injection of charge 
at the interface of a metal and the conducting polymer, photo doping, 
electrochemical doping, and chemical doping by charge transfer [71]. 
Due to the capability of these polymers in charge storing and transport, 
they can anodically protect metals against fast corrosion [79]. The corro-
sion protection mechanisms of CPs are complex and affected by various 
parameters [80-85]. Some theories have proposed that a passive oxide 
film is formed on the metal surface by oxidation-reduction processes, 
while others have predicted that the barrier mechanism is responsible for 
provided protection [61, 86, 87].

There are many studies targeting to investigate the corrosion pro-
tection of steel by CPs and CCPs. Sathiyanarayanan et al. [88] synthe-
sized the PANI-TiO2 composite coating (PTC) on steel and studied its 
corrosion protection behavior. To prepare PTC, aniline and TiO2 were 
chemically oxidized by ammonium persulfate in a medium containing 
phosphoric acid. According to the results, the redox property of PTC led 
to maintaining the steel potential in the passive region. The resistance 
of the PTC coating in a 3% NaCl solution after 60 days was more than 
107 cm2 and in the salt spray test for 35 days was 109 cm2. However, in 
both cases, the resistance of the coating was less than 104 cm2. It was 
proposed that the corrosion protection is due to the passivation of steel 
resulting from the presence of polyaniline. Lenz et al. [73] incorporat-
ed TiO2 pigment into PPy during the electrochemical synthesis of the 
CP-based coating on AISI 1010 steel. Weight loss and salt spray tests 
demonstrated that the PPy/TiO2 composite significantly increased an-
ti-corrosion properties compared to PPy films. The composite coatings 
were suggested as a primary coating that can be applied on mild steel 
instead of phosphatized layers.

According to Radhakrishnan et al. [89], composite coatings com-

posed of PANI and nano-TiO2 prepared by in-situ polymerization on 
steel plates showed superior corrosion resistance than did PANI coatings 
in aggressive environments. It was reported that the corrosion resistance 
improvement for the nanocomposite coating containing 4.18 wt% TiO2 
nanoparticles was beyond 100 times. It was proposed that the improve-
ment is the result of the high surface area accessible for the dopant re-
lease due to nano-size additive, redox properties of PANI, charge trans-
port prevention by the TiO2 nanoparticles, and an increase in diffusion 
barrier. In a research study by Patil et al. [90], polyvinyl acetate (PVAc)-
ZnO-PANI hybrid composite coatings (PVAc as the major matrix) were 
deposited on steel plates by the dip-coating method. In comparison with 
the coatings that contained either ZnO or PANI, the coatings that con-
tained both the components exhibited higher corrosion resistance. The 
PVAc-ZnO-PANI coating showed the Icorr value of two-order lower than 
that of PVAc–ZnO and PVAc coatings. The improvement was reported 
to be the result of the redox behavior of PANI, enhancement of barrier 
properties by nanoparticles, as well as the formation of protective oxide 
layers near the substrate. Hosseini et al. [91] electrodeposited the poly-
pyrrole phosphate (PPy-P) coating by cyclic voltammetry (CV) method 
on ST12 mild steel. The deposited PPy–P films demonstrated higher cor-
rosion resistance compared to the PPy coating. 

To coat 304 stainless steel for bipolar plates used in a proton ex-
change membrane fuel cell, Ren et al. [92] used galvanostatic deposition 
to produce an inner layer of PPy with large groups of dodecylsulfate 
ions, and then a PANI external layer containing small groups of SO4

2- 
was applied via cyclic voltammetric deposition. According to results, 
the increase in pitting corrosion potential and corrosion potential of the 
bare steel for the single PPy and PPy/PANI coatings was more than 500 
mV and 400 mV (saturated calomel electrode), respectively. Compared 
to the single PPy coating, the bilayer composite coating showed more 
effective corrosion reduction through providing passivity protection as 
well as a physical barrier with acceptable contact resistance.

Jiang et al. [46] deposited PPy-graphene oxide (GO) composite 
coatings on 304 stainless steel bipolar plates by in-situ electrodeposi-
tion to protect them against aggressive environments. The analysis in 
the simulated PEMFC environment exhibited that during potentiostatic 
polarization, the polarization current density of the substrate was sig-
nificantly reduced by the conductive PPy-GO composite coating. The 
addition of GO to the PPy matrix led to the enhancement of the adhesion 
strength and an increase in the diffusion pathway of corrosive agents 
and therefore, restriction of their inward penetration. The best corrosion 
resistance was obtained for the composite coating containing 1 mg mL-1 
of GO in the electrodeposition electrolyte. The corrosion enhancement 
in the composites is the result of the improved anodic protection and 
physical barrier. Jadhave et al. [93] added poly-o-anisidine (POA) and 
PANI nanoparticles to alkyd paint formulation for protecting the mild 
steel surface. In comparison with the POA/alkyd coatings, corrosion 
protection of the PANI/Alkyd coatings was remarkably higher. 

Epoxy/graphene composite coatings with hydrophobic surfaces were 
prepared by Chang et al. [94]. The water droplet’s contact angle with 
the epoxy surface and hydrophobic epoxy/graphene surface were 82o 
and 127o, respectively. The improvement of the corrosion resistance by 
applying the composite coating was reported to be due to the physi-
cal barrier effect, a decrease in the adsorption of water/corrosive me-
dia resulting from the coating hydrophobicity, and high aspect ratio of 
graphene nanosheets leading to enhancement of the oxygen barrier prop-
erty. Sumi et al. [95] synthesized PANI-Fe2O3 composite by an In-situ 
method and added it to a commercial alkyd resin as an anti-corrosive 
coating for mild steel. The composite coating was proposed to offer pas-
sivation protection and better barrier performance. The complimentary 
cathodic reaction of the nonconductive leuco-PANI to the conductive 
emeraldine-PANI was explained to be also responsible for the improved 
corrosion resistance in the acidic medium. Table 1 summarized research 

Fig. 3. Corrosion mechanism of steel.
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Table 1.
 Research reports on using CCPs for corrosion protection of steel

Authors CPs Additive Coating technique Medium Corrosion behavior

Jadhav et al. 
(2020) [96]

PPy Fe2O3 Electrochemical method NaCl
Better corrosion resistance was observed by the coating of Fe2O3/

PPy.

Sun et al. (2020) 
[97]

PANI - Electrochemical deposition NaCl
The density of corrosion current decreased 5 times and the coating 

exhibited effective protection for 140 days.

Deyab et al. 
(2020) [98]

PANI Zn-Porphyrin Electrochemical deposition H2SO4

The composite of PANI/Zn-Pr with 1.0% of Zn- Pr rendered the 
highest anti-corrosion activity (99.41%).

Chen et al. 
(2020) [24]

PPy
Polydopamine –func-

tionalized carbon 
powders

Electropolymerization H2SO4

The PPy/C-PDA coating showed good protection performance for 
the 304SS bipolar plate in PEMFC.

Rajkumar et al. 
(2020) [99]

PPy TiO2, ZnO, and SiO2 Incorporation in resin NaCl
The PPy coating provides the denser passivation film at the inter-

face of PPy and TiO2.

Chen et al. 
(2019) [100]

PPy TiO2 and V-TiO2 Electrochemical method HCl
comparing V-TiO2/PPy and TiO2/PP composite coatings, the 
V-TiO2/PPy showed better corrosion resistance performance.

Kong et al. 
(2019) [101]

PANI Chitosan - HCl
Using the PANI/CTS in 0.5 M HCl solution was effective for corro-
sion protection of Q235 steel and at high PANI/CTS concentrations, 

the highest inhibition efficiency was obtained.

Babaei-Sati et 
al. (2019) [102]

PPy Al2O3 Electrodeposition H2SO4

PPy/Al2O3 nanocomposite with declining the density of corrosion 
current by 18 times, exhibited excellent performance in the protec-

tion of MS.

Shi et al. (2019) 
[26]

PANI SiO2 Drop casting technique H2SO4

The silicone-SiO2@PANI coating with a 4:1 weight ratio of SiO2/
PANI exhibited the highest resistance against corrosion (2.24×107 
Ω cm2) after immersion in a corrosive medium for about 180 days.

Jaouhari et al. 
(2019) [103]

PPy Zinc phosphate
Galvanostatic electrodepo-

sition
NaCl

The ZP/PPy coatings showed excellent corrosion resistance and 
increased the ZP/PPy coating thickness.

Liu et al. (2019) 
[104]

PANI TiO2 Electrochemical deposition NaCl
The epoxy coating with TiO2/PANI particles showed high corrosion 

protection compared to the blank coating after subjecting to a 
corrosive environment.

Wang et al. 
(2019) [38]

PANI Nb: TiO2 nanofibers galvanostatic method HCl
The presence of Nb: TiO2 nanofibers in the coating of PANI led to 

the provision of better in-situ anodic protection and physical barrier 
effect. 

Abd El-Lateef 
et al. (2019) 

[105]
PANI Tl2O3-SiO2 Electrochemical deposition HCl

The PANI coating could prevent the carbon steel corrosion and 
provide maximum yielding of 89% and this amount after the 

modification with Tl2O3-SiO2 nanocomposites was improved and 
reached 96%.

Ramezanzadeh 
et al. (2018) 

[83]
PANI GO-CeO2 Electrodeposition NaCl

The deposition of CeO2 and PAni improved the properties of active 
and barrier corrosion inhibition of GO nanosheets.

Contri et al. 
(2018) [106]

PPy Montmorillonite (Mt) Electrodeposition H2SO4 The Epoxy/Mt-PPy (5 wt%) could prevent carbon steel corrosion.

Jadhav et al. 
(2018) [107]

PPy Mica Incorporation in resin NaCl
The pigment-based composite coating of Mo-doped PPy/mica ex-

hibited better protection against corrosion with the steel passivation 
by the anions of molybdate.

Salem et al. 
(2018) [108]

PANI - Electrochemical deposition NaCl
The possibility of delamination and blister formations were reduced 

by composite coatings.

Jiang et al. 
(2018) [109]

PANI Ni(OH)2

Cyclic voltammetry tech-
nique

NaCl
The Ni(OH)2 particle deposition in a matrix of PANI prevented 

access to aggressive media. Also exhibited long-term anti-corrosive 
behavior.

Arabzadeh et al. 
(2017) [110]

PPy - Cyclic voltammetry method HCl
The sample synthesized with the scan rate of polymerization equal 

to100 mV/s was the best coating.

Ladan et al. 
(2017) [111]

PPy TiO2 Dip coating NaCl
Co doping TiO2/PPy decreased the charge transfer across the inter-

face of electrolyte/AISI 1018 steel.

Yan et al. (2017) 
[112]

PPy Al2O3

Cyclic voltammetry tech-
nique

NaCl
The PPy-Al2O3 composite coating exhibited good performance in 

the corrosion protection of 316SS.

Yan et al. (2017) 
[113]

PPy SiO2

Cyclic voltammetry tech-
nique

NaCl
The PPy-SiO2 coating exhibited good performance in the corrosion 

protection of 316SS.

Qiu et al. (2017) 
[114]

PANI GO Pulse-current deposition
Phosphate 

buffer
The 98.4% corrosion inhibition efficiency and 99.3% protection 

efficiency was obtained by using the PANI-GO composite coating.

https://www.sciencedirect.com/science/article/pii/S0300944016311031
https://scholar.google.com/citations?user=Cq9tAGcAAAAJ&hl=en&oi=sra
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investigation on using CCPs for corrosion protection of steel substrates. 

5.2. CCPs coated on magnesium and its alloys

Because of biocompatibility, easy biodegradation, and excellent 
mechanical properties, Mg alloys have been extensively investigated 
for biomedical applications. Nevertheless, in a physiological environ-
ment, these alloys show a high corrosion rate leading to an increase in 
the pH value, which adversely affects cell differentiation, proliferation, 
and viability on the implant surface and thereby induces blood clots to-
gether with chronic tissue inflammatory responses [115-119]. Two main 
strategies for the improvement of the corrosion resistance of Mg and its 
alloys are surface modification and alloying [120, 121]. CPs and CP-
based composites have been developed for the corrosion reduction of 
Mg-based substrates. The corrosion mechanism of Mg with and without 
CP coatings is shown in Fig. 4. PANI-TiO2 composites were deposited 
on the ZM 21 alloy by Sathiyanarayanan et al. [122]. To synthesize the 
coatings, aniline underwent oxidative polymerization in phosphoric acid 
with (NH4)2S2O8, in the presence of TiO2. Compared to the PANI coat-
ing, the composite coating exhibited more effective protection perfor-
mance as a coating for the ZM 21 alloy. In another research, Guo et al. 
[123] applied a composite coating of PPy/ZnO to protect biodegradable 
Mg alloys for orthopedic implant applications. Results indicated the im-
proved corrosion protection, antibacterial property, as well as cytocom-
patibility of the composite coating suggesting it as proper material for 
orthopedic implants.

Wang et al. [124] presented the corrosion protection performance 
of composite coatings based on PANI and coal. PANI/coal powder was 
synthesized by in situ polymerization, the coatings were composed of 
epoxy, and PANI/coal was deposited on the surfaces of Mg alloys. A 
significant decrease in the corrosion rate and corrosion current density 
of the PANI/coal coatings was observed suggesting that the coating is a 

promising candidate for the enhancement of corrosion resistance of Mg 
alloys in aggressive environments. In a research study by Li et al. [125], 
a PPy/V2O5 composite film was deposited on magnesium by mild vapor 
phase polymerization (VPP) technique. Corrosion investigations in 3.5 
wt% NaCl revealed that the prepared composite film reduced the corro-
sion rate of Mg. The VPP method was offered as a technique with great 
potential to synthesize CP-based coating for the protection of reactive 
metals. Table 2 summarized research investigation on using CCPs for 
corrosion protection of Mg-based substrates. 

5.3. CCPs coated on alumnum and its alloys

Al is an important metal due to its high technological value and its 
application in the household and aerospace industries [134-137]. Al-

Table 2.
Research reports on using CCPs for corrosion protection of Mg and its alloys

Authors CPs Additive Coating technique Medium Corrosion behavior

Najibzad et al. 
(2020) [126]

PANI Praseodymium Dip coating NaCl
The improvement in the performance was observed with applying 

2000 ppm concentration compared to other concentrations.

Guo et al. (2020) 
[123]

PPy ZnO2

Cyclic voltammetry 
technique

NaCl An increase in the resistance of the corrosion was observed.

Jothi et al. (2020) 
[127]

PPy Gelatin Electrodeposition NaCl
The coating exhibited good performance in providing the corrosion 

resistance of AZ31.

Samadi et al. 
(2020) [128]

PANI Praseodymium Electrochemical methods NaCl
The composite of PANI/Pr31 that exhibits anti-corrosion behavior 
can be used as environmentally-friendly and non-toxic corrosion 

protective coating.

Li et al. (2020) 
[125]

PPy V2O5

Vapor phase polymeriza-
tion (VPP)

NaCl
For the synthesis of the protective coating of CPs on reactive metals, 

the method of mild VPP may be effective.

Maurya et al. 
(2019) [129]

PANI Graphene
Incorporation as pigments 

in epoxy resin
NaCl

The amount of the resistance value >106 Ω cm2 was estimated using 
the composite coatings.

Yufeng Li et al. 
(2018) [130]

PANI SiO2 Electrochemical methods NaCl
For the Mg-Li alloy, the good resistance was obtained with the coat-
ing and the density of the corrosion current and impedance value was 

6.7×10-7 A cm-2 and 5×104 Ω cm2, respectively.

Gao et al. (2018) 
[131]

PANI - Electrochemical methods NaCl
The improvement was observed with the PANI-PhA addition because 

of the synergistic effect of silane, PhA, and PANI.

Wang et al. (2017) 
[124]

PANI Coal Electrodeposition NaCl This sample exhibited excellent resistance to corrosion.

Saremi et al. 
(2016) [132]

PPy
NaF and polyeth-

ylene glycol (PEG)
Cyclic voltammetry 

technique
NaCl

The observed improvement in the corrosion behavior of the PPy 
coating with PEG and NaF was due to the inhibition fluoride effect, 

which is considered a barrier for magnesium alloys.

Chen et al. (2010) 
[133]

PANI SiO2 Electrochemical methods NaCl
In the solution of 3.0 wt% NaCl, the coating of PANI-SiO2 showed 

better performance in keeping the potential values in the noble poten-
tial compared to the coating of pure epoxy.

Sathiyanarayanan. 
(2007) [122]

PANI TiO2 Electrodeposition NaCl
For the protection of the Mg ZM 21 alloy, the composite coating was 

better than Polyaniline coating.

Fig. 4. Corrosion mechanism of brae Mg and CP-coated Mg.
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though on the surface of reactive metals such as Al, a thin oxide film 
is formed protecting them from further corrosion, localized corrosion 
occurs on the surface of Al when it is exposed to corrosive environments 
containing complexing agents such as halides [138-141]. There have 
been several studies regarding the deposition of CP-based coatings on 
Al-based substrates to enhance their corrosion resistance. In a study by 
Yan et al. [142], PPy was first deposited on Al flakes in the presence of 
inhibiting dopants including vanadate, molybdate, or phosphate oxyan-
ions. Then, the modified Al flakes were added to an epoxy primer to 
protect the AA 2024-T3 alloy. The composite coating showed good pro-
tection performance for the Al alloy through the mechanism of oxygen 

scavenger protection provided by PPy in the composite coating.
Hussein et al. [143] used the cyclic voltammetry technique to deposit 

PANI-NiLa and PPy-carbon nanotubes (CNTs) nanocomposite coating 
on aluminum. The thermal stability of PPy was enhanced by the addition 
of CNTs, while decreased in the presence of NiLa. The addition of CNTs 
and NiLa particles improved the protection role and adhesion of the PPy 
coating for aluminum. Compared to the PPy layer, the nanocomposite 
coatings had higher protection property for Al in the NaCl solution. PPy-
NiLa nanocomposite coating demonstrated the highest corrosion protec-
tion. In another study by Hosseini et al. [144], ZnO, Mn2O3, and TiO2, 
nanoparticles were dispersed in PPy by in-situ electropolymerization to 

Table 3.
Research reports on using CCPs for corrosion protection of Al and its alloys

Authors CPs Additives Coating technique Medium Corrosion behavior

Tomaev et al. 
(2019) [146]

PPy
Aluminum Oxide Galvanostatic H2SO4

The improvement in the electrochemical potential was 
obtained by PP coating, and the incensement in the 
surface impedance was provided by oxide coating. 

Kumar et al. 
(2017) [147]

PPy CeO2 Galvanostatic NaCl
For the corrosion protection of the Al in aircraft infra-
structures, the nanocomposites of PPy with nanoparti-

cles of CeO2 could be effective.

Hosseini et al. 
(2017) [144]

PPy TiO2, Mn2O3, and ZnO Cyclic voltammetry technique oxalic acid
An excellent improvement in the corrosion protection 
was observed by applying the synthesized polypyrrole 

with nanoparticles of TiO2. 

Hussein et al. 
(2016) [143]

PANI /
PPy

CNT and Ni2LaO4 Cyclic voltammetry technique oxalic acid

The barrier effect increased with the nanoparticles of 
NiLa oxide. Also, the reaction of oxygen reduction 
catalyzed by these particles led to improving the Al 

passive state.

Ates et al. (2015) 
[148]

PANI
TiO2, Ag, and Zn Cyclic voltammetry method NaCl

The nanocomposite film of PANI/Ag exhibited the 
highest efficiency of protection (PE = 97.54%).

Ates et al. (2015) 
[149]

PANI /
PPy

TiO2 Cyclic voltammetry oxalic acid

According to the results, the efficiency of corrosion pro-
tection of the nanocomposites coated on the electrode 

of Al1050 was larger compared to PPy (94.9 %), PANI 
(96.4 %), and uncoated Al1050 electrodes.

Alvi et al. (2015) 
[150]

PANI ZnO Cyclic voltammetry method HCl
Due to the electronic properties and chain conforma-

tion of the ZnO-PANI, it provided excellent protection 
against corrosion for Al and steel.

Jensen et al. 
(2014) [151]

PPy Aluminum flake Electrochemical methods KCl
The composite coatings exhibited the reduction of dis-

solved oxygen over the scribe with no corrosion product 
concomitant buildup. 

Gupta et al. 
(2013) [152]

PANI Lignosulfonate - NaCl
The low corrosion amount was obtained with the coat-

ing of 5 wt% Pani-LGS/epoxy.

Jadhav et al. 
(2013) [153]

PPy Aluminum flake Incorporation in epoxy resin
Electrolyte 

solution

For the larger defect protection of the AA 2024-T3 
substrate, the composite of the wire PPy/Al flake was 

effective.

Yan et al. (2013) 
[142]

PPy Al flake Incorporation in epoxy resin DHS solution
The best performance of the protection was obtained by 

doping the vanadate in the composite coating.

Shabani et al. 
(2011) [154]

PANI Montmorillonite Electrosynthesis NaCl
Using nanocomposite-coated compared to uncoated Al 
led to a decrease in the amount of the corrosion current 

(icorr) from 6.55 μA cm−2 to 0.102 μA cm−2.

Hosseini et al. 
(2011) [134]

PANI Montmorillonite Electrochemical methods NaCl
Epoxy blend with polyaniline and MMT showed the 

highest corrosion protection for 100h.

Castagno et al. 
(2010) [155]

PPy
Montmorillonite 

(MT)
Electrochemical techniques NaCl

The PPy/MT films with 1% clay provided good perfor-
mance in the protection of corrosion for Al.

Hosseini et al. 
(2009) [156]

PPy Montmorillonite Electrochemical methods NaCl
The coating provided good protection of Al corrosion 
with a combination of epoxyblend with MT and PPy 

advantages.

Wu et al. (2007) 
[157]

PANI Silicate–NiZn ferrite Electrochemical and salt-spray NaCl

With the incorporation of the NiZn ferrite/PANI par-
ticles, the denser configuration of the ormosil hybrids 

was obtained which could prevent the Al alloy substrate 
corrosion.

Shah et al. (2001) 
[145]

PANI/ 
PPy 

-
Galvanostatic and potentiostat-

ic technique
oxalic acid

The low corrosion rates were observed in moderate to 
high applied electrochemical current densities.

file:///D:/Dr%20Sharifian-esmaeilkhanian/asl/jourcc/Vols/Vol%202/Iss%204/Article%206%20CPs%20Eskandarnezhad/4-Publish%20Online/Folders/Tables/javascript:;
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protect Al electrodes. It was found that the corrosion resistance of the 
nanocomposites was higher than that of bare PPy in harsh environments. 
The PPy/TiO2 composite coating exhibited a remarkable improvement 
in corrosion protection. The great enhancement of protection properties 
was reported to be due to the high surface area of nano-additives for 
the dopant release, charge transport prevention by the TiO2 nanoparti-
cles, redox properties of PPy together with increased barrier effect to 
diffusion. 

Kunal et al. [145] coated Al-2024-T3 substrate with PPy, PANI, and 
PPy/PANI composites via potentiostatic and galvanostatic techniques. 
Results showed that the corrosion rate reduction in the presence of 
CPs was about three orders of magnitude. Deposition time and applied 
current density as electrochemical processing variables were found to 
noticeably affect the corrosion behavior of the coated substrate so that 
low corrosion rates were achieved by applying moderate to high current 
densities. Table 3 summarized research investigation on using CCPs for 
corrosion protection of Al-based substrates. 

5.4. CCPs coated on copper and its alloys

Cu is used in industrial and technological applications on a large 
scale because of its outstanding processability, thermal and electrical 
conductivity, wear and shock resistance, and ductility. Cu is the best 
selection for integrates circuits, especially microprocessors due to its 
improved electromigration performance as well as low resistivity [158-
162]. Under neutral pH conditions, protective oxide or hydroxide layers 
form on the surface of Cu substrates [163-167]. In chloride-containing 
environments, the copper corrosion process and the protective layer for-
mation are more complex [168, 169]. In oxidative environments, the 
mechanism of corrosion for copper involves the electrochemical reduc-

tion of water and oxygen at local cathodic zones and the dissolution of 
Cu at local anodic zones. The rates of reduction and dissolution reac-
tions are slowed down by the formation of the protective film formation, 
and the diffusion rate of Cu chloride ions into the chloride solution influ-
ences the rate of these reactions. However, the diffusion and reduction 
of corrosive species like oxygen cannot be prohibited by the oxides or 
hydroxide layers [170, 171].

The enhancement of the corrosion resistance of copper has been an 
attractive topic for researchers [172, 173]. Applying CPs on copper sub-
strates and their corrosion behaviors have been reported in the literature 
[174-182]. Beikmohammadi et al. [37] used the in situ electropolymer-
ization technique to deposit PPy/TiO2 composite coating on copper elec-
trodes. It was proved that the addition of TiO2 nanoparticles promoted 
the corrosion protection behavior of the coating compared to bare PPy in 
a harsh environment. As reported for the similar coatings for other met-
als, an increment of barrier to diffusion, charge transport prevention by 
the TiO2 particles, high surface area of the titanium oxide nanoparticles 
for the dopant liberation, as well as redox properties of polypyrrole are 
responsible for the improvement.

Pan et al. [183] used Cu as substrate and electrochemically synthe-
sized the conductive composite coating consisting of an outer PANI lay-
er and an inner PPy layer. They found that the corrosion potential of Cu 
substrate increased via both the single PPy coating and the bilayered 
PPy/PANI. In addition, the corrosion current density decreased by an 
order of magnitude compared to uncoated Cu substrate. They also eval-
uated the Long-term protection of the coatings. It was shown that the 
PPy/PANI bilayer coating was better than the single polypyrrole coating 
that can be an effective physical barrier for inhibiting the penetration of 
corrosive species.

In another study, Çakmakcı et al. [184] fabricated the poly(pyrrole)/

Table 4.
Research reports on using CCPs for corrosion protection of Cu and its alloys

Authors CPs Additive Coating technique Medium Corrosion behavior

Badi et al. (2020) [94] PANI Silver nanoparticles
Electrochemical 

methods
HCl

The coating containing the nanoparticles of PANI-Ag 
exhibited corrosion protection for 6061 Al alloys used in 

solar panel frames.

Wan et al (2019) [189]
PPy

Benzotriazole (BTA) or/
and silica

Cyclic voltammetry 
technique

NaCl
The composite film exhibited good performance in 

corrosion protection due to the synergetic effect of silica 
physical barrier and BTA active protection.

Beikmohammadi et al. (2018) 
[37]

PPy TiO2

Cyclic voltammetry 
technique

NaCl
Nanoparticles of TiO2 exhibited good performance in the 
improvement of polypyrrole films for the protection of 

copper.

Jafari et al. (2016) [190]
PPy Graphene

Cyclic voltammetry 
technique

H2SO4

The number of polymer pores decreased and the nano-
composite morphology after immersion in NaCl solution 

at a concentration of 5000 ppm for 2 hours, remained 
constant and unchanged.

Shabani et al. (2015) [191] PPy Zeolite Electrodeposition NaCl
By using this coating the corrosion current density 

declined and reached 0.34 μA cm−2 and also the potential 
of corrosion shifted from −0.314 V to −0.141 V.

Pan et al. (2015) [183]
PPy/
PANI

-
Cyclic voltammetric and 

galvanostatic
acidic medium

The PPy/PANI bilayered coating provided better protec-
tion for the copper substrate than the PPy coating.

Davoodi et al. (2015) [192]
PPy

Multi-walled carbon 
nanotubes

Cyclic voltammetry 
technique

NaCl
Higher protection of corrosion was obtained by using 
the nanocomposite of PPy/functionalized MWCNT 

compared to PPy/MWCNT.

Dhibar et al. (2013) [193] PANI -
Electrochemical 

methods
HCl

The promising electrochemical properties were exhibited 
with doping of 2 wt% PANI. 

Ozkazanc et al. (2013) [209] PPy Zinc and nickel Electrodeposited H2SO4

The protection degree for electrodes of copper was 
enhanced. 

K. Wu et al. (2009) [93] PANI Silicate/carbon black
Electrochemical 

methods
NaCl

The resistance of corrosion and barrier properties were 
enhanced by using the system of PANI/CB.
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poly(N methyl pyrrole) bilayer and poly(pyrrole-co-N-methyl pyrrole) 
copolymer composites via electrochemical synthesis. They applied them 
on Cu substrate through cyclic voltammetry from an aqueous solution of 
0.1 M monomer and 0.3 M oxalic acid. They suggested that the mono-
mer feed ratio strongly affects the performance of coatings, in which the 
most protective property was illustrated by copolymer fabricated with 
8:2 concentration ratio. Electrochemical impedance spectroscopy and 
anodic polarization using 0.1 M H2SO4 solution were employed to eval-
uate the corrosion behavior of polymer composites. They implied that 
the bilayer and copolymer coatings had a higher protection effect than 
that of single PPy coatings. 

Branzoi et al. [185] investigated the electropolymerized monolayer 
poly (N, N’ dimethylaniline) (PNDMA), bilayer PNDMA/PANI, poly-
aniline (PANI), PANI/PNDMA coatings on Cu substrate.

They found that good corrosion protection was obtained by PND-
MA-SDS/PANI coatings in aggressive media. In addition, better corro-
sion inhibition efficiencies were observed for bilayer coatings.

Singh et al. [186] used electrophoretic deposition (EPD), as a less 
time-consuming, inexpensive, and fairly facile method, to fabricate hy-
drophobic graphene oxide-polymer composite (GOPC) on copper. The 
efficacy of the coating under stringent environmental conditions was in-
vestigated via EIS and potentiodynamic polarization investigation. They 
implied that electrochemical degradation of the bare copper substrate 
was three orders of magnitude higher than GOPC coating. They realized 
that the GOPC coatings were impermeable to ion diffusion of corrosive 
liquid solution and oxidizing gas.

In another study, Kim et al. [187] fabricated graphene/polysiloxane 
(PSX) nanocomposite films possessing superior corrosion protection, 
high electrical, and dual function. A facile bar coating method using a 
metering rod was employed for the better in-plane ordering of filler net-
works in the coating. It was found that PSX-G composite coating films 
improved the charge transfer resistance dramatically (20,000%), high-
er electrical conductivity (1700 Sm-1), and decreased rate of corrosion 
(1/40 th). This was due to complementary effects between the covering 
agent of graphene defects and inorganic polymer matrix as the anticor-
rosive layer as well as graphene conductive filler. They implied that the 
system could be potentially employed in industrial fields including en-
ergy storage systems, electromagnetic shielding (EMI), and anti-icing.

Singh et al. [188] applied a cathodic electrophoretic deposition 
(EPD) technique to fabricate anticorrosive graphene reinforced com-
posite coating. They implied that the Cu substrate became resistant to 
electrochemical degradation by applying the composite coating. In this 
regard, the Tafel analysis showed that composite coating reduced the 
corrosion rate about an order of magnitude lower than that of bare sub-
strate. Table 4 summarizes the studies focusing on the application of 
CCPs for corrosion protection of steel, Cu, Al, and Mg.

6. Conclusions and future insights

CCPs have been widely investigated for the protection of metal sub-
strates such as steel, Al, Cu, and Mg. PANI, PPy, and PTh are common 
conducting polymers that have been developed as protective coatings 
for metals. Composite conducting polymers have been prepared with the 
incorporation of different components such as ZnO2, TiO2, NiLa, Mn2O3, 
etc. Corrosion inhibiting and anodic protection is the most important 
contributing mechanisms to the reduction of the corrosion rate of metals. 
It has been demonstrated that CCPs have superior corrosion protection 
properties than do conducting polymer coatings. This is the result of 
the high surface area of nano-additives for the dopant release, and the 
promotion of barrier effect against diffusion. It is expected that in future 
investigations, a variety of reinforcements will be at the center of atten-
tion and more focus will be placed on the application of CCPs on other 

metallic substrates and in different fields. Moreover, since the protection 
against corrosion by CPs is mostly based on the mechanism of anodic 
protection, the stabilization of the passive oxide film under the polymer 
coating and inhibition of the aggressive anions from penetration into the 
polymer film must be carefully considered.
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