

Available online at www.jourcc.comJournal homepage: www.JOURCC.com

Journal of Composites and Compounds

Photodegradation of Ciprofloxacin, Acetaminophen, and Carbamazepine using g-C₃N₄-based materials for water treatment

Sogand Bahadori ^a, Mohammadjavad Sharifianjazi ^b, Sara Eskandarinezhad ^{c,*}

^a Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran

^b Department of Material Engineering, Isfahan University of Technology, Isfahan, Iran

^c Department of Mining and Metallurgy, Yazd University, Yazd, Iran

ABSTRACT

Recently, the use of photocatalytic materials has been suggested as a possible method for cleaning up the environment. A new photocatalyst for enhanced oxidation processes based on radicals is graphitic carbon nitride (g-C₃N₄), it is metal-free. g-C₃N₄ is a trendy two-dimensional (2D) photocatalyst with a number of advantages, such as responsiveness to strong stability, low cost, and visible light. In the present review, the synthesis and characterization of g-C₃N₄-based photocatalysts are discussed, along with some of their delegate applications in the treatment of wastewater and water (such as acetaminophen, ciprofloxacin, and carbamazepine removal). Meanwhile, the various methods of modification, including doping, defect introduction, heterojunctions, nanocomposites, and so on, are briefly discussed. The associated mechanisms and pertinent discoveries are also examined. Finally, the difficulties, the need for additional study, and the use of g-C₃N₄-based hybrid membranes are underlined.

©2023 UGPH.

Peer review under responsibility of UGPH.

ARTICLE INFORMATION

Article history:

Received 11 April 2023

Received in revised form 03 June 2023

Accepted 27 June 2023

Keywords:

Photocatalyst degradation

Photocatalyst

g-C₃N₄

Ciprofloxacin

Acetaminophen

Carbamazepine

Table of contents

1. Introduction	125
2. G-C ₃ N ₄ Structure attributes and photocatalytic potential for water treatment	126
2.1. Enhancing g-C ₃ N ₄ photocatalysis	127
2.1.1. G-C ₃ N ₄ Synthesis insights	127
2.1.2. Designing advanced of g-C ₃ N ₄ preparation technology	128
2.1.3. Advancements in Synthesis Techniques for g-C ₃ N ₄ Nanocomposites	128
3. g-C ₃ N ₄ 's photocatalytic mechanism	129
3.1. Improvement of photocatalytic performance of g-C ₃ N ₄	129
3.1.1. Metal or non-metal doping	129
3.1.2. Deposition of metals	130
3.1.3. Heterojunction formulation	130
3.1.4. Adjustment of the structure and regulations of defects	131
4. g-C ₃ N ₄ for pharmaceutical removal from water	131
4.1. Photodegradation of Ciprofloxacin	132
4.2 Photodegradation of Acetaminophen (ACT)	133
4.3 Photodegradation of Carbamazepine	134
5. Conclusions and future perspectives	135

1. Introduction

The technology of photocatalysis possesses immense potential in resolving environmental and energy-related concerns, owing to its ability to transform abundant solar power into chemical energy that can be

stored [1, 2]. In the influence of light irradiation, a number of redox reactions may transpire on the photocatalysts's surface. Such reactions involve bacteria disinfection [3], contaminant degradation, N₂ fixation [4], CO₂ reduction to organic fuels [5], division of water to H₂ and O₂, etc. Semiconductors, such as g-C₃N₄ [6], CdS, and TiO₂ [7, 8] are the most prevalent photocatalysts [9]. Nevertheless, the efficacy of pure

* Corresponding author: Sara Eskandarinezhad; E-mail: s.eskandari.nezhad@gmail.com

photocatalysts in photocatalytic performance is generally insufficient to meet practical application demands. Consequently, photocatalytic research has centered on investigating preparation methodologies, modification approaches, and the photocatalytic mechanisms of photocatalysts to achieve outstanding photocatalytic activity on easily synthesized and incredibly long-lasting photocatalysts.

Graphitic carbon nitride ($\text{g-C}_3\text{N}_4$) has emerged as a high-potential catalyst in Advanced Oxidation Processes (AOPs) owing to its notable characteristics and versatile applications. Composed of nitrogen and carbon atoms arranged in a graphene-like structure, $\text{g-C}_3\text{N}_4$ exhibits a metal-free semiconductor nature with a narrow bandgap (~ 2.7 eV). This unique property enables superior light absorption, making it an efficient photocatalyst under visible light [10]. Its applications are wide-ranging: $\text{g-C}_3\text{N}_4$ displays significant potential in photocatalysis, effectively driving redox reactions to address environmental concerns such as pollutant degradation, water treatment, and CO_2 reduction. Furthermore, its ability to generate reactive oxygen species under light irradiation renders it effective in degrading various contaminants, including organic pollutants and pharmaceuticals, while also disinfecting water by eliminating bacteria and microorganisms [11]. Moreover, $\text{g-C}_3\text{N}_4$'s photocatalytic properties extend to energy conversion applications, offering promise in the production of hydrogen fuel through the conversion and water splitting of CO_2 into valuable organic compounds. Additionally, its role as a catalyst support or co-catalyst in various chemical processes further enhances its applicability [12]. In this context $\text{g-C}_3\text{N}_4$ plays a crucial role in the degradation of specific pharmaceuticals including Ciprofloxacin [13], Acetaminophen [14], and Carbamazepine [15] contaminants for water treatment. The utilization of photocatalytic oxidation to eliminate pharmaceutical drugs from wastewater is seen as an appealing and environmentally sustainable method [16].

$\text{g-C}_3\text{N}_4$ is typically synthesized by thermal condensation using nitrogen-rich precursors such as urea, thiourea, melamine, dicyanamide, and cyanamide. The synthesis involves nucleophilic addition, polycondensation, and polymerization reactions. The tectonic unit type formed mainly depends on the reaction processes [17]. Construction of $\text{g-C}_3\text{N}_4$ nanostructures to overcome the limitations of pure or bulk $\text{g-C}_3\text{N}_4$, various nanostructures of $\text{g-C}_3\text{N}_4$ have been fabricated and designed. Hard and soft-template methods are used to order porosity onto bulk $\text{g-C}_3\text{N}_4$ and create novel morphologies [18]. $\text{G-C}_3\text{N}_4$ -based nanocomposites synthesis in recent years, $\text{g-C}_3\text{N}_4$ -based nanocomposites have emerged as potential photocatalysts for organic wastewater treatment. Different methods, such as hydrothermal reactions and sol-gel method, have been studied to construct multifunctional $\text{g-C}_3\text{N}_4$ -based hybrids. Sol-gel method involves depositing metal nanoparticles on the $\text{g-C}_3\text{N}_4$ surface to form heterostructures, while hydrothermal reactions are used to fabricate $\text{g-C}_3\text{N}_4$ -based nanocomposites through hydrolysis and polycond [19]. A comprehensive process of the photocatalytic method comprises three consecutive stages: (1) absorption of light and stimulation in order to generate holes and electrons, (2) the movement of photogenerated holes and electrons from within to the photocatalysts' outer layer; and (3) conversion of adsorbed reactants into products via a redox reaction on the surface of the photocatalyst. Involved in these steps are the fundamental causes for the poor function of pristine photocatalysts. First, photocatalysts absorb only a small portion of the solar spectrum, particularly semiconductors with a wide band gap. Second, a significant number of photogenerated electrons and holes recombine upon transfer to the photocatalyst surface.

Thirdly, there are a limited number of reactant adsorption sites and active reactive oxygen species (ROS) sites on the photocatalyst's surface [20]. Improvement of the photocatalytic performance of $\text{g-C}_3\text{N}_4$ included Metal or non-metal doping, Heterojunction formulation, and adjustment of the structure and regulations of defects [21]. The global usage of pharmaceuticals has been steadily rising, leading to the emergence

of significant concern regarding the presence of pharmaceuticals and their byproducts in water, posing a potential threat to both animals and humans [22]. Removing these pollutants has become a serious research topic. Removing drugs such as Ciprofloxacin, Acetaminophen, and Carbamazepine from water has significant environmental and human benefits. Preserving the health of the environment, the mentioned drugs can threaten the environment as water pollutants. Removing these drugs from water reduces negative effects on aquatic organisms, such as fish and other organisms [23]. Preserving public health, Drinking water containing forgotten drugs may bring risks to humans. These substances may enter the human body through drinking water and cause various side effects. Removing these drugs from water helps people's health. Preservation of water resources, removing the mentioned drugs from water improves the quality of water resources and gradually helps to preserve water resources. This action can help improve the sustainable use and proper management of water resources. Considering that drugs can act as important pollutants and need attention in water, removing them from water sources can have positive and valuable effects in preserving the environment and public health [24]. There have been numerous assessments of $\text{g-C}_3\text{N}_4$ for pollutant degradation and water disinfection up to this point. However, there are no comprehensive evaluations that focus on the most recent changes to $\text{g-C}_3\text{N}_4$ for the photodegradation of ciprofloxacin, acetaminophen (ACT), and carbamazepine (CBZ). In general, this review article examined the possibilities and $\text{g-C}_3\text{N}_4$ applications in the field of water treatment by focusing on the photodegradation of Acetaminophen, carbamazepine, and ciprofloxacin materials.

2. $\text{G-C}_3\text{N}_4$ Structure attributes and photocatalytic potential for water treatment

Basic Characteristics of $\text{g-C}_3\text{N}_4$ investigated of carbon nitride, particularly $\text{g-C}_3\text{N}_4$, dates back to 1834 [25]. Its synthesis by Wang and colleagues marked a significant breakthrough for applications, especially water splitting [26]. Because of its excellent physicochemical characteristics, $\text{g-C}_3\text{N}_4$ is the C_3N_4 allotrope that is the most stable under ambient conditions [27]. $\text{G-C}_3\text{N}_4$ possesses covalently bonded sp^2 -hybridized nitrogen and carbon atoms, forming a network of π -conjugated ring planes with a lattice structure akin to graphite [28]. The layers entail a hexagonal arrangement of nitrogen and carbon atoms, alternating seamlessly. The monolayer $\text{g-C}_3\text{N}_4$ network possesses a highly impressive theoretical specific surface area of up to $2500 \text{ m}^2\text{g}^{-1}$ [29]. This material exhibits a high theoretical specific surface area and comprises *s*-triazine (C_3N_3) and *tri-s*-triazine (C_6N_7) units formed through condensation processes [26, 30]. The C_6N_7 units show superior stability compared to C_3N_3 units, and the substance often displays surface defects with minimal hydrogen presence [31]. $\text{g-C}_3\text{N}_4$ also demonstrates remarkable thermal and chemical stability, enduring high temperatures and resisting decomposition in common solvents. The results of Thermogravimetric analysis (TGA) show that $\text{g-C}_3\text{N}_4$ demonstrates impressive heat endurance even in the presence of 100% oxygen [32]. Photocatalytic Capability of $\text{g-C}_3\text{N}_4$ under visible light exposure, $\text{g-C}_3\text{N}_4$ exhibits photocatalytic efficacy with valence band (VB) and conduction band (CB) positions at -1.1 eV and $+1.6$ eV, respectively [33]. Its optical absorption at 460 nm allows the capture of solar visible light, although slow hole-electron pair recombination. The bandgap of $\text{g-C}_3\text{N}_4$ can be altered, resulting in structural modifications and diverse packing conformations [34].

Rohit Kumar et al., developed a novel photocatalyst, KPCN/GO/ ZnFe_2O_4 , by modifying potassium and phosphorus co-doped graphitic carbon nitride (KPCN) with graphene oxide (GO) and forming a heterostructure with ZnFe_2O_4 through a hydrothermal process. This newly synthesized catalyst demonstrated impressive efficiency in degrading pollutants like tetracycline (TC), rhodamine B (RhB), and methylene

blue (MB) as well as removing chemical oxygen demand (COD) from actual wastewater. The KPCN/GO/ZnFe2O4 catalyst showed significantly improved degradation rates for tetracycline compared to unmodified graphitic carbon nitride, showcasing advancements achieved through doping, GO inclusion, and ZnFe2O4 incorporation. The photocatalytic process primarily relied on reactive species such as $\cdot\text{OH}$ and $\cdot\text{O}_2^-$, signifying the enhanced performance of the KPCN/GO/ZnFe2O4 catalyst due to improved light absorption, adsorption capacity, charge separation, and reusability [35]. This progress, achieved through doping, incorporation of graphene oxide (GO), and forming heterostructures, highlights the advancements made in improving light absorption, charge separation, and reusability for $\text{g-C}_3\text{N}_4$ -based materials [36].

2.1. Enhancing $\text{g-C}_3\text{N}_4$ photocatalysis

The pristine $\text{g-C}_3\text{N}_4$ in photocatalysis utilization is limited due to several factors. These limitations include its poor quantum efficiency, inadequate interfacial contact, high porosity, large dimension, fast photocarrier recombination, and difficulty dispersing into specific solvents, all of which contribute to poor filtration efficiency. These factors prevent the wide application of pristine $\text{g-C}_3\text{N}_4$ in photocatalysis [37]. Therefore, it is essential to adjust them into more diminutive structures in order to expand their pragmatic utilities. In accordance with the prerequisites, the process and concentration parameters are regulated correspondingly to generate diverse $\text{g-C}_3\text{N}_4$ morphologies. These minute configurations amplify the specific surface area and active sites, thus resulting in an increase in photocatalytic efficacy [38]. To reduce the pollution of the environment and improve large-scale waste water treatment, different morphologies are developed to quickly produce photocatalysts with outstanding photocatalytic activity [39].

Consequently, these endeavors have stimulated a shift towards innovative strategies focused on refining the morphology and structure of $\text{g-C}_3\text{N}_4$ to enhance its photocatalytic performance. By overcoming its inherent limitations through adjustments to more compact structures, scientists have effectively increased both specific surface area and active sites, resulting in a notable improvement in photocatalytic efficiency. This approach not only addresses the obstacles restricting the broad use of pristine $\text{g-C}_3\text{N}_4$ in photocatalysis but also significantly contributes to curbing environmental pollution and advancing large-scale wastewater treatment capabilities [40].

Gang Wang et al., developed a novel composite catalyst ($\text{g-C}_3\text{N}_4$ /NCDs/Ag) to degrade organic pollutants in water. By controlling electronic interactions and dual-doping with NCDs and Ag NPs, this catalyst showed enhanced electron transport and widened light absorption. It efficiently degraded various pollutants within 100 minutes under a xenon lamp, outperforming traditional $\text{g-C}_3\text{N}_4$ notably with specific contaminants like methyl orange and rhodamine B. Uniform distribution of NCDs and Ag NPs through $\text{g-C}_3\text{N}_4$ self-assembly enabled stable catalyst recycling. The primary active substance in the process was $\cdot\text{O}_2^-$, with $\cdot\text{OH}$ serving as a secondary contributor. This innovative double-doped $\text{g-C}_3\text{N}_4$ design holds promise for diverse applications [41].

2.1.1. $\text{g-C}_3\text{N}_4$ Synthesis insights

In the past ten years, $\text{g-C}_3\text{N}_4$ has become a well-known synthetic polymer in the realms of material science and chemistry, particularly in the subject of photocatalysis. This is because of its low cost, unique physicochemical properties, good stability, and ease of preparation, following its discovery in 2009 as a metal-free polymer semiconductor that produces H_2 by photocatalysis. C_3N_3 and C_6N_7 rings constitute the fundamental tectonic units of C_3N_4 , which are widely regarded as its distinctive architecture [26]. Generally, $\text{g-C}_3\text{N}_4$ materials can be easily synthesized through heat condensation using small organic molecules as nitrogen-rich precursors, such as cyanamide and dicyanamide, urea,

thiourea, and the tectonic units kind are largely dependent on response mechanisms. To gain a better understanding of the synthesis, Zhang et al. [42] conducted a study where they utilized either urea or thiourea as precursors for $\text{g-C}_3\text{N}_4$ production. Their findings revealed that the preparation process primarily consists of nucleophilic furthermore, polymerization, and polycondensation. The conversion of thiourea or urea molecules to melamine through condensation reactions was initially achieved, whereas dicyandiamide molecules underwent direct condensation to form melamine. Upon elevation of temperature, melamine underwent a rearrangement process to form tri-s-triazine units which were subsequently polymerized to produce $\text{g-C}_3\text{N}_4$. Melamine Thermal polymerization, cyanamide, dicyandiamide, urea, or thiourea at temperatures ranging from 450 to 550 °C is generally used to create C_3N_4 [43, 44]. In a similar manner, the production of polymeric $\text{g-C}_3\text{N}_4$ through the utilization of cyanamide was explored by [26], through the analysis of reaction intermediates at varying temperatures in order to earn a deeper the reaction mechanisms understanding and microscopic processes involved. Through the polycondensation of cyanamide molecules, melamine and dicyandiamide were formed at temperatures of approximately 234°C and 203°C, respectively, as noted by [45]. Then, it was found that all melamine-relevant intermediates were produced at a temperature of about 335°C and then were changed into basic tri-s-triazine rings at a temperature of about 390°C. Upon reaching a temperature of 520 °C, $\text{g-C}_3\text{N}_4$ was produced via the polymerization of the aforementioned fundamental units. However, the compound proved to be unstable and the structure gradually disintegrated beyond 600 °C, leading to the complete decomposition of $\text{g-C}_3\text{N}_4$ into smaller molecules, such as CO_2 and NH_3 , beyond 700 °C. In light of this, $\text{g-C}_3\text{N}_4$ samples that were derived from different precursors, temperature-rise paths, and thermolysis temperatures, were found to exhibit unique characteristics. Mo and co-workers found that the degree of light absorption and the $\text{g-C}_3\text{N}_4$ shrunk bandgap increased when the calcination temperature rose. [46]. The direct heating of melamine at 650°C resulted in the production of $\text{g-C}_3\text{N}_4$ with optimal photodegradation activity for methylene blue and 4-chlorophenol, together with exceptional stability. The reaction atmosphere, which includes Ar and H_2 , NH_3 , and can produce disordered structures and defects, is yet another important element that intrinsic structures of $\text{g-C}_3\text{N}_4$ and affects the properties. For instance, the dicyandiamide thermal status under H_2 hydrogen led to the engineering of additional nitrogen vacancies [47]. NH_x sites, on the other hand, increased the hydrogen bonding contact between layers and stopped tri-s-triazine rings from degrading on their own. This was because CO_2 promoted the growth of NH_x sites [48]. Pretreatment of nitrogen-rich precursors is done to improve the $\text{g-C}_3\text{N}_4$ physicochemical properties before thermal annealing techniques, including protonation and sulfur-mediated synthesis. Improved photocatalytic behaviors are the consequence of controlling these reactive variables to produce the optimum level of condensation, a smaller band gap, and nanoarchitecture engineering [17].

Iltaf Khan et al., $\text{g-C}_3\text{N}_4$ nanosheets were synthesized using *Eriobotrya japonica* like a stabilizer and mediator. These bio-capped $\text{g-C}_3\text{N}_4$ nanosheets displayed enhanced properties such as strong adsorption, abundant organic functional groups, and activated surfaces. Capabilities, suitable for bisphenol A degradation and CO_2 conversion. The incorporation of LaFeO_3 nanosheets via the SrO bridge further increased surface area, improved charge separation, and facilitated electron transportation. Compared to pure $\text{g-C}_3\text{N}_4$ nanosheets, the ultimate composite showed significant enhancements, improving CO_2 conversion by 8 times and bisphenol A degradation by 2.5 times. This research introduces an eco-friendly and efficient approach for designing green nanomaterials, supporting efforts towards net-zero carbon emissions and advancing carbon neutrality [49].

2.1.2. Designing advanced of $g\text{-C}_3\text{N}_4$ preparation technology

There has been a notable influx of nanomaterials based on $g\text{-C}_3\text{N}_4$, which have been deliberately designed and manufactured to surpass the constraints of pure or bulk $g\text{-C}_3\text{N}_4$ when applied. The methodologies employed for their synthesis prioritize attaining structural and morphological control in order to achieve desirable energy bands, fast charge transfer, and strong light absorption. In order to produce distinctive morphologies and organized porosity onto bulk $g\text{-C}_3\text{N}_4$, both soft and hard template approaches are preferred for the design of nanostructures. These include multidimensional nanoarchitecture, porous $g\text{-C}_3\text{N}_4$, hollow spheres, and more [50, 51]. The traditional method of using hard templates involves combining precursors with hard structure directing agents during pyrolysis processes, such as colloidal SiO_2 and mesoporous SiO_2 nanoparticles [50]. Subsequently, the templates are etched using $\text{F}, \text{NH}_4\text{HF}_2$, and various strong alkaline solutions to achieve the desired nanostructures. Zhang and coworkers, used colloidal SiO_2 (12 nm) and dicyandiamide like the template and precursor, respectively, to create mesoporous $g\text{-C}_3\text{N}_4$ [52]. In order to alter the structures, several precursor types and concentrations were used. It was demonstrated that $g\text{-C}_3\text{N}_4$'s BET surface, which had an ideal weight ratio of 50 wt%, could increase with a drop in cyanamide. When exposed to visible light irradiation, the optimized sample's tetracycline removal rate showed the rate exceeded that of bulk $g\text{-C}_3\text{N}_4$ by 6.6 times. A variety of mesoporous silica templates, like SBA-16, SBA-15, KIT-6, and KCC-1, were used in addition to SiO_2 nanospheres to create well-ordered $g\text{-C}_3\text{N}_4$ structures [53]. The ordered $g\text{-C}_3\text{N}_4$ porous design considerably enhances the photocatalytic performance by enhancing mass transfer and expanding the reaction area. A more eco-friendly technique termed "greener" soft-template synthesis has been devised to

replace the usage of risky and expensive etchants like HF and NH_4HF_2 . This method uses ionic liquids and amphiphilic block polymers as soft structure-directing agents to create $g\text{-C}_3\text{N}_4$ with a characteristic porous structure [51]. For example, Wang et al., [54] altered the $g\text{-C}_3\text{N}_4$ structure using dicyandiamide and a range of soft templates. These templates were made from amphiphilic block polymers such as P123, Brij30, Brij58, Triton X-100, F127, and Brij76 as well as nonionic and ionic surfactants like BmimDCNB, BmimCl, and mimPF6. It is a notable accomplishment that mesoporous $g\text{-C}_3\text{N}_4$ materials were created with remarkable porosity. Additionally, the employment of non-covalent bonding in supramolecular self-assemblage, a unique self-templating technique, enables the creation of stable and effectively designed materials without the need for external templates [54]. The final products are composed of the ordered molecular building blocks that are produced when monomers self-assemble through hydrogen bonding. As opposed to bulk $g\text{-C}_3\text{N}_4$, multi-dimensional $g\text{-C}_3\text{N}_4$ nanomaterials have been created in a variety of shapes and sizes, including 2D nanosheets, 1D nanotubes, quantum dots, and others [54]. Both the bottom-up and top-down approaches are frequently used in synthetic methods. Bulk $g\text{-C}_3\text{N}_4$ was fragmented into finely scattered and distinct nanostructures for the top-down approach with the help of external forces, particularly for its exfoliation into $g\text{-C}_3\text{N}_4$ nanosheets, such as liquid exfoliation ways, post-thermal oxidation etching method, etc. However, anisotropic bottom-up assembly necessitates certain organic molecules as well as a growing environment that includes diverse media, including structure-directing agents and required templates. At the moment, efforts are still being made to create and synthesize $g\text{-C}_3\text{N}_4$ -based nanomaterials, producing $g\text{-C}_3\text{N}_4$ with various structures, morphologies, and sizes. This leads to the attainment of photocatalytic activity and superior optical characteristics [17].

Chellapandi Bhuvaneswari and Sundaram Ganesh Babu showed A highly robust ternary electrocatalyst, consisting of graphene-based CuS spheres on an exfoliated $g\text{-C}_3\text{N}_4$ sheet, has been developed using na-

noarchitecture and surface engineering techniques. This electrocatalyst exhibits excellent electrochemical properties and was used to create a sensitive electrochemical sensor for detecting furazolidone (FZ). The sensor displayed a linear range from 0.1 to 336.4 μM , with a low limited detectability of 0.0108 μM , demonstrating a strong relationship between current and potential. Moreover, the composite showed remarkable electrocatalytic activity, selectivity against interfering compounds, and good reproducibility, stability, and repeatability, making it a promising platform for graphene-based materials in electrochemical FZ detection [55].

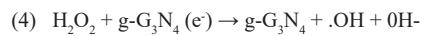
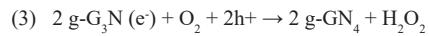
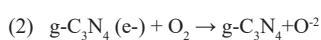
2.1.3. Advancements in Synthesis Techniques for $g\text{-C}_3\text{N}_4$ Nanocomposites

Over the past years, there has been a significant rise in the development of $g\text{-C}_3\text{N}_4$ -based nanocomposites as potential photocatalysts for treating organic wastewater. Numerous synthesis techniques including sol-gel methodologies, hydrothermal and solvothermal have been explored to create versatile $g\text{-C}_3\text{N}_4$ -based hybrids [53].

Among these methodologies, the sol-gel approach, a multi-step wet chemical process, is widely recognized for its suitability in producing nanomaterials due to cost-effectiveness and moderate reaction conditions [56]. This technique involves synthesizing a heterostructure by depositing metal nanoparticles on the semiconductor's surface, resulting in active constituents being deposited on $g\text{-C}_3\text{N}_4$. For instance, Li et al. fabricated $g\text{-C}_3\text{N}_4/\text{TiO}_2$ hybrids through an adjusted sol-gel pathway, creating a type II heterostructure to improve photoinduced electron separation and transfer [57]. Similarly, Chang et al. employed sol-gel techniques to produce $\text{C}_3\text{N}_4/\text{TiO}_2$ heterostructures with high BET surface areas and solid structures [58].

Additionally, $g\text{-C}_3\text{N}_4$ -based nanocomposites have been synthesized using the hydrothermal method, which proves an effective approach and to be relatively inexpensive. These structures typically exhibit high purity, increased crystallinity, and well-designed structures. Ji et al. utilized an in-situ hydrothermal synthesis method to decorate CdS onto $g\text{-C}_3\text{N}_4$, facilitating charge separation by locating the CdS nanoparticles near the $g\text{-C}_3\text{N}_4$ [50]. Similarly, Deng et al. developed SnS_2 on $g\text{-C}_3\text{N}_4$, resulting in an evenly dispersed system with robust visible light-induced activity [59]. Furthermore, the solvothermal method is commonly employed to fabricate nanocomposites with distinctive morphologies. Reaction media, raw material selection, and solution conditions play essential roles in determining the catalysts' structures and activities [60]. Liang et al. utilized a solvothermal approach to design $\text{Bi}_2\text{MoO}_6\text{-}g\text{-C}_3\text{N}_4$ heterostructures at various pH ranges, demonstrating superior photodegradation performance compared to single $g\text{-C}_3\text{N}_4$ and Bi_2MoO_6 for removing RhB [61]. Similarly, the ionic liquid 1-hexadecyl-3-methylimidazolium bromide was combined with $\text{Bi}(\text{NO}_3)_3$ in an EG/ $g\text{-C}_3\text{N}_4$ solution by Xia et al., resulting in strong photodegradation efficiency for BPA and RhB [62]. Moreover, researchers have employed solvothermal techniques to enhance nanocomposite properties. Y. Zhang et al. successfully inserted Bi_2MoO_6 and Bi NPs into $g\text{-C}_3\text{N}_4$, achieving remarkable photodegradation efficiency and creating indirect Z-scheme heterojunctions and well hollow microspheres in $g\text{-C}_3\text{N}_4/\text{Bi}_2\text{MoO}_6/\text{Bi}$ [63]. Additionally, S Meng loaded NiS_x NPs as a cocatalyst onto $g\text{-C}_3\text{N}_4$, enhancing photocatalytic H_2 production. Nanocomposites produced using the solvothermal method exhibit impeccable morphologies and distinctive inner structures, displaying superior catalytic performances under visible light. Optimizing synthesis parameters like reaction conditions and precursor concentrations is crucial for shaping nanocomposite morphology and improving photocatalytic efficacy. These adjustments impact properties like surface area and crystallinity, influencing the catalytic [64]. $g\text{-C}_3\text{N}_4$ -based nanocomposite's performance in breaking down pollutants. Additionally, innovative techniques such as doping and surface modification enhance charge separation efficiency, boosting the overall photocatalytic activity.

These modifications refine optical and electronic properties, enabling better utilization of visible light for improved pollutant degradation [65].

Zeinab Talebzadeh et al. employed rapid ultrasonic treatment to fabricate $\text{La}_2\text{Sn}_2\text{O}_7$ /graphitic carbon nitride (LSO/CN) nanocomposites, using broccoli extract as a natural surfactant to control crystal nucleation and growth while preventing agglomeration. Varied experimental parameters allowed control over the nanocomposites' size and shape, assessed through diverse characterization techniques. The photocatalytic efficiency was evaluated by eliminating different dyes under UV light, and studying the impact of particle size, LSO: CN ratio, dye type, scavenger, and catalyst loading on catalytic efficiency. The research also delved into the potential photocatalytic mechanism underlying dye removal [66].

3. $\text{g-C}_3\text{N}_4$'s photocatalytic mechanism

$\text{g-C}_3\text{N}_4$'s photocatalytic activity involves light absorption, charge carrier generation and movement, redox reactions, and the breakdown of pollutants or hydrogen production, depending on the specific application and conditions [67, 68]. Utilizing photocatalysis, which offers potential for cost-efficiency and sustainable use represents an environmentally friendly approach for breaking down organic pollutants. However, creating photocatalysts with superior catalytic performance remains a considerable challenge in terms of their thoughtful design and production [69]. Light Absorption: $\text{g-C}_3\text{N}_4$ absorbs light (especially visible light), causing electrons to transition from the valence band to the conduction band, resulting in the creation electron-hole pairs [70]. Redox Reactions: Holes participate and photogenerated electrons in redox reactions. Holes can oxidize hydroxide ions or water to form highly responsive radicals such as hydroxyl radicals ($\cdot\text{OH}$) or superoxide radicals ($\cdot\text{O}_2^-$) [71]. Formation of Active Species: Electrons in the conduction band can reduce oxygen to form reactive species like superoxide radicals ($\cdot\text{O}_2^-$) or react with hydrogen ions to generate hydrogen peroxide (H_2O_2) [72]. Charge Carrier Migration and Separation: Effective migration and separation of these charge carriers are crucial to prevent their recombination, thereby ensuring efficient catalytic activity [73]. Reaction with Pollutants: Photogenerated electrons and reactive species attack and break down organic pollutants adsorbed on the $\text{g-C}_3\text{N}_4$ surface, leading to their degradation into less harmful substances [74].

Hydrogen Evolution Reaction (HER): Under water's influence, $\text{g-C}_3\text{N}_4$ can also facilitate the generation of hydrogen gas by using photogenerated electrons to reduce protons from water [75].

Under the correct lighting circumstances, photogenerated electron-hole pairs can be used to explain the $\text{g-C}_3\text{N}_4$ photocatalytic activity. Reactive oxygen species (ROS) production and electron transfer are shown in Eqs (1)–(4) [76, 77]. The valence band (VB) electrons in $\text{g-C}_3\text{N}_4$ became excited and migrated from the conduction band (CB) to the surface, where they initiated a number of reactions. It is not possible to directly create hydroxyl radicals ($\cdot\text{OH}$) via holes in H_2O and VB due to the negative VB potential being bigger than the typical $\text{H}_2\text{O}/\cdot\text{OH}$ and $\text{OH}/\cdot\text{OH}$ redox potentials. The primary reactive chemicals assumed to be involved in the oxidation of organic pollutants are believed to be photogenerated holes, hydroxyl radicals, and superoxide anion radicals ($\cdot\text{O}_2^-$) [33]. According to [78], the importance of hydroxyl radicals, hydrogen peroxide species, and superoxide anion radicals in photocatalytic disinfection cannot be emphasized. These ROS have demonstrated effectiveness in reacting with cell membranes and cellular constituents, ultimately culminating in cellular demise [79].

Zuoyin Liu et al. investigated the $\text{g-C}_3\text{N}_4/\text{BiOI}$ (001) photocatalytic mechanism using hybrid functional estimations based on first-principles theory. The interface exhibits a staggered band design with a built-in electric field from $\text{g-C}_3\text{N}_4$ to BiOI. Photo-generated electrons in BiOI's conduction bands combine again with holes in $\text{g-C}_3\text{N}_4$'s valence bands due to the electric field and Coulomb interaction, forming a direct Z-scheme heterostructure. This separation of electrons and holes enhances their migration, leading to effective participation in redox reactions with water/pollutants, creating active species like hydroxyl radicals and superoxide ions. The larger difference in carrier effective masses in the $\text{g-C}_3\text{N}_4/\text{BiOI}$ (001) heterostructure contributes to its superior photocatalytic activity observed in experiments, resolving certain experimental speculations and controversies [80].

3.1. Improvement of photocatalytic performance of $\text{g-C}_3\text{N}_4$

Enhancement of $\text{g-C}_3\text{N}_4$ photocatalytic capability involves enhancing its efficiency in utilizing light energy to drive catalytic reactions. Either for the degradation of the production or pollutants of valuable products. Several strategies can contribute to enhancing $\text{g-C}_3\text{N}_4$'s photocatalytic performance inclined Modification of Structure, Doping, Surface Engineering, Heterojunction Formation, Optimization of Synthesis Parameters and Surface Defects and Active Sites [81-83]. Each of these approaches aims to address specific limitations or enhance the inherent properties of $\text{g-C}_3\text{N}_4$ to boost its effectiveness as a photocatalyst for environmental remediation or energy production applications [84].

3.1.1. Metal or non-metal doping

To enhance the efficiency of semiconductors with low conductivity, various materials, including metals and non-metals, are incorporated [85]. Transition Metals: Utilizing transition metals like Zr, W, Cu, Ag, and Fe as dopants for photocatalytic semiconductors has shown potential synergistic effects. For instance, Fe-doped $\text{g-C}_3\text{N}_4$ and Co-doped $\text{g-C}_3\text{N}_4$ exhibit enhanced performance in TOC removal in wastewater due to permonosulphate (PMS) activation [18]. Specific Metal Examples: The utilization of metals in elemental doping procedures, such as combining precursors with the template/metal salt solution during the doping process, has been observed. For example, Guo synthesized S and K-doped $\text{g-C}_3\text{N}_4$ by mixing KOH, $(\text{NH}_4)_2\text{SO}_4$, and Sulphur (S) precursors with dicyanamide and melamine templates [86]. Metal doping in $\text{g-C}_3\text{N}_4$, such as Zr, Cu, Fe, or Co, has shown promise in activating persulphates or hydrogen peroxide, thereby enhancing the removal of total organic carbon (TOC) in wastewater treatment processes [87]. The incorporation of transition metals like Zr, W, Cu, Ag, and Fe, among others, as dopants in $\text{g-C}_3\text{N}_4$ demonstrate potential synergistic effects, accentuating their catalytic capabilities in various photocatalytic reactions [88, 89].

Non-Metal Doping: Non-Metallic Elements: Non-metallic elements including X, B, Ni, P, S, and O are used in semiconductor doping processes to maintain metal-free attributes and prevent irregular chemical state fluctuations resulting from metal ions' presence [90]. Specific Non-Metal Examples: Incorporating elements like sulfur, phosphorous, and oxygen into $\text{g-C}_3\text{N}_4$ through doping processes leads to alterations in electronic band structures, improved stability, enhanced photocatalytic activity, reduced bandgap energies, and increased light absorption [91-94]. Co-Doping Effects: Co-doping, such as S and K co-doped $\text{g-C}_3\text{N}_4$, has demonstrated significant reductions in the bandgap, allowing increased absorption of visible light. Co-doping is beneficial as it enhances photocarrier separation channels, ultimately improving the photocatalytic

ic process [95].

Non-metallic elements like X, B, Ni, P, S, and O are utilized in semiconductor doping to maintain metal-free attributes while positively influencing the compound's chemical states, thereby preventing anomalous fluctuations due to the presence of metal ions [96].

Doping $\text{g-C}_3\text{N}_4$ with elements like sulfur, phosphorus, and oxygen has shown notable improvements in altering electronic band structures, enhancing long-term stability, and modulating the photocatalytic activity of the material [45].

Hao Zhang et al., discussed alkali metal (Li, Na, K, and Rb) doped $\text{g-C}_3\text{N}_4$ through high-temperature calcination and water bath heating. Both computational and experimental analyses were conducted to assess the photoelectric properties. Computational findings revealed that Rb-doped $\text{g-C}_3\text{N}_4$ exhibited significantly increased absorption spectra within the 500–1100 nm wavelength range, corroborating UV-vis spectrum results. Specifically, Rb-doped $\text{g-C}_3\text{N}_4$ demonstrated superior performance in CO_2 photo-reduction, generating CO at a rate exceeding three times higher than bulk $\text{g-C}_3\text{N}_4$. This research offers valuable insights for developing doped $\text{g-C}_3\text{N}_4$ materials applicable in, medical imaging, energy conversion, and environmental remediation [97].

3.1.2. Deposition of metals

An approach that is frequently used to improve the properties of semiconductor photocatalysts is metal deposition. This method involves the direct application of metals onto the surface of the target material through the use of heating techniques [94]. Deposition and doping are two distinct processes; the former involves the mere introduction of metals onto a surface, whereas doping is the replacement of specific atoms with dopants. In photocatalysis, the optoelectronic properties of catalysts can be improved by depositing noble metals onto their surfaces. However, this approach can be costly [95]. Noble metals are known to enable the development of robust electromagnetic fields as a result of local surface plasma resonance (LSPR), thereby photocatalytic reactions benefit from quicker and more efficient light absorption [98]. In addition, the formation of Schottky barriers at the catalyst interface enhances noble metals' ability to attract electrons. This prevents internal photocarrier recombination, produces an extra hole in place of the electron, and therefore improves photocatalytic efficiency [44]. To overcome these challenges, exploring non-precious metals for LSPR and optimizing modification techniques becomes crucial. TiN, known for its stable nature, wide-spectrum light absorption, and LSPR effect, has garnered considerable attention [99]. RhB was completely eliminated from $\text{g-C}_3\text{N}_4$ by placing the ideal quantity of silver NPs there by the reduction reaction of NaBH_4 in about 60 minutes [100]. Several techniques were utilized in the production of photocatalysts with varying shapes and sizes. These methods comprised deposition using auric chloride (AuCl_4^-), photoreduction, and thermal polymerization with melamine precursors. The catalyst has a much greater BET surface area, which is the cause of its enhanced stability, which in turn resulted in the remarkable photocatalytic activity exhibited against RhB [61], and methyl orange (MO) dyes [101]. Regarding cost considerations, non-precious metals have surfaced as a viable alternative and have been demonstrated to be effective counterparts [102]. A number of scholars endeavored to deposit non-precious metals onto the $\text{g-C}_3\text{N}_4$ structure through the incorporation of Cu and Bi metals, which facilitated a more expeditious separation of charge carriers and light absorption during the photocatalytic degradation process [102, 103].

Yuanyuan Liu et al., focused on environmentally friendly ways of producing hydrogen peroxide (H_2O_2) using photocatalysis. Non-metal elements (B, P, and S) were doped into $\text{g-C}_3\text{N}_4$ tubes (B-CNT, P-CNT, and S-CNT) through thermal polymerization and hydrothermal synthesis, significantly improving the yield of $\text{g-C}_3\text{N}_4$ tube materials. These

doped photocatalysts demonstrated enhanced photocatalytic H_2O_2 production rates ($42.31 \mu\text{M min}^{-1}$ for B-CNT, $24.95 \mu\text{M min}^{-1}$ for P-CNT, and $24.22 \mu\text{M min}^{-1}$ for S-CNT) compared to bulk CN ($16.40 \mu\text{M min}^{-1}$). The introduction of B, P, and S elements boosted photocatalytic activity by modifying and enhancing the separation of electron-hole carriers and electronic structures, showing promise for practical applications of CNT photocatalysts [104].

3.1.3. Heterojunction formulation

Combining semiconductors with additional semiconductor elements or compounds of equivalent energy levels to produce binary or ternary heterojunctions allows for the enhancement of charge carrier migration and makes charge separation easier. The mobility of the charges is increased in a heterojunction by the capacity of the electrons to move across the semiconductors while being influenced by an electric field. Many heterojunctions have been created to date, including Z-scheme (S-scheme), Schottky, p-n, Type-I, and Type-II heterojunctions. The enhancement of $\text{g-C}_3\text{N}_4$ -based photocatalysts most frequently employed the Type II heterojunction mechanism. The S-scheme (Step-scheme) and Z-scheme heterojunctions have been used and developed for effective photocatalysis. In particular, the Type II heterojunction aids in the migration of electrons from the CB of semiconductor SC1 to the CB of semiconductor SC2, as well as holes from the VB of semiconductor SC2 to the CB of semiconductor SC1. The resulting free radical entities participate in active oxidation processes (AOP) and are made up of the leftover electron in SC1's CB and the hole in SC2's VB, respectively. The greater possibility of Coulombic repulsion of electrons during the migration of photogenerated electrons from one CB to another is blamed for the progressive decline in the preference for type II photocatalysts. A little degree of photocatalytic reduction capability was also demonstrated by the carriers after they were transferred to the semiconductor with low potential. As a result, the Z-scheme heterojunction pathway was developed, making it simpler for carriers in the CB of SC1 and VB of SC2 to take part in AOP by allowing the photogenerated e- in the CB of SC2 to undergo recombination with the VB of SC1 via interfacial transfer [105]. Another team of researchers developed the S-scheme heterojunction in order to boost photocatalysis efficiency by accelerating the recombination rate of holes under an inner electric area and low potency electron [106, 107]. The phenomenon of S-scheme heterojunction, which results in the inward bending of both semiconductors' band edges, is caused by the exact two semiconductors' alignment at their respective Fermi levels. As a result, the redox potential is favorable and there is effective photocatalytic activity, which facilitates the migration of electrons from the CB of the oxidation semiconductor to the reduction semiconductor VB [108]. In addition, it has been shown that the controlled production of a $\text{g-C}_3\text{N}_4/\text{BiPO}_4$ Type II heterojunction using the ball milling approach results in a 97% breakdown of tetracycline. This extraordinary result can be attributed to the synthesized materials' high degree of the particular manner and crystallinity in which the interface formed [109]. In order to create heterojunctions, semiconductors are typically coupled with carbonaceous materials that contain conjugated structures, such as graphene oxides (GO), fullerenes, and carbon nanotubes (CNTs) [110]. By combining reduced graphene oxide (r-GO) and $\text{g-C}_3\text{N}_4$, a two-dimensional heterojunction hybrid was created that produced better interfacial conductivity and more charge carriers. They generate pairs of electrons and holes with relatively high redox potentials. The degradation efficacy of Z-scheme heterojunctions is superior to that of conventional heterojunctions. The Z-scheme heterojunction is a beneficial structure due to its ability to provide extended light absorption, separation efficiency, enhanced interfacial contact, improved oxidation capacity, and long-term stability [111]. Additionally, this structure has successfully overcome a number of drawbacks, such as the

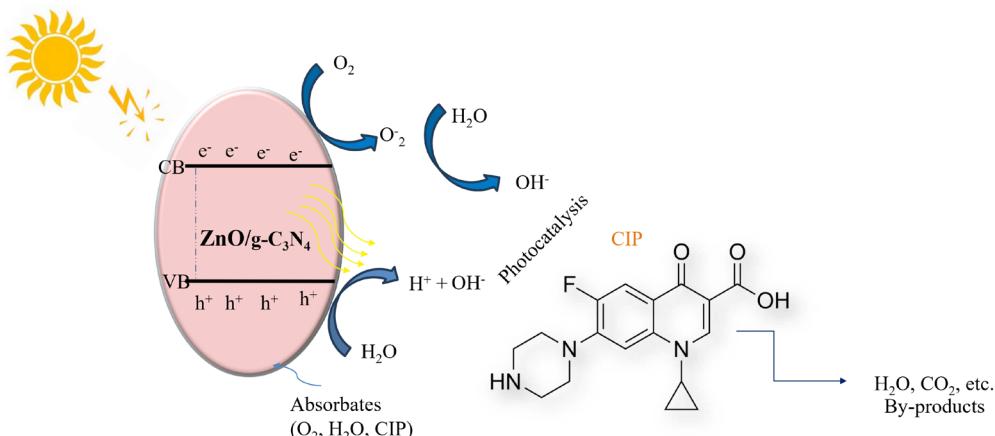
avoidance of electrostatic attraction between electron and hole ions and a decline in the redox potentials of electron/hole pairs [112]. Z-scheme heterojunctions are characterized by the usage of mediators, such as noble metals, in the process of interfacial migration of electrons. Due to the semiconductors' close closeness to one another in the absence of these mediators, electron and charge transport occur at rapid rates [113].

Lu Wang et al. focused on creating a $\text{g-C}_3\text{N}_4$ and niobium pentoxide nanofibers (Nb_2O_5 NFs) heterojunction through an electrospinning method followed by calcination. Characterization confirmed a well-defined structure of $\text{g-C}_3\text{N}_4/\text{Nb}_2\text{O}_5$, where Nb_2O_5 NFs were tightly bound to $\text{g-C}_3\text{N}_4$ nanosheets. Analogized to individual $\text{g-C}_3\text{N}_4$ and Nb_2O_5 NFs, the resulting $\text{g-C}_3\text{N}_4/\text{Nb}_2\text{O}_5$ exhibited significantly improved photocatalytic performance in degrading phenol under visible light and rhodamine B. This enhanced performance stemmed from the synergistic effect between Nb_2O_5 NFs and $\text{g-C}_3\text{N}_4$ sheets, facilitating carrier transfer and preventing recombination, as supported by transient photocurrent responses and photoluminescence spectra. Active species trapping experiments identified superoxide radical anion ($\cdot\text{O}_2^-$) and hole (h^+) as major contributors to the photocatalytic process. The $\text{g-C}_3\text{N}_4/\text{Nb}_2\text{O}_5$ heterojunction, with its notable effectiveness and simple synthesis, holds promise for applications in treating organic pollutants and harnessing solar energy [114].

Jiawen Ren et al. focused on creating $\text{g-C}_3\text{N}_4/\text{NH}_2\text{-UiO-66}$ (Zr) heterojunction photocatalysts using an in-situ deposition and solvothermal method. These catalysts demonstrated highly efficient removal of hexavalent chromium (Cr (VI)) and simultaneous oxidation of tetracycline hydrochloride (TC-HCl). The results showed that the heterojunction structure had 1.86 times greater photocatalytic Cr (VI) removal efficiency compared to pure $\text{NH}_2\text{-UiO-66}$ (Zr) under visible light, with excellent stability and repeatability. Factors affecting the photocatalytic performance, such as Cr (VI) concentration and pH values, were investigated. Moreover, the heterojunction catalyst effectively removed pollutants in mixed solutions, achieving complete Cr (VI) reduction within 90 minutes under visible light while also enhancing TC-HCl oxidation. This study underscores the potential of heterojunction-structured photocatalysts for efficient wastewater purification [115].

3.1.4. Adjustment of the structure and regulations of defects

Formation defects are impurities that are introduced into the semiconductor matrix by the atom's subtraction or addition from the structural matrix. In particular, the ideal periodic organization of any given chemical is altered or impaired, which leads to the creation of defects. The presence of imperfections in semiconductors has significant implications in the realm of photocatalysis, as they can alter the composition and characteristics of a given compound [116]. Comparatively to crystalline structures, amorphous substances' chaotic atom arrangement reduces the possibility of defects. The effectiveness of photocatalysis can be improved by defects, according to an earlier study. The presence of vacancies within the semiconductor matrix can facilitate the formation of fresh active sites for the absorption of specific pollutants [117]. Until now, the majority of defect regulation mechanisms concerning $\text{g-C}_3\text{N}_4$ have been attained by means of generating nitrogen vacancies. This method proves to be convenient as the nitrogen vacancies can be readily created through the heating of $\text{g-C}_3\text{N}_4$ particles in an air/ H_2 atmosphere [118]. Niu et al. [119], were able to create N_2 vacancies in the $\text{g-C}_3\text{N}_4$ matrix through the treatment of the substance under high temperatures in an air atmosphere. The resultant N -vacant $\text{g-C}_3\text{N}_4$ photocatalyst exhibited an increased absorption of visible light without any alteration to its structure conjugation and characteristics. Dong and colleagues [90], generated defective $\text{g-C}_3\text{N}_4$ material through the incorporation of carbon vacancies within its matrix. Subsequent irradiation with visible light led to the reduction of NO to N_2 , with the defective catalyst exhibiting a faster pace of photocatalytic H_2 evolution in comparison to non-defec-


tive $\text{g-C}_3\text{N}_4$. In a separate study, Wu and co-workers [120], produced N -vacant $\text{g-C}_3\text{N}_4$ catalysts which resulted in a significant decrease in the bandgap, thereby facilitating fast charge transfer reactions. Ding and coworkers [121], conducted a process to modify the electronic structure of a material by eliminating N_2 atoms from terminal NHx groups. This procedure searched to make more active areas in the content more readily available. Exact N -void $\text{g-C}_3\text{N}_4$ catalysts have increased photocatalytic efficiency, charge separation effectiveness and light absorption. A comparable process for improving overall performance has also been found as structural tuning, which entails altering a material's morphology, structure, energy levels, and other features [122]. The catalysts made of 3D macroporous/mesoporous $\text{g-C}_3\text{N}_4$ possessed larger surface area and porosity, thereby demonstrating superior degradation performance. Chen and colleagues [123] used CaCO_3 to create mesoporous $\text{g-C}_3\text{N}_4$ NPs and saw a speedy rise in the light absorption range from 460 nm to 800 nm causing a 12-fold increase in the rate of methylene blue (MB) degradation when compared to unmodified $\text{g-C}_3\text{N}_4$. With the discovery of porous honeycomb-structured $\text{g-C}_3\text{N}_4$, photodegradation activity was enhanced [124], and 3D $\text{g-C}_3\text{N}_4$ hollow bubbles [125]. Additionally, 2D and 1D $\text{g-C}_3\text{N}_4$ designs were modified to improve the multi-electron flow. Jin with his colleagues [126], through a two-step condensation method, created $\text{g-C}_3\text{N}_4$ nanotubes from melamine that resembled carbon nanotubes (CNTs). A six-fold increase in BET surface area and improved RhB removal potential were both seen in the synthesis of nanotubes. One method was used by Fan et al. [127] to create ultrafine $\text{g-C}_3\text{N}_4$ nanosheets with a thickness of 10 nm that closely resembled the graphite's sheet-like structure. The resultant nanosheets showed a significant five-fold increase in H_2 production, a remarkably high BET surface area of 211.2 m²/g, and the capacity to break down RhB in just 12 minutes.

Tao Yu et al., introduced a simple and environmentally friendly method to create nitrogen-defective $\text{g-C}_3\text{N}_4$ by employing urea and fumaric acid through thermal polymerization. This process induced nitrogen defects in the $\text{g-C}_3\text{N}_4$ structure, enhancing its photocatalytic action for hydrogen evolution by approximately 2.64 times compared to the original $\text{g-C}_3\text{N}_4$. These defects altered the band structure, leading to developed light absorption, efficient charge separation, and increased hydrogen evolution rates. The method's simplicity and eco-friendliness offer a promising approach for producing nitrogen-defective $\text{g-C}_3\text{N}_4$ with adjustable band structures [128].

Yingying Qin et al. explore a method to improve the photocatalytic hydrogen evolution of $\text{g-C}_3\text{N}_4$ by π -conjugation structure and integrating N defect engineering. The optimized DCN350 catalyst exhibited a remarkable hydrogen evolution rate of 1541.6 $\mu\text{mol g}^{-1} \text{h}^{-1}$, representing a 7.5-fold increase over pristine $\text{g-C}_3\text{N}_4$ (205.9 $\mu\text{mol g}^{-1} \text{h}^{-1}$). Through density functional theory (DFT) investigations and experiments, it was found that DCN350 with N defects not only broadened light absorption by reducing band gaps but also facilitated the hydrogen evolution reaction by acting as active sites. Additionally, the $-\text{C}\equiv\text{N}$ functional group promoted charge spatial separation, enhancing the charge transfer and light absorption capacity of $\text{g-C}_3\text{N}_4$. This study sheds light on the role of structural defects in enhancing the photocatalytic hydrogen evolutionary activity [129].

4. $\text{G-C}_3\text{N}_4$ for pharmaceutical removal from water

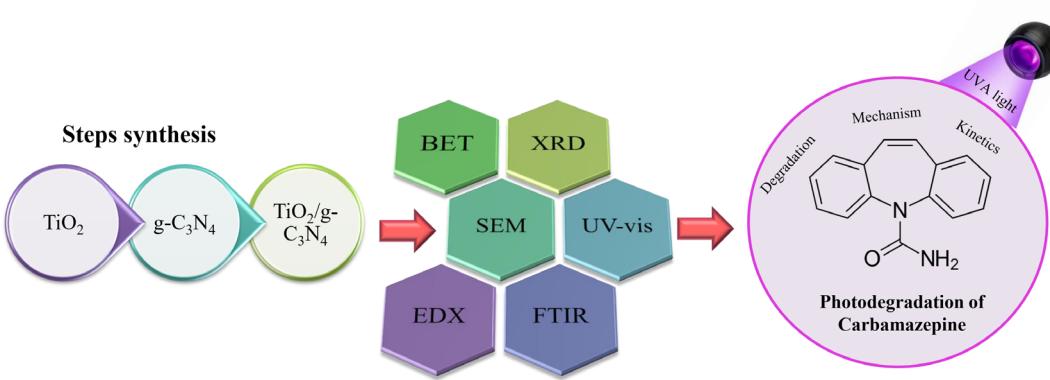
The application of photocatalytic oxidation processes for eliminating pharmaceutical drugs from wastewater is regarded as an appealing and eco-friendly method [16]. $\text{G-C}_3\text{N}_4$ has appeared as a promising photoelectrocatalyst for water treatment. Researchers are exploring advanced oxidation processes (AOPs), particularly photoelectrocatalytic (PEC) systems, to develop sustainable methods for eliminating persistent con-

Fig. 1. Photodegradation of CIP under solar light-assisted $\text{ZnO}/\text{g-C}_3\text{N}_4$.

taminants from urban wastewater treatment plant effluents [130]. The utilization of $\text{g-C}_3\text{N}_4$ in pharmaceutical removal from water highlights its potential to address water pollution challenges caused by the presence of pharmaceutical residues [131]. Ciprofloxacin, acetaminophen, and carbamazepine are commonly found pharmaceuticals in water, undergoing photodegradation to break down their structures into less harmful substances when exposed to light, particularly under the influence of $\text{g-C}_3\text{N}_4$, a photocatalyst [132]. This catalyst generates electron-hole pairs upon light exposure, initiating redox reactions with these pharmaceuticals [133]. This catalyst generates electron-hole pairs upon light exposure, initiating redox reactions with these pharmaceuticals. The adsorption of these compounds onto $\text{g-C}_3\text{N}_4$'s surface leads to highly reactive species formation, such as hydroxyl radicals ($\bullet\text{OH}$), which break down the mo-

Table 1.

Photocatalytic Degradation of Pharmaceuticals by Different Materials under Varied Light Sources - Summary of Main Results


Material	Pharmaceutical	Light source	Main results	Ref.
Boron-doped and nitrogen-deficient $\text{g-C}_3\text{N}_4$ (BNCN)	Acetaminophen	Visible light	100% in 30 min	[178]
$\text{TiO}_2/\text{g-C}_3\text{N}_4$ -PS (persulfate)	Acetaminophen	Visible light	Almost completely degraded in 30 min	[179]
$\text{g-C}_3\text{N}_4$ nanosheets	Acetaminophen	Solar light	99% in one hour	[180]
$\text{g-C}_3\text{N}_4@\text{TiO}_2$ (gT), $\text{g-C}_3\text{N}_4@\text{TiO}_2@\text{ZnO}$ (gTZ)	Acetaminophen	Visible light	For gT 70.6% and gTZ 92.4%	[179]
$\text{CoFe}_2\text{O}_4/\text{mpg-C}_3\text{N}_4$	Acetaminophen	UV light	100% in 25 min	[181]
$\text{BiOCl/g-C}_3\text{N}_4$ (BOC/CN)	Carbamazepine	Solar light	49% 240 min	[182]
$\text{g-C}_3\text{N}_4/\text{TiO}_2$	Carbamazepine	UVA light	71.41% in 360 min	[15]
$\text{C}_3\text{N}_4@\text{CuS}$	Carbamazepine	Visible light	98.5% in 5h	[183]
carbon-doped supramolecule-based $\text{g-C}_3\text{N}_4/\text{TiO}_2$	Carbamazepine	LED lamp	99.77% in 6h	[150]
Heterojunction of (P, S) co-doped $\text{g-C}_3\text{N}_4$ and 2D TiO_2	Carbamazepine	Solar light	100 % in less than 30 min	[137]
$\text{g-C}_3\text{N}_4/\text{Ag}_3\text{PO}_4/\text{Chitosan}$	Ciprofloxacin	Visible light	90.34% in 60 min	[184]
$\text{CoFe}_2\text{O}_4/\text{g-C}_3\text{N}_4$	Ciprofloxacin	Visible light	97% in 60min	[185]
$\text{ZnO/g-C}_3\text{N}_4$	Ciprofloxacin	Visible light	93.8% under pH 8	[13]
$\text{C}_3\text{N}_4/\text{Bp/MoS}_2$	Ciprofloxacin	Visible light	over 99% in 60 min	[186]
$\text{CeO}_2/\text{g-C}_3\text{N}_4$	Ciprofloxacin	Visible light	96.3% in 100 min	[187]

lecular structures of these pharmaceuticals through oxidation-reduction reactions [134].

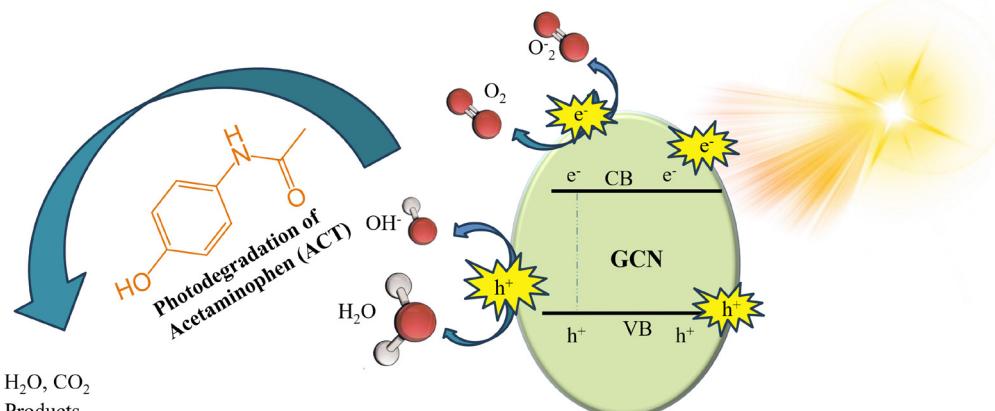
This degradation process facilitated by $\text{g-C}_3\text{N}_4$'s photocatalytic activity aids in reducing or removing these pharmaceutical pollutants from water bodies [68]. Photocatalytic degradation of pharmaceuticals by different materials under varied light sources (summarized in Table 1).

4.1. Photodegradation of Ciprofloxacin

Ciprofloxacin (CIP), a widely used antibiotic belonging to the second-generation quinolone category, is prevalent in wastewater due to its limited breakdown through metabolic means. A significant portion of CIP is excreted unchanged and remains persistent in municipal wastewater.

Characterization of Photocatalyst

ter [135]. Despite being discharged into the environment, CIP exhibits resistance to biodegradation in traditional wastewater treatment plants, leading to its detection in aquatic environments globally [136, 137]. This persistence poses risks like the development of bacterial medication resistance and toxicity to probiotics, necessitating effective removal techniques [138]. Photocatalysis offers a promising method for eliminating antibiotic residues from water [139, 140]. Studies have demonstrated the efficacy of various photocatalysts, such as Z-scheme nanocomposites of $\text{TiO}_2/\text{g-C}_3\text{N}_4$ and nitrogen-deficient $\text{g-C}_3\text{N}_4$ with carbon dots (C-dot@ND-g-C₃N₄) in CIP degradation [141, 142]. These photocatalysts exhibited remarkable degradation rates under simulated sun irradiation and visible light, showing significant improvement over commercial TiO_2 powder or $\text{g-C}_3\text{N}_4$ alone [143]. Mechanistic studies revealed the involvement of hydroxyl radicals and superoxide in the breakdown of CIP, with electron-hole pair separation, nitrogen defects, and carbon dots enhancing visible light absorption [142]. Additionally, heterojunction photocatalysts, such as Sm-doped $\text{g-C}_3\text{N}_4/\text{Ti3C2 MXene}$ (SCN/MX) and $\text{g-C}_3\text{N}_4/\text{RGO/WO}_3$, showcased enhanced charge separation and electron mobility [144, 145]. The reduced graphene oxide (RGO) incorporation as an electron mediator significantly improved the overall performance of the photocatalysts, leading to increased CIP degradation efficiency under visible light exposure [146]. Photocatalysis stands as a promising technique for eliminating antibiotic residues from water [147, 148]. Regarding to photocatalytic Removal Efforts Research has explored various approaches leveraging different photocatalysts to degrade CIP effectively [149]. For instance, Hu et al. developed a Z-scheme nanocomposite of 1D/2D TiO_2 nanorod/ $\text{g-C}_3\text{N}_4$ nanosheet, demonstrating a 93.4% degradation rate for CIP within 60 minutes [150]. Zhang et al. introduced a green photocatalyst, C-dot@Nitrogen Deficient $\text{g-C}_3\text{N}_4$, which showed a 3.5-fold enhanced efficacy in CIP removal under visible light [151]. Related to advancements in photocatalyst development Studies by Yu et al. introduced a heterojunction of Sm-doped $\text{g-C}_3\text{N}_4/\text{Ti3C2 MXene}$ (SCN/MX), exhibiting over 99% photodegradation efficiency for CIP in the presence of visible light [152, 153]. Similarly, Lu et al. utilized a photoreduction technique to create the Z-scheme photocatalyst $\text{g-C}_3\text{N}_4/\text{RGO/WO}_3$, indicating superior enhanced performance and charge separation in CIP degradation [154]. Doan Van Thuan et al. focused on employing a ZnO -modified $\text{g-C}_3\text{N}_4$ photocatalyst to degrade Ciprofloxacin (CIP) antibiotic compounds in water. The $\text{ZnO}/\text{g-C}_3\text{N}_4$ catalyst demonstrated a significant removal efficiency of 93.8% for CIP at pH 8.0. Increasing the catalyst amount improved pollutant degradation, achieving complete oxidation of low concentrations (1 mg L^{-1}) of CIP. At higher concentrations (20 mg L^{-1}), around a 13% decrease in removal efficiency was observed. The doped $\text{ZnO}/\text{g-C}_3\text{N}_4$ catalyst degraded CIP 4.9 times faster than undoped $\text{g-C}_3\text{N}_4$ and displayed strong reusability with 89.8% efficiency after 3 cycles. Active radical species like $\cdot\text{OH}$, $\cdot\text{O}_2^-$, and h^+ were identified as crucial in the degradation process. Additionally, the study


proposed a mechanism detailing the degradation of CIP using visible light-assisted $\text{ZnO}/\text{g-C}_3\text{N}_4$ [13] (mentioned in Figure 1). Kang Hu et al., developed a Z-scheme nanocomposite using 1D/2D TiO_2 nanorods and $\text{g-C}_3\text{N}_4$ nanosheets, aiming for CIP-efficient photocatalytic degradation in water treatment. Achieving 93.4% CIP degradation in 60 minutes, the nanocomposite had optimal conditions with 30% $\text{g-C}_3\text{N}_4$, 15 $\mu\text{mol L}^{-1}$ CIP concentration, and pH 6.3. The study systematically explored catalyst effects, and pH on degradation and CIP concentrations, fitting a pseudo-first-order kinetic model for CIP concentrations above 10 $\mu\text{mol L}^{-1}$. Under simulated sunlight, this nanocomposite exhibited 2.3 and 7.5 times higher CIP photodegradation rates compared to commercial TiO_2 powder and $\text{g-C}_3\text{N}_4$ nanosheets, respectively. Further investigations unveiled degradation kinetics, and mechanisms, and proposed three CIP degradation pathways, highlighting the role of h^+ and $\cdot\text{OH}$ through electron spin resonance (ESR) technique and scavenging experiments. This research may offer an effective approach for eliminating various antibiotics in water treatment processes [155].

4.2. Photodegradation of Acetaminophen (ACT)

ACT, a prominent pharmaceutical compound, underwent photodegradation studies employing advanced photocatalysts in various experiments [156]. The photodegradation of acetaminophen offers several benefits, such as Environmental Impact, Water Treatment, Reduced Toxicity, and Public Health [157]. ACT photodegradation can be achieved through various techniques including Photocatalyst, UV Irradiation, Advanced Oxidation Processes (AOPs), Heterogeneous Photocatalytic Systems, and Hybrid Systems [158, 159]. Each technique offers distinct advantages in terms of efficiency, applicability, and degradation rates based on factors like catalyst type, light source, reaction conditions, and the concentration of acetaminophen in the system [157, 158]. Li et al., produced $\text{g-C}_3\text{N}_4/\text{CdS/Bi4O5I2}$ composites that demonstrated exceptional photocatalytic efficiency and stability for paracetamol degradation. The ternary heterojunctions facilitated enhanced charge transfer pathways, significantly boosting performance and stability, with the optimal sample exhibiting significantly higher degradation rates compared to individual components [160]. Moradi et al., developed $\text{TiO}_2/\text{graphene/g-C}_3\text{N}_4$ (TGCN), an efficient Z-type photocatalyst, by incorporating graphene as an electron mediator, enhancing degradation performance under simulated solar light. The study elucidated the enhanced band gap placement and charge separation mechanisms, leading to the efficient destruction of ACM under specific irradiation conditions [161].

Gupta et al., investigated the $\text{g-C}_3\text{N}_4/\text{PS}$ system, demonstrating improved photocatalytic breakdown of ACT using hydrothermally treated $\text{g-C}_3\text{N}_4$ illuminated by 400 nm LEDs (HT-g-C₃N₄/PS system). They highlighted the superior charge transfer and photoelectron-hole separation properties of HT-g-C₃N₄, outperforming $\text{g-C}_3\text{N}_4$ in ACT degradation

Fig. 2. Photodegradation of ACT for water remediation.

Fig. 3. Photodegradation of Carbamazepine under UVA light.

under different conditions [162].

The comprehensive analysis of these studies evaluated the degradation kinetics, by-product identification, and potential applications in treating pharmaceutical pollutants in water resources [163]. Some findings presented diverse photocatalytic materials, elucidating their efficiencies, charge transfer mechanisms, and enhanced degradation capabilities, paving the way for promising solutions in water treatment [164, 165]. Photodegradation of ACT for water remediation is shown in figure 2.

Elvana Cako et al., developed a new photocatalyst by combining phosphorus and sulfur co-doped $\text{g-C}_3\text{N}_4$ with 2D TiO_2 for solar-driven degradation of pharmaceutical pollutants. This composite demonstrated impressive photocatalytic activity, achieving almost complete degradation of carbamazepine (CBZ) within 30 minutes and complete removal of acetaminophen (ACT) in 60 minutes under simulated solar light. The composite showed excellent synergy in degrading CBZ and ACT, removing 76% and 40% of total organic carbon (TOC) respectively. Reactive oxygen species like hydroxyl radicals and superoxide played vital roles in the degradation process. The composite's structure effectively separated charge carriers, and its stability across multiple degradation cycles highlights its potential for environmental applications. They introduced a highly effective and stable photocatalyst for breaking down pharmaceutical pollutants, showcasing promising applications in environmental remediation [137].

4.3. Photodegradation of Carbamazepine

Carbamazepine is a pharmaceutical compound primarily used to treat epilepsy, bipolar disorder, and certain neuralgia pains [166]. Its photodegradation involves subjecting the compound to light-induced chemical reactions that break down its molecular structure [167]. The benefits of carbamazepine photodegradation include reducing its environmental impact and toxicity. Photodegradation can convert the compound into less harmful substances, aiding in its removal from water bodies or treatment processes [168, 169]. Various methods are employed for carbamazepine photodegradation, such as photocatalysis using semiconductor materials like TiO_2 , ZnO , or graphene-based catalysts [170]. Advanced oxidation processes (AOPs), involving UV irradiation or the addition of hydrogen peroxide or ozone, are also effective in degrading carbamazepine [171]. These techniques harness light or reactive oxygen species to break down the compound into smaller, less harmful molecules [170, 172]. Zhou et al., developed a composite material using $\text{g-C}_3\text{N}_4$ nanosheets and CoCeOx nanospheres derived from MOF, showcasing abundant active sites, a compact interface, and a highly specific surface. This material demonstrated remarkable hydrogen generation efficiency of 1050 mol g⁻¹ h⁻¹ and exhibited significant carbamazepine degradation (97% within an hour at 0.05 min⁻¹ rate) when assisted by PDS. The degradation products and pathways of carbamazepine were proposed through mass spectrometry and DFT calculations [136].

Gan et al.'s research explored the interaction between $\text{Fe}_2\text{O}_3@g-\text{C}_3\text{N}_4$ (FCN) and persulfate/sulfite in the breakdown of carbamazepine (CBZ). It revealed distinct roles of Fe_2O_3 in FCN for activating S(IV) and PS. In FCN/PS/vis and FCN/S(IV)/vis systems, the roles and contributions of Fe_2O_3 varied significantly, impacting CBZ elimination based on pH and catalyst charge [173].

Xu et al., produced ternary graphitic carbon nitride/zinc tetra carboxy phthalocyanine/graphene quantum dots ($\text{g-C}_3\text{N}_4/\text{ZnTcPc}/0.1\text{GQDs}$). GQDs addition to $\text{g-C}_3\text{N}_4/\text{ZnTcPc}/0.1\text{GQDs}$ caused the $\text{C}-\text{NH}_2$ peak to move from 286.0 eV to 285.7 eV and enhanced the C-C peak relative to the $\text{C}-\text{NH}_2$ peak, according to X-ray photoelectron spectroscopy (XPS) spectra. Under solar light irradiation, the $\text{g-C}_3\text{N}_4/\text{ZnTcPc}/0.1\text{GQDs}$ composites showed improved photocatalytic activity. Notably, $\text{g-C}_3\text{N}_4/\text{ZnTcPc}/0.1\text{GQDs}$ showed improved photocatalytic performance, removing carbamazepine in 180 minutes and sulfquinolaxine sodium in 40 minutes, respectively, with removal rates of 63% and 59%. In-depth research has been done on the use of the peroxyomonosulfate-based AOP as an effective method for the organic contaminants degradation in wastewater [174].

Yang et al., reported on a new 3D hierarchical heterojunction made of protonated $\text{g-C}_3\text{N}_4/\text{BiOBr}$, demonstrating high photocatalytic effectiveness for CBZ removal under simulated solar light. The study delved into operational variables like initial solution pH, photocatalyst dosage, and coexisting inorganic anions, attributing enhanced catalytic performance to efficient charge separation at the interface between phases [175].

Mei et al., introduced a novel method using potassium persulfate (KPS) as an oxidizing agent to create metal-free carboxyl-modified $\text{g-C}_3\text{N}_4$. This method efficiently activated PMS for CBZ degradation under sunlight, achieving approximately 100% CBZ removal within 20 minutes, without the use of strong acids or organic solvents [176].

Abdoulaye Kane et al., synthesized a UVA light-driven $\text{g-C}_3\text{N}_4/\text{TiO}_2$ photocatalyst for degrading Carbamazepine (CBZ) in water. The composite structures and TiO_2 , $\text{g-C}_3\text{N}_4$, were examined utilizing various techniques like UV-vis DRS, SEM with EDX, BET nitrogen adsorption-desorption isotherm, Raman Spectroscopy, and XRD. The developed composites (10% $\text{g-C}_3\text{N}_4/\text{TiO}_2$ and 30% $\text{g-C}_3\text{N}_4/\text{TiO}_2$) exhibited band gaps of 2.97 and 2.78 eV, respectively, and specific surface areas of 80.64 and 59.67 m²/g. Photodegradation studies revealed that the 10% $\text{g-C}_3\text{N}_4/\text{TiO}_2$ composite eliminated 71.41% of CBZ with 30.38% mineralization yield within 360 minutes of UVA irradiation under optimal conditions (10 ppm initial CBZ concentration and 0.1 g of 10% $\text{g-C}_3\text{N}_4/\text{TiO}_2$ loading). The degradation kinetics almost followed a First-order kinetic model, showing a high reaction rate constant of 0.0034 min⁻¹ for the 10% $\text{g-C}_3\text{N}_4/\text{TiO}_2$ composite. It is exhibited the synthesized $\text{g-C}_3\text{N}_4/\text{TiO}_2$ photocatalyst efficiency under UVA light for degrading CBZ, highlighting its potential application in water treatment processes [15]. Photodegradation of Carbamazepine under UVA light illustrate in Figure 3.

Zihang Cheng et al., focused on synthesizing $\text{g-C}_3\text{N}_4$ enriched with tri-s-triazine groups to activate peroxyomonosulfate (PMS) under visible light, termed the Vis/ $\text{g-C}_3\text{N}_4$ /PMS process, for degrading the persistent micropollutant carbamazepine (CBZ). This process raised the degradation rate of CBZ by 2 times compared to $\text{g-C}_3\text{N}_4$ alone under visible light, mainly due to the generation of HO radical dot and $\text{SO}_4^{\cdot-}$ radical dot- from PMS activation. It was observed that the enhanced degradation was not a result of improved charge separation in $\text{g-C}_3\text{N}_4$ because of PMS attendance. The Vis/ $\text{g-C}_3\text{N}_4$ /PMS process exhibited insensitivity to dissolved bicarbonate concentrations and oxygen, and chloride functioned effectively across a wide pH range from 6.0 to 10.0 and showed less susceptibility to high natural organic matter concentrations compared to other treatment processes like UV/TiO₂ and UV/chlorine. Furthermore, the $\text{g-C}_3\text{N}_4$ photocatalytic activity remained stable over five reuse cycles. These characteristics render the Vis/ $\text{g-C}_3\text{N}_4$ /PMS process practically relevant and applicable for degrading micropollutants in various water sources using natural sunlight or more efficient visible light LEDs [177].

5. Conclusions and future perspectives

In conclusion, the remarkable efficiency and cost-effectiveness of $\text{g-C}_3\text{N}_4$ -based materials in pharmaceutical photodegradation present a compelling approach for water treatment. This review affirms the capability of $\text{g-C}_3\text{N}_4$ -based materials to efficiently degrade persistent and emerging pollutants like Ciprofloxacin, Acetaminophen, and Carbamazepine in water. However, advancing the optimization of material properties and operational conditions is essential to maximize efficacy. To address the challenges associated with eliminating emerging contaminants from water resources, the development of highly effective and economically feasible photocatalysts is imperative. Prioritizing sustainable synthesis techniques for $\text{g-C}_3\text{N}_4$ -based materials and evaluating the potential toxicity and environmental impact of generated by-products during photocatalytic degradation is crucial. This emphasizes the pivotal role of science and technology in tackling environmental challenges and underscores the ongoing need for research and development to devise efficient water treatment methodologies.

Acknowledgments

The authors received no financial support for the research, authorship and/or publication of this article.

Conflict of interest

The authors declare that there is no conflict of interest.

REFERENCES

- [1] J. Yu, M. Jaroniec, C. Jiang, *Surface science of photocatalysis*, Academic Press 2020.
- [2] C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, J. Yu, Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst, *Advanced Materials* 33(9) (2021) 2003521.
- [3] O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, A review of the mechanisms and modeling of photocatalytic disinfection, *Applied Catalysis B: Environmental* 98(1-2) (2010) 27-38.
- [4] L. Zhang, X. Zhou, S. Liu, H. Liu, S. Zhu, Y. Mao, Q. Yang, S. Zhu, C. Zhang, T. Wang, C. Wang, Two birds, one stone: Rational design of Bi-MOF/ $\text{g-C}_3\text{N}_4$ photocatalyst for effective nitrogen fixation and pollutants degradation, *Journal of Cleaner Production* 425 (2023) 138912.
- [5] R.R. Ikreedegh, M. Tahir, A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO_2 reduction to solar fuels, *Journal of CO₂ Utilization* 43 (2021) 101381.
- [6] A. Meng, L. Zhang, B. Cheng, J. Yu, Dual cocatalysts in TiO₂ photocatalysis, *Advanced Materials* 31(30) (2019) 1807660.
- [7] T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, Review on metal sulphide-based Z-scheme photocatalysts, *ChemCatChem* 11(5) (2019) 1394-1411.
- [8] C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, An inorganic/organic S-scheme heterojunction H₂-production photocatalyst and its charge transfer mechanism, *Advanced Materials* 33(22) (2021) 2100317.
- [9] P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu, S. Cao, Designing defective crystalline carbon nitride to enable selective CO_2 photoreduction in the gas phase, *Advanced Functional Materials* 29(15) (2019) 1900093.
- [10] Y. Yang, X. Li, C. Zhou, W. Xiong, G. Zeng, D. Huang, C. Zhang, W. Wang, B. Song, X. Tang, X. Li, H. Guo, Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: A critical review, *Water Research* 184 (2020) 116200.
- [11] H.A. Bicalho, J.L. Lopez, I. Binatti, P.F.R. Batista, J.D. Ardisson, R.R. Resende, E. Lorençon, Facile synthesis of highly dispersed Fe(II)-doped $\text{g-C}_3\text{N}_4$ and its application in Fenton-like catalysis, *Molecular Catalysis* 435 (2017) 156-165.
- [12] C. Chen, M. Xie, L. Kong, W. Lu, Z. Feng, J. Zhan, Mn₃O₄ nanodots loaded $\text{g-C}_3\text{N}_4$ nanosheets for catalytic membrane degradation of organic contaminants, *Journal of Hazardous Materials* 390 (2020) 122146.
- [13] D. Van Thuan, T.B.H. Nguyen, T.H. Pham, J. Kim, T.T. Hien Chu, M.V. Nguyen, K.D. Nguyen, W.A. Al-onazi, M.S. Elishikh, Photodegradation of ciprofloxacin antibiotic in water by using ZnO-doped $\text{g-C}_3\text{N}_4$ photocatalyst, *Chemosphere* 308 (2022) 136408.
- [14] J. Fan, H. Qin, S. Jiang, Mn-doped $\text{g-C}_3\text{N}_4$ composite to activate peroxyomonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen, *Chemical Engineering Journal* 359 (2019) 723-732.
- [15] A. Kane, L. Chafiq, S. Dalhatou, P. Bonnet, M. Nasr, N. Gaillard, J.M.D. Dikdim, G. Monier, A.A. Assadi, H. Zeghoud, $\text{g-C}_3\text{N}_4/\text{TiO}_2$ S-scheme heterojunction photocatalyst with enhanced photocatalytic Carbamazepine degradation and mineralization, *Journal of Photochemistry and Photobiology A: Chemistry* 430 (2022) 113971.
- [16] N.Q. Thang, A. Sabbah, L.-C. Chen, K.-H. Chen, C.M. Thi, P. Van Viet, High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: a case study of Ag/ $\text{g-C}_3\text{N}_4/\text{ZnO}$ nanocomposite materials, *Chemosphere* 282 (2021) 130971.
- [17] Z. Chen, S. Zhang, Y. Liu, N.S. Alharbi, S.O. Rabah, S. Wang, X. Wang, Synthesis and fabrication of $\text{g-C}_3\text{N}_4$ -based materials and their application in elimination of pollutants, *Science of The Total Environment* 731 (2020) 139054.
- [18] M. Raaja Rajeshwari, S. Kokilavani, S. Sudheer Khan, Recent developments in architecturing the $\text{g-C}_3\text{N}_4$ based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment, *Chemosphere* 291 (2022) 132735.
- [19] M. Ahmaruzzaman, S.R. Mishra, Photocatalytic performance of $\text{g-C}_3\text{N}_4$ based nanocomposites for effective degradation/removal of dyes from water and wastewater, *Materials Research Bulletin* 143 (2021) 111417.
- [20] B. Zhu, B. Cheng, J. Fan, W. Ho, J. Yu, $\text{g-C}_3\text{N}_4$ -based 2D/2D composite heterojunction photocatalyst, *Small Structures* 2(12) (2021) 2100086.
- [21] M. Zhang, Y. Yang, X. An, L.-a. Hou, A critical review of $\text{g-C}_3\text{N}_4$ -based photocatalytic membrane for water purification, *Chemical Engineering Journal* 412 (2021) 128663.
- [22] A. Smýkalová, B. Sokolová, K. Foniok, V. Matějka, P. Praus, Photocatalytic Degradation of Selected Pharmaceuticals Using $\text{g-C}_3\text{N}_4$ and TiO₂ Nanomaterials, *Nanomaterials* 9(9) (2019) 1194.
- [23] D. Fatta-Kassinos, S. Meric, A. Nikolaou, Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research, *Analytical and Bioanalytical Chemistry* 399(1) (2011) 251-275.
- [24] A.M.E. Khalil, F.A. Memon, T.A. Tabish, D. Salmon, S. Zhang, D. Butler, Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water, *Chemical Engineering Journal* 398 (2020) 125440.
- [25] Y. Gong, M. Li, H. Li, Y. Wang, Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation, *Green Chemistry* 17(2) (2015) 715-736.
- [26] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, *Nature materials* 8(1) (2009) 76-80.
- [27] D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides, *Science* 271(5245) (1996) 53-55.
- [28] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, *Journal of Materials chemistry A* 18(41) (2008) 4893-4908.
- [29] T. Sano, S. Tsutsui, K. Koike, T. Hirakawa, Y. Teramoto, N. Negishi, K. Takeuchi, Activation of graphitic carbon nitride ($\text{g-C}_3\text{N}_4$) by alkaline hydrother-

mal treatment for photocatalytic NO oxidation in gas phase, *Journal of Materials Chemistry A* 1(21) (2013) 6489-6496.

[30] K. Yu, X. Hu, K. Yao, P. Luo, X. Wang, H. Wang, Preparation of an ultrathin 2D/2D rGO/g-C₃N₄ nanocomposite with enhanced visible-light-driven photocatalytic performance, *RSC advances* 7(58) (2017) 36793-36799.

[31] X. Bai, L. Wang, R. Zong, Y. Zhu, Photocatalytic activity enhanced via g-C₃N₄ nanoplates to nanorods, *The Journal of Physical Chemistry C* 117(19) (2013) 9952-9961.

[32] J. Zhu, Y. Wei, W. Chen, Z. Zhao, A. Thomas, Graphitic carbon nitride as a metal-free catalyst for NO decomposition, *Chemical communications* 46(37) (2010) 6965-6967.

[33] S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, *Advanced Materials* 27(13) (2015) 2150-2176.

[34] X. Li, G. Huang, X. Chen, J. Huang, M. Li, J. Yin, Y. Liang, Y. Yao, Y. Li, A review on graphitic carbon nitride (g-C₃N₄) based hybrid membranes for water and wastewater treatment, *Science of The Total Environment* 792 (2021) 148462.

[35] R. Kumar, A. Sudhaik, P. Raizada, V.-H. Nguyen, Q. Van Le, T. Ahamed, S. Thakur, C.M. Hussain, P. Singh, Integrating K and P co-doped g-C₃N₄ with ZnFe₂O₄ and graphene oxide for S-scheme-based enhanced adsorption coupled photocatalytic real wastewater treatment, *Chemosphere* 337 (2023) 139267.

[36] Q. Wang, Y. Li, F. Huang, S. Song, G. Ai, X. Xin, B. Zhao, Y. Zheng, Z. Zhang, Recent advances in g-C₃N₄-based materials and their application in energy and environmental sustainability, *Molecules* 28(1) (2023) 432.

[37] N.F. Moreira, M.J. Sampaio, A.R. Ribeiro, C.G. Silva, J.L. Faria, A.M. Silva, Metal-free g-C₃N₄ photocatalysis of organic micropollutants in urban wastewater under visible light, *Applied Catalysis B: Environmental* 248 (2019) 184-192.

[38] J. Pan, Y. Liu, W. Ou, S. Li, H. Li, J. Wang, C. Song, Y. Zheng, C. Li, The photocatalytic hydrogen evolution enhancement of the MoS₂ lamellas modified g-C₃N₄/SrTiO₃ core-shell heterojunction, *Renewable Energy* 161 (2020) 340-349.

[39] M. Inagaki, T. Tsumura, T. Kinumoto, M. Toyoda, Graphitic carbon nitrides (g-C₃N₄) with comparative discussion to carbon materials, *Carbon* 141 (2019) 580-607.

[40] H. Tang, S. Chang, G. Tang, W. Liang, AgBr and g-C₃N₄ co-modified Ag₂CO₃ photocatalyst: a novel multi-heterostructured photocatalyst with enhanced photocatalytic activity, *Applied Surface Science* 391 (2017) 440-448.

[41] G. Wang, X. Li, P. Hao, W. Liu, H. Zhan, S. Bi, g-C₃N₄/Nitrogen-Doped Carbon Dot/Silver Nanoparticle-Based Ternary Photocatalyst for Water Pollutant Treatment, *ACS Applied Nano Materials* 6(7) (2023) 5747-5758.

[42] Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, *Nanoscale* 4(17) (2012) 5300-5303.

[43] H. Dong, X. Guo, C. Yang, Z. Ouyang, Synthesis of g-C₃N₄ by different precursors under burning explosion effect and its photocatalytic degradation for tylosin, *Applied Catalysis B: Environmental* 230 (2018) 65-76.

[44] Z. Zhao, Y. Ma, J. Fan, Y. Xue, H. Chang, Y. Masubuchi, S. Yin, Synthesis of graphitic carbon nitride from different precursors by fractional thermal polymerization method and their visible light induced photocatalytic activities, *Journal of Alloys and Compounds* 735 (2018) 1297-1305.

[45] W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C₃N₄)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?, *Chemical reviews* 116(12) (2016) 7159-7329.

[46] Z. Mo, X. She, Y. Li, L. Liu, L. Huang, Z. Chen, Q. Zhang, H. Xu, H. Li, Synthesis of g-C₃N₄ at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution, *RSC advances* 5(123) (2015) 101552-101562.

[47] Q. Tay, P. Kanhere, C.F. Ng, S. Chen, S. Chakraborty, A.C.H. Huan, T.C. Sum, R. Ahuja, Z. Chen, Defect engineered g-C₃N₄ for efficient visible light photocatalytic hydrogen production, *Chemistry of Materials* 27(14) (2015) 4930-4933.

[48] J. Xu, M. Fujitsuka, S. Kim, Z. Wang, T. Majima, Unprecedented effect of CO₂ calcination atmosphere on photocatalytic H₂ production activity from water using g-C₃N₄ synthesized from triazole polymerization, *Applied Catalysis B: Environmental* 241 (2019) 141-148.

[49] I. Khan, M. Luo, S. Khan, H. Asghar, M. Saeed, S. Khan, A. Khan, M. Humayun, L. Guo, B. Shi, Green synthesis of SrO bridged LaFeO₃/g-C₃N₄ nanocomposites for CO₂ conversion and bisphenol A degradation with new insights into mechanism, *Environmental Research* 207 (2022) 112650.

[50] S. Zhang, Y. Liu, P. Gu, R. Ma, T. Wen, G. Zhao, L. Li, Y. Ai, C. Hu, X. Wang, Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C₃N₄: Mechanism exploration from both experimental and DFT studies, *Applied Catalysis B: Environmental* 248 (2019) 1-10.

[51] B. Zhou, M. Waqas, B. Yang, K. Xiao, S. Wang, C. Zhu, J. Li, J. Zhang, Convenient one-step fabrication and morphology evolution of thin-shelled honeycomb-like structured g-C₃N₄ to significantly enhance photocatalytic hydrogen evolution, *Applied Surface Science* 506 (2020) 145004.

[52] S. Zhang, S. Song, P. Gu, R. Ma, D. Wei, G. Zhao, T. Wen, R. Jehan, B. Hu, X. Wang, Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous g-C₃N₄ for boosting bisphenol A degradation, *Journal of Materials Chemistry A* 7(10) (2019) 5552-5560.

[53] C. Prasad, H. Tang, Q. Liu, I. Bahadur, S. Karlapudi, Y.J.i.o.h.e. Jiang, A latest overview on photocatalytic application of g-C₃N₄ based nanostructured materials for hydrogen production, 45(1) (2020) 337-379.

[54] X. Wang, X. Li, J. Wang, H. Zhu, Recent advances in carbon nitride-based nanomaterials for the removal of heavy metal ions from aqueous solution, *Journal of Inorganic Materials* 35(3) (2020) DOI: <https://doi.org/10.15541/jim20190436>.

[55] C. Bhuvaneswari, S.G. Babu, Nanoarchitecture and surface engineering strategy for the construction of 3D hierarchical CuS-rGO/g-C₃N₄ nanostructure: An ultrasensitive and highly selective electrochemical sensor for the detection of furazolidone drug, *Journal of Electroanalytical Chemistry* 907 (2022) 116080.

[56] C. Li, Z. Sun, Y. Xue, G. Yao, S. Zheng, A facile synthesis of g-C₃N₄/TiO₂ hybrid photocatalysts by sol-gel method and its enhanced photodegradation towards methylene blue under visible light, *Advanced Powder Technology* 27(2) (2016) 330-337.

[57] X. Liu, N. Chen, Y. Li, D. Deng, X. Xing, Y. Wang, A general nonaqueous sol-gel route to g-C₃N₄-coupling photocatalysts: the case of Z-scheme g-C₃N₄/TiO₂ with enhanced photodegradation toward RhB under visible-light, *Scientific Reports* 6(1) (2016) 39531.

[58] F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, J. Luo, B. Deng, X. Hu, Fabrication, characterization, and photocatalytic performance of exfoliated g-C₃N₄-TiO₂ hybrids, *Applied Surface Science* 311 (2014) 574-581.

[59] F. Deng, L. Zhao, X. Pei, X. Luo, S. Luo, Facile in situ hydrothermal synthesis of g-C₃N₄/SnS₂ composites with excellent visible-light photocatalytic activity, *Materials Chemistry and Physics* 189 (2017) 169-175.

[60] V. Harish, M. Ansari, D. Tewari, A.B. Yadav, N. Sharma, S. Bawarig, M.-L. Garcia-Betancourt, A. Karatutlu, M. Bechelany, A. Barhoum, Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review, *Journal of the Taiwan Institute of Chemical Engineers* 149 (2023) 105010.

[61] N. Cheng, J. Tian, Q. Liu, C. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, X. Sun, interfaces, Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants, *ACS Applied Materials & Interfaces* 5(15) (2013) 6815-6819.

[62] J. Di, J. Xia, S. Yin, H. Xu, L. Xu, Y. Xu, M. He, H. Li, Preparation of sphere-like g-C₃N₄/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants, *Journal of Materials chemistry A* 2(15) (2014) 5340-5351.

[63] Y. Zhang, Y. Xu, L. Gao, X. Liu, Y. Fu, C. Ma, Y. Ge, R. Cao, X. Zhang, O.A. Al-Hartomy, S. Wageh, A. Al-Ghamdi, H. Algarni, Z. Shi, H. Zhang, MXene-based mixed-dimensional Schottky heterojunction towards self-powered flexible high-performance photodetector, *Materials Today Physics* 21 (2021) 100479.

[64] S. Meng, Y. Cui, H. Wang, X. Zheng, X. Fu, S. Chen, Noble metal-free 0D-1D NiS_x/CdS nanocomposites toward highly efficient photocatalytic contamination removal and hydrogen evolution under visible light, *Dalton Transactions* 47(36) (2018) 12671-12683.

[65] O.J. Ajala, J.O. Tijani, M.T. Bankole, A.S. Abdulkareem, A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment, *Environmental Nanotechnology, Monitoring & Management* 18 (2022) 100673.

[66] Z. Talebzadeh, M. Masjedi-Arani, O. Amiri, M. Salavati-Niasari, La₂S_nO₇/g-C₃N₄ nanocomposites: Rapid and green sonochemical fabrication and photo-degradation performance for removal of dye contaminations, *Ultrasonics Sonochemistry* 77 (2021) 105678.

[67] M.A. Tekalgne, S.Y. Kim, Research progress and perspectives on photocatalysts based on the lead-free double halide perovskite, *EES Catalysis* (2024).

[68] M.S. Umekar, G.S. Bhusari, T. Bhoyar, V. Devthade, B.P. Kapgate, A.P. Potbhare, R.G. Chaudhary, A.A. Abdala, Graphitic carbon nitride-based photocatalysts for environmental remediation of organic pollutants, *Current Nanoscience* 19(2) (2023) 148-169.

[69] Y. Zhen, C. Yang, H. Shen, W. Xue, C. Gu, J. Feng, Y. Zhang, F. Fu, Y. Liang, Photocatalytic performance and mechanism insights of a S-scheme g-C₃N₄/Bi₂MoO₆ heterostructure in phenol degradation and hydrogen evolution reactions under visible light, *Physical Chemistry Chemical Physics* 22(45) (2020) 26278-26288.

[70] D. Zhu, Q. Zhou, Nitrogen doped g-C₃N₄ with the extremely narrow band

gap for excellent photocatalytic activities under visible light, *Applied Catalysis B: Environmental* 281 (2021) 119474.

[71] R. Acharya, K. Parida, A review on $\text{TiO}_2/\text{g-C}_3\text{N}_4$ visible-light-responsive photocatalysts for sustainable energy generation and environmental remediation, *Journal of Environmental Chemical Engineering* 8(4) (2020) 103896.

[72] H. Zhang, L. Jia, P. Wu, R. Xu, J. He, W. Jiang, Improved H_2O_2 photogeneration by KOH-doped $\text{g-C}_3\text{N}_4$ under visible light irradiation due to synergistic effect of N defects and K modification, *Applied Surface Science* 527 (2020) 146584.

[73] H. Liu, J. Liang, J. Du, Q. Gao, S. Fu, L. Li, M. Hu, F. Zhao, J. Zhou, Promoting charge separation in dual defect mediated Z-scheme $\text{MoS}_2/\text{g-C}_3\text{N}_4$ photocatalysts for enhanced photocatalytic degradation activity: synergistic effect insight, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 594 (2020) 124668.

[74] D. Wang, J. Chen, X. Gao, Y. Ao, P. Wang, Maximizing the utilization of photo-generated electrons and holes of $\text{g-C}_3\text{N}_4$ photocatalyst for harmful algae inactivation, *Chemical Engineering Journal* 431 (2022) 134105.

[75] A. Mehtab, S.M. Alshehri, T. Ahmad, Photocatalytic and photoelectrocatalytic water splitting by porous $\text{g-C}_3\text{N}_4$ nanosheets for hydrogen generation, *ACS Applied Nano Materials* 5(9) (2022) 12656-12665.

[76] P. Murugesan, J. Moses, C. Anandaramakrishnan, Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review, *Journal of Materials Science* 54(19) (2019) 12206-12235.

[77] C. Zhang, Y. Li, D. Shuai, Y. Shen, W. Xiong, L. Wang, Graphitic carbon nitride ($\text{g-C}_3\text{N}_4$)-based photocatalysts for water disinfection and microbial control: A review, *Chemosphere* 214 (2019) 462-479.

[78] T. Lin, Z. Song, Y. Wu, L. Chen, S. Wang, F. Fu, L. Guo, Boron-and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection, *Journal of Hazardous Materials* 358 (2018) 62-68.

[79] J.H. Thurston, N.M. Hunter, K.A. Cornell, Preparation and characterization of photoactive antimicrobial graphitic carbon nitride ($\text{g-C}_3\text{N}_4$) films, *RSC advances* 6(48) (2016) 42240-42248.

[80] Z. Liu, J. Wang, B. Kong, Z. Liu, T.-t. Song, W. Wang, Evidence of direct Z-scheme triazine-based $\text{gC}_3\text{N}_4/\text{BiOI}$ (001) heterostructures: a hybrid density functional investigation, *Physical Chemistry Chemical Physics* 25(1) (2023) 847-856.

[81] J. Zou, G. Liao, J. Jiang, Z. Xiong, S. Bai, H. Wang, P. Wu, P. Zhang, X. Li, In-situ construction of sulfur-doped $\text{g-C}_3\text{N}_4$ /defective $\text{g-C}_3\text{N}_4$ isotype step-scheme heterojunction for boosting photocatalytic H_2 evolution, *Chinese Journal of Structural Chemistry* 41(1) (2022) 2201025-2201033.

[82] P. Mandyal, A. Guleria, R. Sharma, S. Sambyal, A. Priye, B. Fang, P. Shandilya, Insight into the properties, morphologies and photocatalytic applications of S-scheme Bi_2WO_6 , *Journal of Environmental Chemical Engineering* (2022) 108918.

[83] M. Muhyuddin, G. Tseberlidis, M. Acciari, O. Lori, M. D'Arienzo, M. Cavallini, P. Atanassov, L. Elbaz, A. Lavacchi, C. Santoro, Molybdenum disulfide as hydrogen evolution catalyst: From atomistic to materials structure and electrocatalytic performance, *Journal of Energy Chemistry* (2023).

[84] M. Ismael, Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified $\text{g-C}_3\text{N}_4$: A review, *Journal of Alloys and Compounds* 931 (2023) 167469.

[85] M. Jyothi, V. Nayak, K.R. Reddy, S. Naveen, A. Raghu, Non-metal (oxygen, sulphur, nitrogen, boron and phosphorus)-doped metal oxide hybrid nanostructures as highly efficient photocatalysts for water treatment and hydrogen generation, *Nanophotocatalysis and Environmental Applications: Materials and Technology* (2019) 83-105.

[86] C. Prasad, H. Tang, Q. Liu, I. Bahadur, S. Karlapudi, Y. Jiang, A latest overview on photocatalytic application of $\text{g-C}_3\text{N}_4$ based nanostructured materials for hydrogen production, *international journal of hydrogen energy* 45(1) (2020) 337-379.

[87] X. Liu, L. Rao, Y. Yao, H. Chen, Phosphorus-doped carbon fibers as an efficient metal-free bifunctional catalyst for removing sulfamethoxazole and chromium (VI), *Chemosphere* 246 (2020) 125783.

[88] T. Zahra, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, S.B. Jaffri, D. Ali, Electro-catalyst $[\text{ZrO}_2/\text{ZnO}/\text{PdO}]$ -NPs green functionalization: fabrication, characterization and water splitting potential assessment, *International Journal of Hydrogen Energy* 46(37) (2021) 19347-19362.

[89] N.A.R. Che Mohamad, F. Marques Mota, D.H. Kim, Photocatalytic and Photoelectrochemical Overall Water Splitting, Solar-to-Chemical Conversion: Photocatalytic and Photoelectrochemical Processes (2021) 189-242.

[90] G. Dong, K. Zhao, L. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of gC_3N_4 , *Chemical communications* 48(49) (2012) 6178-6180.

[91] F. Dong, Y. Li, Z. Wang, W.-K. Ho, Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like $\text{g-C}_3\text{N}_4$ nanosheets via thermal exfoliation, *Applied Surface Science* 358 (2015) 393-403.

[92] F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, Self-doped Ti^{3+} enhanced photocatalyst for hydrogen production under visible light, *Journal of the American Chemical Society* 132(34) (2010) 11856-11857.

[93] A. Kumar, P. Raizada, P. Singh, R.V. Saini, A.K. Saini, A. Hosseini-Bandegharaei, Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification, *Chemical Engineering Journal* 391 (2020) 123496.

[94] Y. Pang, Y. Li, G. Xu, Y. Hu, Z. Kou, Q. Feng, J. Lv, Y. Zhang, J. Wang, Y. Wu, Z-scheme carbon-bridged $\text{Bi}_2\text{O}_3/\text{TiO}_2$ nanotube arrays to boost photoelectrochemical detection performance, *Applied Catalysis B: Environmental* 248 (2019) 255-263.

[95] J. Wu, Y. Zhang, T. Wang, Y. Xin, D. Ma, Au nanoparticles and graphene oxide co-loaded graphitic carbon nitride: Synthesis and photocatalytic application, *Materials Research Bulletin* 100 (2018) 282-288.

[96] C. Daulbayev, F. Sultanov, B. Bakbolat, O. Daulbayev, 0D, 1D and 2D nanomaterials for visible photoelectrochemical water splitting. A review, *International Journal of Hydrogen Energy* 45(58) (2020) 33325-33342.

[97] H. Zhang, Y. Tang, Z. Liu, Z. Zhu, X. Tang, Y. Wang, Study on optical properties of alkali metal doped $\text{g-C}_3\text{N}_4$ and their photocatalytic activity for reduction of CO_2 , *Chemical Physics Letters* 751 (2020) 137467.

[98] S. Zhang, P. Gu, R. Ma, C. Luo, T. Wen, G. Zhao, W. Cheng, X. Wang, Recent developments in fabrication and structure regulation of visible-light-driven $\text{g-C}_3\text{N}_4$ -based photocatalysts towards water purification: a critical review, *Catalysis Today* 335 (2019) 65-77.

[99] Q. Zhu, Y. Xuan, K. Zhang, K. Chang, Enhancing photocatalytic CO_2 reduction performance of $\text{g-C}_3\text{N}_4$ -based catalysts with non-noble plasmonic nanoparticles, *Applied Catalysis B: Environmental* 297 (2021) 120440.

[100] Y. Fu, T. Huang, L. Zhang, J. Zhu, X. Wang, $\text{Ag/g-C}_3\text{N}_4$ catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach, *Nanoscale* 7(32) (2015) 13723-13733.

[101] S. Tonda, S. Kumar, V. Shanker, Surface plasmon resonance-induced photocatalysis by Au nanoparticles decorated mesoporous $\text{g-C}_3\text{N}_4$ nanosheets under direct sunlight irradiation, *Materials Research Bulletin* 75 (2016) 51-58.

[102] S. Zhang, B. Li, X. Wang, G. Zhao, B. Hu, Z. Lu, T. Wen, J. Chen, X. Wang, Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater, *Chemical Engineering Journal* 390 (2020) 124642.

[103] M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Cu and Cu-based nanoparticles: synthesis and applications in catalysis, *Chemical Reviews* 116(6) (2016) 3722-3811.

[104] Y. Liu, Y. Zheng, W. Zhang, Z. Peng, H. Xie, Y. Wang, X. Guo, M. Zhang, R. Li, Y. Huang, Template-free preparation of non-metal (B, P, S) doped $\text{g-C}_3\text{N}_4$ tubes with enhanced photocatalytic H_2O_2 generation, *Journal of Materials Science & Technology* 95 (2021) 127-135.

[105] M.S. Nasir, G. Yang, I. Ayub, S. Wang, W. Yan, In situ decoration of $\text{g-C}_3\text{N}_4$ quantum dots on 1D branched TiO_2 loaded with plasmonic Au nanoparticles and improved the photocatalytic hydrogen evolution activity, *Applied Surface Science* 519 (2020) 146208.

[106] G. Xu, Y. Xu, Z. Zhou, Y. Bai, Facile hydrothermal preparation of graphitic carbon nitride supercell structures with enhanced photodegradation activity, *Diamond and Related Materials* 97 (2019) 107461.

[107] Q. Xie, W. He, S. Liu, C. Li, J. Zhang, P.K. Wong, Bifunctional S-scheme $\text{g-C}_3\text{N}_4/\text{Bi/BiVO}_4$ hybrid photocatalysts toward artificial carbon cycling, *Chinese Journal of Catalysis* 41(1) (2020) 140-153.

[108] X. He, S. Bai, J. Jiang, W.-J. Ong, J. Peng, Z. Xiong, G. Liao, J. Zou, N. Li, Oxygen vacancy mediated step-scheme heterojunction of WO_2 -9/ $\text{g-C}_3\text{N}_4$ for efficient electrochemical sensing of 4-nitrophenol, *Chemical Engineering Journal Advances* 8 (2021) 100175.

[109] X. Zhu, Y. Wang, Y. Guo, J. Wan, Y. Yan, Y. Zhou, C. Sun, Environmental-friendly synthesis of heterojunction photocatalysts $\text{g-C}_3\text{N}_4/\text{BiPO}_4$ with enhanced photocatalytic performance, *Applied Surface Science* 544 (2021) 148872.

[110] S. Patnaik, S. Martha, S. Acharya, K. Parida, An overview of the modification of $\text{g-C}_3\text{N}_4$ with high carbon containing materials for photocatalytic applications, *Separation and Purification Technology* 3(3) (2016) 336-347.

[111] J. Wen, J. Xie, X. Chen, X. Li, A review on $\text{g-C}_3\text{N}_4$ -based photocatalysts, *Applied Surface Science* 391 (2017) 72-123.

[112] S. Kumar, S. Karthikeyan, A.F. Lee, $\text{g-C}_3\text{N}_4$ -based nanomaterials for visible light-driven photocatalysis, *Catalysts* 8(2) (2018) 74.

[113] F. Pei, S. Feng, Y. Wu, X. Lv, H. Wang, S.-M. Chen, Q. Hao, Y. Cao, W. Lei, Z. Tong, Label-free photoelectrochemical immunoassay for aflatoxin B1 detection.

tion based on the Z-scheme heterojunction of $\text{g-C}_3\text{N}_4/\text{Au}/\text{WO}_3$, Biosensors and Bioelectronics 189 (2021) 113373.

[114] L. Wang, Y. Li, P. Han, Electrospinning preparation of $\text{g-C}_3\text{N}_4/\text{Nb}_2\text{O}_5$ nanofibers heterojunction for enhanced photocatalytic degradation of organic pollutants in water, *Scientific Reports* 11(1) (2021) 22950.

[115] J. Ren, S. Lv, S. Wang, M. Bao, X. Zhang, Y. Gao, Y. Liu, Z. Zhang, L. Zeng, J. Ke, Construction of efficient $\text{g-C}_3\text{N}_4/\text{NH}_2\text{-UiO-66}$ (Zr) heterojunction photocatalysts for wastewater purification, *Separation and Purification Technology* 274 (2021) 118973.

[116] J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, P. Chen, G. Jiang, Z. Wang, F. Dong, Nitrogen defect structure and NO^+ intermediate promoted photocatalytic NO removal on H_2 treated $\text{g-C}_3\text{N}_4$, *Chemical Engineering Journal* 379 (2020) 122282.

[117] W.-D. Oh, L.-W. Lok, A. Veksha, A. Giannis, T.-T. Lim, Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped $\text{g-C}_3\text{N}_4$ under solar irradiation: performance and mechanistic studies, *Chemical Engineering Journal* 333 (2018) 739-749.

[118] L. Liu, J. Huang, H. Yu, J. Wan, L. Liu, K. Yi, W. Zhang, C. Zhang, Construction of MoO_3 nanoparticles/ $\text{g-C}_3\text{N}_4$ nanosheets 0D/2D heterojunction photocatalysts for enhanced photocatalytic degradation of antibiotic pollutant, *Chemosphere* 282 (2021) 131049.

[119] P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Increasing the visible light absorption of graphitic carbon nitride (Melon) photocatalysts by homogeneous self-modification with nitrogen vacancies, *Advanced Materials* 26(47) (2014) 8046-8052.

[120] J. Wu, N. Li, H.-B. Fang, X. Li, Y.-Z. Zheng, X. Tao, Nitrogen vacancies modified graphitic carbon nitride: Scalable and one-step fabrication with efficient visible-light-driven hydrogen evolution, *Chemical Engineering Journal* 358 (2019) 20-29.

[121] J. Ding, W. Xu, H. Wan, D. Yuan, C. Chen, L. Wang, G. Guan, W.-L. Dai, Nitrogen vacancy engineered graphitic C_3N_4 -based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes, *Applied Catalysis B: Environmental* 221 (2018) 626-634.

[122] Z. Wang, Y. Huang, M. Chen, X. Shi, Y. Zhang, J. Cao, W. Ho, S.C. Lee, Roles of N-vacancies over porous $\text{g-C}_3\text{N}_4$ microtubes during photocatalytic NO_x removal, *ACS Applied Materials & Interfaces* 11(11) (2019) 10651-10662.

[123] D. Chen, J. Yang, H. Ding, Synthesis of nanoporous carbon nitride using calcium carbonate as templates with enhanced visible-light photocatalytic activity, *Applied Surface Science* 391 (2017) 384-391.

[124] Y. Yang, L. Geng, Y. Guo, J. Meng, Y. Guo, Easy dispersion and excellent visible-light photocatalytic activity of the ultrathin urea-derived $\text{g-C}_3\text{N}_4$ nanosheets, *Applied Surface Science* 425 (2017) 535-546.

[125] X. Wang, Q. Liu, Q. Yang, Z. Zhang, X. Fang, Three-dimensional $\text{g-C}_3\text{N}_4$ aggregates of hollow bubbles with high photocatalytic degradation of tetracycline, *Carbon* 136 (2018) 103-112.

[126] Z. Jin, Q. Zhang, S. Yuan, T. Ohno, Synthesis high specific surface area nanotube gC_3N_4 with two-step condensation treatment of melamine to enhance photocatalysis properties, *Rsc Advances* 5(6) (2015) 4026-4029.

[127] C. Fan, Q. Feng, G. Xu, J. Lv, Y. Zhang, J. Liu, Y. Qin, Y. Wu, Enhanced photocatalytic performances of ultrafine $\text{g-C}_3\text{N}_4$ nanosheets obtained by gaseous stripping with wet nitrogen, *Applied Surface Science* 427 (2018) 730-738.

[128] T. Yu, T. Xie, W. Zhou, Y. Zhang, Y. Chen, B. Shao, W.-Q. Guo, X. Tan, Fumaric acid assistant band structure tunable nitrogen defective $\text{g-C}_3\text{N}_4$ fabrication for enhanced photocatalytic hydrogen evolution, *ACS Sustainable Chemistry & Engineering* 9(22) (2021) 7529-7540.

[129] Y. Qin, J. Lu, X. Zhao, X. Lin, Y. Hao, P. Huo, M. Meng, Y. Yan, Nitrogen defect engineering and π -conjugation structure decorated $\text{g-C}_3\text{N}_4$ with highly enhanced visible-light photocatalytic hydrogen evolution and mechanism insight, *Chemical Engineering Journal* 425 (2021) 131844.

[130] A. Torres-Pinto, A.M. Díez, C.G. Silva, J.L. Faria, M.Á. Sanromán, A.M. Silva, M. Pazos, Photoelectrocatalytic degradation of pharmaceuticals promoted by a metal-free gC_3N_4 catalyst, *Chemical Engineering Journal* 476 (2023) 146761.

[131] A. Balakrishnan, M. Chinthalal, R.K. Polagani, D.-V.N. Vo, Removal of tetracycline from wastewater using $\text{g-C}_3\text{N}_4$ based photocatalysts: A review, *Environmental Research* 216 (2023) 114660.

[132] D. Ramírez-Morales, M. Masís-Mora, J.R. Montiel-Mora, M. Méndez-Rivera, J.A. Gutiérrez-Quirós, L. Brenes-Alfaro, C.E. Rodríguez-Rodríguez, Pharmaceuticals, hazard and ecotoxicity in surface and wastewater in a tropical dairy production area in Latin America, *Chemosphere* (2023) 140443.

[133] G.Z.S. Ling, S.F. Ng, W.J. Ong, Tailor-engineered 2D cocatalysts: harnessing electron-hole redox center of 2D $\text{g-C}_3\text{N}_4$ photocatalysts toward solar-to-chemical conversion and environmental purification, *Advanced Functional Materials* 32(29) (2022) 2111875.

[134] P. Gan, Y. Lu, Y. Li, W. Liu, L. Chen, M. Tong, J. Liang, Non-radical degradation of organic pharmaceuticals by $\text{g-C}_3\text{N}_4$ under visible light irradiation: The overlooked role of excitonic energy transfer, *Journal of Hazardous Materials* 445 (2023) 130549.

[135] J. Rashid, A. Abbas, L.C. Chang, A. Iqbal, I.U. Haq, A. Rehman, S.U. Awan, M. Arshad, M. Rafique, M. Barakat, Butterfly cluster like lamellar $\text{BiOBr}/\text{TiO}_2$ nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin, *Science of the Total Environment* 665 (2019) 668-677.

[136] Y. Zhou, L. Zhou, C. Ni, E. He, L. Yu, X. Li, 3D/2D MOF-derived $\text{CoCeOx}/\text{g-C}_3\text{N}_4$ Z-scheme heterojunction for visible light photocatalysis: Hydrogen production and degradation of carbamazepine, *Journal of Alloys and Compounds* 890 (2022) 161786.

[137] E. Cako, S. Dudziak, P. Gliuchowski, G. Trykowski, M. Pisarek, A.F. Borzyszkowska, K. Sikora, A. Zielińska-Jurek, Heterojunction of (P, S) co-doped $\text{g-C}_3\text{N}_4$ and 2D TiO_2 for improved carbamazepine and acetaminophen photocatalytic degradation, *Separation and Purification Technology* 311 (2023) 123320.

[138] E.S. Okeke, K.I. Chukwudzie, R. Nyaruaba, R.E. Ita, A. Oladipo, O. Ejeromedoghene, E.O. Atakpa, C.V. Agu, C.O. Okoye, Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management, *Environmental Science and Pollution Research* 29(46) (2022) 69241-69274.

[139] X. Yang, Z. Chen, W. Zhao, C. Liu, X. Qian, M. Zhang, G. Wei, E. Khan, Y.H. Ng, Y.S. Ok, Recent advances in photodegradation of antibiotic residues in water, *Chemical Engineering Journal* 405 (2021) 126806.

[140] S.K. Fanourakis, J. Peña-Bahamonde, P.C. Bandara, D.F. Rodrigues, Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse, *NPJ Clean Water* 3(1) (2020) 1.

[141] Y. Liu, X. Zeng, X. Hu, J. Hu, Z. Wang, Y. Yin, C. Sun, X. Zhang, Two-dimensional $\text{g-C}_3\text{N}_4/\text{TiO}_2$ nanocomposites as vertical Z-scheme heterojunction for improved photocatalytic water disinfection, *Catalysis Today* 335 (2019) 243-251.

[142] H. Zhang, W. Wu, Y. Li, Y. Wang, C. Zhang, W. Zhang, L. Wang, L. Niu, Enhanced photocatalytic degradation of ciprofloxacin using novel C-dot@ Nitrogen deficient $\text{g-C}_3\text{N}_4$: synergistic effect of nitrogen defects and C-dots, *Applied Surface Science* 465 (2019) 450-458.

[143] H. Li, Y. Gao, X. Wu, P.-H. Lee, K. Shih, Fabrication of heterostructured $\text{g-C}_3\text{N}_4/\text{Ag-TiO}_2$ hybrid photocatalyst with enhanced performance in photocatalytic conversion of CO_2 under simulated sunlight irradiation, *Applied Surface Science* 402 (2017) 198-207.

[144] H. Liang, J. Guo, M. Yu, Y. Zhou, R. Zhan, C. Liu, J. Niu, Porous loofah-sponge-like ternary heterojunction $\text{g-C}_3\text{N}_4/\text{Bi}_2\text{WO}_6/\text{MoS}_2$ for highly efficient photocatalytic degradation of sulfamethoxazole under visible-light irradiation, *Chemosphere* 279 (2021) 130552.

[145] N. Lu, P. Wang, Y. Su, H. Yu, N. Liu, X. Quan, Construction of Z-Scheme $\text{g-C}_3\text{N}_4/\text{RGO}/\text{WO}_3$ with in situ photoreduced graphene oxide as electron mediator for efficient photocatalytic degradation of ciprofloxacin, *Chemosphere* 215 (2019) 444-453.

[146] J. Huang, W. Chen, X. Yu, X. Fu, Y. Zhu, Y. Zhang, Fabrication of a ternary $\text{BiOCl}/\text{CQDs}/\text{rGO}$ photocatalyst: The roles of CQDs and rGO in adsorption-photocatalytic removal of ciprofloxacin, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 597 (2020) 124758.

[147] N. Roy, S.A. Alex, N. Chandrasekaran, A. Mukherjee, K. Kannabiran, A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts, *Journal of Environmental Chemical Engineering* 9(2) (2021) 104796.

[148] M. Verma, A. Haritash, Photocatalytic degradation of Amoxicillin in pharmaceutical wastewater: A potential tool to manage residual antibiotics, *Environmental Technology & Innovation* 20 (2020) 101072.

[149] S. Shenoy, C. Chuaicham, T. Okumura, K. Sekar, K. Sasaki, Simple tactic polycondensation synthesis of Z-scheme quasi-polymeric $\text{g-C}_3\text{N}_4/\text{CaFe}_2\text{O}_4$ composite for enhanced photocatalytic water depollution via pn heterojunction, *Chemical Engineering Journal* 453 (2023) 139758.

[150] Z. Hu, X. Cai, Z. Wang, S. Li, Z. Wang, X. Xie, Construction of carbon-doped supramolecule-based $\text{g-C}_3\text{N}_4/\text{TiO}_2$ composites for removal of diclofenac and carbamazepine: A comparative study of operating parameters, mechanisms, degradation pathways, *Journal of hazardous materials* 380 (2019) 120812.

[151] X. Wang, P. Zhang, L. Li, N. Li, X. Su, X. Wei, L. Han, Preparation of a high-performance N-defect ZnO @ $\text{g-C}_3\text{N}_4$ nanocomposite and its photocatalytic degradation of tetracycline, *Materials Today Communications* 36 (2023) 106732.

[152] M. Yu, H. Liang, R. Zhan, L. Xu, J. Niu, Sm-doped $\text{g-C}_3\text{N}_4/\text{Ti}_3\text{C}_2$ MXene heterojunction for visible-light photocatalytic degradation of ciprofloxacin, *Chinese Chemical Letters* 32(7) (2021) 2155-2158.

[153] I. Ihsanullah, MXenes as next-generation materials for the photocatalytic degradation of pharmaceuticals in water, *Journal of Environmental Chemical Engineering* 10(3) (2022) 107381.

[154] S. Lu, C. Li, H. Li, Y. Zhao, Y. Gong, L. Niu, X. Liu, T. Wang, The effects of nonmetal dopants on the electronic, optical and chemical performances of monolayer g-C₃N₄ by first-principles study, *Applied Surface Science* 392 (2017) 966-974.

[155] K. Hu, R. Li, C. Ye, A. Wang, W. Wei, D. Hu, R. Qiu, K. Yan, Facile synthesis of Z-scheme composite of TiO₂ nanorod/g-C₃N₄ nanosheet efficient for photocatalytic degradation of ciprofloxacin, *Journal of Cleaner Production* 253 (2020) 120055.

[156] L.K.B. Paragas, V. Dien Dang, R.S. Sahu, S. Garcia-Segura, M.D.G. de Luna, J.A.I. Pimentel, R.-A. Doong, Enhanced visible-light-driven photocatalytic degradation of acetaminophen over CeO₂/I₂ K-codoped C₃N₄ heterojunction with tunable properties in simulated water matrix, *Separation and Purification Technology* 272 (2021) 117567.

[157] H.N. Phong Vo, G.K. Le, T.M. Hong Nguyen, X.-T. Bui, K.H. Nguyen, E.R. Rene, T.D.H. Vo, N.-D. Thanh Cao, R. Mohan, Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments, *Chemosphere* 236 (2019) 124391.

[158] E. Brillas, J. Manuel Peralta-Hernández, Removal of paracetamol (acetaminophen) by photocatalysis and photoelectrocatalysis. A critical review, *Separation and Purification Technology* 309 (2023) 122982.

[159] M. Noorisepehr, B. Kakavandi, A.A. Isari, F. Ghanbari, E. Dehghanifard, N. Ghomi, F. Kamrani, Sulfate radical-based oxidative degradation of acetaminophen over an efficient hybrid system: Peroxidisulfate decomposed by ferroferric oxide nanocatalyst anchored on activated carbon and UV light, *Separation and Purification Technology* 250 (2020) 116950.

[160] K. Li, J. Chen, Y. Ao, P. Wang, Preparation of a ternary g-C₃N₄-CdS/Bi₄O₅I₂ composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation, *Separation and Purification Technology* 259 (2021) 118177.

[161] S. Moradi, A.A. Isari, F. Hayati, R. Rezaei Kalantary, B. Kakavandi, Co-implanting of TiO₂ and liquid-phase-delaminated g-C₃N₄ on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen, *Chemical Engineering Journal* 414 (2021) 128618.

[162] S. Gupta, J. Gandhi, S. Kokate, L.G. Raikar, V.G. Kopuri, H. Prakash, Augmented photocatalytic degradation of Acetaminophen using hydrothermally treated g-C₃N₄ and persulfate under LED irradiation, *Heliyon* 9(5) (2023).

[163] F.J. Benitez, J.L. Acero, F.J. Real, G. Roldan, E. Rodriguez, Photolysis of model emerging contaminants in ultra-pure water: Kinetics, by-products formation and degradation pathways, *Water Research* 47(2) (2013) 870-880.

[164] K. Perović, F.M. dela Rosa, M. Kovačić, H. Kušić, U.L. Štangar, F. Fresno, D.D. Dionysiou, A. Loncaric Bozic, Recent Achievements in Development of TiO₂-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting, *Materials* 13(6) (2020) 1338.

[165] A. Hayat, J.A. Shah Syed, A.G. Al-Sehemi, K.S. El-Nasser, T.A. Taha, A.A. Al-Ghamdi, M.A. Amin, Z. Ajmal, W. Iqbal, A. Palamanit, D.I. Medina, W.I. Nawawi, M. Sohail, State of the art advancement in rational design of g-C₃N₄ photocatalyst for efficient solar fuel transformation, environmental decontamination and future perspectives, *International Journal of Hydrogen Energy* 47(20) (2022) 10837-10867.

[166] M. Israel, P. Beaudry, Carbamazepine in Psychiatry: A Review, *The Canadian Journal of Psychiatry* 33(7) (1988) 577-584.

[167] K. Chojnacka, D. Skrzypczak, G. Izydorczyk, K. Mikula, D. Szopa, K. Moustakas, A. Witek-Krowiak, Biodegradation of pharmaceuticals in photobioreactors – a systematic literature review, *Bioengineered* 13(2) (2022) 4537-4556.

[168] M.N. Chong, B. Jin, G. Laera, C.P. Saint, Evaluating the photodegradation of Carbamazepine in a sequential batch photoreactor system: Impacts of effluent organic matter and inorganic ions, *Chemical Engineering Journal* 174(2) (2011) 595-602.

[169] Y. Zhang, S.-U. Geißen, C. Gal, Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies, *Chemosphere* 73(8) (2008) 1151-1161.

[170] A.S. Mestre, A.P. Carvalho, Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review, *Molecules* 24(20) (2019) 3702.

[171] J. Deng, Y. Shao, N. Gao, S. Xia, C. Tan, S. Zhou, X. Hu, Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water, *Chemical Engineering Journal* 222 (2013) 150-158.

[172] R. Kumar, M. Qureshi, D.K. Vishwakarma, N. Al-Ansari, A. Kuriqi, A. El-beltagi, A. Saraswat, A review on emerging water contaminants and the application of sustainable removal technologies, *Case Studies in Chemical and Environmental Engineering* 6 (2022) 100219.

[173] P. Gan, Z. Zhang, Y. Hu, Y. Li, J. Ye, M. Tong, J. Liang, Insight into the role of Fe in the synergistic effect of persulfate/sulfite and Fe₂O₃@g-C₃N₄ for carbamazepine degradation, *Science of The Total Environment* 819 (2022) 152787.

[174] T. Xu, D. Wang, L. Dong, H. Shen, W. Lu, W. Chen, Graphitic carbon nitride co-modified by zinc phthalocyanine and graphene quantum dots for the efficient photocatalytic degradation of refractory contaminants, *Applied Catalysis B: Environmental* 244 (2019) 96-106.

[175] L. Yang, L. Liang, L. Wang, J. Zhu, S. Gao, X. Xia, Accelerated photocatalytic oxidation of carbamazepine by a novel 3D hierarchical protonated g-C₃N₄/BiOBr heterojunction: Performance and mechanism, *Applied Surface Science* 473 (2019) 527-539.

[176] X. Mei, S. Chen, G. Wang, W. Chen, W. Lu, B. Zhang, Y. Fang, C. Qi, Metal-free carboxyl modified g-C₃N₄ for enhancing photocatalytic degradation activity of organic pollutants through peroxyomonosulfate activation in wastewater under solar radiation, *Journal of Solid State Chemistry* 310 (2022) 123053.

[177] Z. Cheng, L. Ling, J. Fang, C. Shang, Visible light-driven g-C₃N₄ peroxy-monosulfate activation process for carbamazepine degradation: Activation mechanism and matrix effects, *Chemosphere* 286 (2022) 131906.

[178] T. Xia, Q. Hou, H. Qian, R. Lai, X. Bai, G. Yu, W. Zhang, M.L.U. Rehman, M. Ju, Fabricating metal-free Z-scheme heterostructures with nitrogen-deficient carbon nitride for fast photocatalytic removal of acetaminophen, *Separation and Purification Technology* 308 (2023) 122964.

[179] X. Du, X. Bai, L. Xu, L. Yang, P. Jin, Visible-light activation of persulfate by TiO₂/g-C₃N₄ photocatalyst toward efficient degradation of micropollutants, *Chemical Engineering Journal* 384 (2020) 123245.

[180] F. Al Marzouqi, R. Selvaraj, Y. Kim, Rapid photocatalytic degradation of acetaminophen and levofloxacin using g-C₃N₄ nanosheets under solar light irradiation, *Materials Research Express* 6(12) (2020) 125538.

[181] A. Hassani, P. Eghbali, B. Kakavandi, K.-Y.A. Lin, F. Ghanbari, Acetaminophen removal from aqueous solutions through peroxyomonosulfate activation by CoFe2O4/mp g-C₃N₄ nanocomposite: Insight into the performance and degradation kinetics, *Environmental Technology & Innovation* 20 (2020) 101127.

[182] W. Hou, C. Deng, H. Xu, D. Li, Z. Zou, H. Xia, D. Xia, n-p BiOCl@ g-C₃N₄ Heterostructure with Rich-oxygen Vacancies for Photodegradation of Carbamazepine, *ChemistrySelect* 5(9) (2020) 2767-2777.

[183] F. Goudarzy, J. Zolgharnein, J.B. Ghasemi, Determination and degradation of carbamazepine using g-C₃N₄@ CuS nanocomposite as sensitive fluorescence sensor and efficient photocatalyst, *Inorganic Chemistry Communications* 141 (2022) 109512.

[184] N.S. Alhokbany, R. Mousa, M. Naushad, S.M. Alshehri, T. Ahamad, Fabrication of Z-scheme photocatalysts g-C₃N₄/Ag₃PO₄/chitosan for the photocatalytic degradation of ciprofloxacin, *International Journal of Biological Macromolecules* 164 (2020) 3864-3872.

[185] W. Shi, Y. Liu, W. Sun, Y. Hong, X. Li, X. Lin, F. Guo, J. Shi, Assembling g-C₃N₄ nanosheets on rod-like CoFe₂O₄ nanocrystals to boost photocatalytic degradation of ciprofloxacin with peroxyomonosulfate activation, *Materials Today Communications* 29 (2021) 102871.

[186] H. Liang, M. Yu, J. Guo, R. Zhan, J. Chen, D. Li, L. Zhang, J. Niu, A novel vacancy-strengthened Z-scheme g-C₃N₄/Bp/MoS₂ composite for super-efficient visible-light photocatalytic degradation of ciprofloxacin, *Separation and Purification Technology* 272 (2021) 118891.

[187] J. Zhou, B. Zhu, Novel 1D/3D CeO₂/g-C₃N₄ catalysts for photodegradation of ciprofloxacin under visible light via dimensional regulation and heterostructure construction, *Journal of Physics and Chemistry of Solids* 171 (2022) 111002.