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1. Introduction

The technology of photocatalysis possesses immense potential in 
resolving environmental and energy-related concerns, owing to its abil-
ity to transform abundant solar power into chemical energy that can be 

stored [1, 2]. In the influence of light irradiation, a number of redox 
reactions may transpire on the photocatalysts’s surface. Such reactions 
involve bacteria disinfection [3], contaminant degradation, N2 fixation 
[4], CO2 reduction to organic fuels [5], division of water to H2 and O2, 
etc. Semiconductors, such as g-C3N4 [6], CdS, and TiO2 [7, 8]  are the 
most prevalent photocatalysts [9]. Nevertheless, the efficacy of pure 
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Recently, the use of photocatalytic materials has been suggested as a possible method for cleaning up the 
environment. A new photocatalyst for enhanced oxidation processes based on radicals is graphitic carbon nitride 
(g-C3N4), it is metal-free. g-C3N4 is a trendy two-dimensional (2D) photocatalyst with a number of advantages, 
such as responsiveness to strong stability, low cost, and visible light.  In the present review, the synthesis and 
characterization of g-C3N4-based photocatalysts are discussed, along with some of their delegate applications 
in the treatment of wastewater and water (such as acetaminophen, ciprofloxacin, and carbamazepine remov-
al). Meanwhile, the various methods of modification, including doping, defect introduction, heterojunctions, 
nanocomposites, and so on, are briefly discussed. The associated mechanisms and pertinent discoveries are also 
examined. Finally, the difficulties, the need for additional study, and the use of g-C3N4-based hybrid membranes 
are underlined.
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photocatalysts in photocatalytic performance is generally insufficient 
to meet practical application demands. Consequently, photocatalytic re-
search has centered on investigating preparation methodologies, modifi-
cation approaches, and the photocatalytic mechanisms of photocatalysts 
to achieve outstanding photocatalytic activity on easily synthesized and 
incredibly long-lasting photocatalysts.

Graphitic carbon nitride (g-C3N4) has emerged as a high-potential 
catalyst in Advanced Oxidation Processes (AOPs) owing to its notable 
characteristics and versatile applications. Composed of nitrogen and 
carbon atoms arranged in a graphene-like structure, g-C3N4 exhibits a 
metal-free semiconductor nature with a narrow bandgap (~2.7 eV). This 
unique property enables superior light absorption, making it an efficient 
photocatalyst under visible light [10]. Its applications are wide-ranging: 
g-C3N4 displays significant potential in photocatalysis, effectively driv-
ing redox reactions to address environmental concerns such as pollutant 
degradation, water treatment, and CO2 reduction. Furthermore, its abil-
ity to generate reactive oxygen species under light irradiation renders it 
effective in degrading various contaminants, including organic pollut-
ants and pharmaceuticals, while also disinfecting water by eliminating 
bacteria and microorganisms [11]. Moreover, g-C3N4’s photocatalytic 
properties extend to energy conversion applications, offering promise 
in the production of hydrogen fuel through the conversion and water 
splitting of CO2 into valuable organic compounds. Additionally, its role 
as a catalyst support or co-catalyst in various chemical processes further 
enhances its applicability [12]. In this context g-C3N4 plays a crucial role 
in the degradation of specific pharmaceuticals including Ciprofloxacin 
[13], Acetaminophen [14], and Carbamazepine [15] contaminants for 
water treatment. The utilization of photocatalytic oxidation to eliminate 
pharmaceutical drugs from wastewater is seen as an appealing and envi-
ronmentally sustainable method [16].

g-C3N4 is typically synthesized by thermal condensation using ni-
trogen-rich precursors such as urea, thiourea, melamine, dicyanamide, 
and cyanimide. The synthesis involves nucleophilic addition, polycon-
densation, and polymerization reactions. The tectonic unit type formed 
mainly depends on the reaction processes [17]. Construction of g-C3N4 
nanostructures to overcome the limitations of pure or bulk g-C3N4, var-
ious nanostructures of g-C3N4 have been fabricated and designed. Hard 
and soft-template methods are used to order porosity onto bulk g-C3N4  
and create novel morphologies [18]. G-C3N4 -based nanocomposites 
synthesis in recent years, g-C3N4 -based nanocomposites have emerged 
as potential photocatalysts for organic wastewater treatment. Different 
methods, such as hydrothermal reactions and sol-gel method, have been 
studied to construct multifunctional g-C3N4 -based hybrids. Sol-gel 
method involves depositing metal nanoparticles on the g-C3N4 surface 
to form heterostructures, while hydrothermal reactions are used to fab-
ricate g-C3N4 -based nanocomposites through hydrolysis and polycond 
[19]. A comprehensive process of the photocatalytic method comprises 
three consecutive stages: (1) absorption of light and stimulation in order 
to generate holes and electrons, (2) the movement of photogenerated 
holes and electrons from within to the photocatalysts’ outer layer; and 
(3) conversion of adsorbed reactants into products via a redox reaction 
on the surface of the photocatalyst. Involved in these steps are the fun-
damental causes for the poor function of pristine photocatalysts. First, 
photocatalysts absorb only a small portion of the solar spectrum, par-
ticularly semiconductors with a wide band gap. Second, a significant 
number of photogenerated electrons and holes recombine upon transfer 
to the photocatalyst surface. 

Thirdly, there are a limited number of reactant adsorption sites and 
active reactive oxygen species (ROS) sites on the photocatalyst’s sur-
face [20]. Improvement of the photocatalytic performance of g-C3N4 
included Metal or non-metal doping, Heterojunction formulation , and 
adjustment of the structure and regulations of defects [21]. The global 
usage of pharmaceuticals has been steadily rising, leading to the emer-

gence of significant concern regarding the presence of pharmaceuticals 
and their byproducts in water, posing a potential threat to both animals 
and humans [22]. Removing these pollutants has become a serious re-
seach topic. Removing drugs such as Ciprofloxacin, Acetaminophen, 
and Carbamazepine from water has significant environmental and hu-
man benefits, Preserving the health of the environment, the mentioned 
drugs can threaten the environment as water pollutants. Removing these 
drugs from water reduces negative effects on aquatic organisms, such as 
fish and other organisms [23]. Preserving public health, Drinking water 
containing forgotten drugs may bring risks to humans. These substances 
may enter the human body through drinking water and cause various 
side effects. Removing these drugs from water helps people’s health. 
Preservation of water resources, removing the mentioned drugs from 
water improves the quality of water resources and gradually helps to pre-
serve water resources. This action can help improve the sustainable use 
and proper management of water resources. Considering that drugs can 
act as important pollutants and need attention in water, removing them 
from water sources can have positive and valuable effects in preserv-
ing the environment and public health [24]. There have been numerous 
assessments of g-C3N4 for pollutant degradation and water disinfection 
up to this point. However, there are no comprehensive evaluations that 
focus on the most recent changes to g-C3N4 for the photodegradation 
of ciprofloxacin, acetaminophen (ACT), and carbamazepine (CBZ).  In 
general, this review article examined the possibilities and g-C3N4 appli-
cations in the field of water treatment by focusing on the photodegra-
dation of Acetaminophen, carbamazepine, and ciprofloxacin materials. 

2. G-C3N4 Structure attributes and photocatalytic po-
tential for water treatment

Basic Characteristics of g-C3N4  investigated of carbon nitride, par-
ticularly g-C3N4, dates back to 1834 [25]. Its synthesis by Wang and col-
leagues marked a significant breakthrough for applications, especially 
water splitting [26]. Because of its excellent physicochemical character-
istics, g-C3N4 is the C3N4 allotrope that is the most stable under ambient 
conditions [27]. G-C3N4 possesses covalently bonded sp2-hybridized 
nitrogen and carbon atoms, forming a network of π-conjugated ring 
planes with a lattice structure akin to graphite [28]. The layers entail a 
hexagonal arrangement of nitrogen and carbon atoms, alternating seam-
lessly. The monolayer g-C3N4 network possesses a highly impressive 
theoretical specific surface area of up to 2500 m2g-1 [29].  This material 
exhibits a high theoretical specific surface area and comprises s-triazine 
(C3N3) and tri-s-triazine (C6N7) units formed through condensation 
processes [26, 30].  The C6N7 units show superior stability compared 
to C3N3 units, and the substance often displays surface defects with 
minimal hydrogen presence [31]. g-C3N4 also demonstrates remarkable 
thermal and chemical stability, enduring high temperatures and resisting 
decomposition in common solvents. The results of Thermogravimetric 
analysis (TGA) show that g-C3N4 demonstrates impressive heat endur-
ance even in the presence of 100% oxygen  [32]. Photocatalytic Capabil-
ity of g-C3N4  under visible light exposure, g-C3N4 exhibits photocatalyt-
ic efficacy with valence band (VB) and conduction band (CB) positions 
at -1.1 eV and +1.6 eV, respectively  [33]. Its optical absorption at 460 
nm allows the capture of solar visible light, although slow hole-electron 
pair recombination. The bandgap of g-C3N4  can be altered, resulting in 
structural modifications and diverse packing conformations  [34].

Rohit Kumar et al., developed a novel photocatalyst, KPCN/GO/
ZnFe2O4, by modifying potassium and phosphorus co-doped graphitic 
carbon nitride (KPCN) with graphene oxide (GO) and forming a het-
erostructure with ZnFe2O4 through a hydrothermal process. This newly 
synthesized catalyst demonstrated impressive efficiency in degrading 
pollutants like tetracycline (TC), rhodamine B (RhB), and methylene 
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blue (MB) as well as removing chemical oxygen demand (COD) from 
actual wastewater. The KPCN/GO/ZnFe2O4 catalyst showed signifi-
cantly improved degradation rates for tetracycline compared to un-
modified graphitic carbon nitride, showcasing advancements achieved 
through doping, GO inclusion, and ZnFe2O4 incorporation. The pho-
tocatalytic process primarily relied on reactive species such as •OH and 
•O2−, signifying the enhanced performance of the KPCN/GO/ZnFe2O4 
catalyst due to improved light absorption, adsorption capacity, charge 
separation, and reusability [35]. This progress, achieved through doping, 
incorporation of graphene oxide (GO), and forming heterostructures, 
highlights the advancements made in improving light absorption, charge 
separation, and reusability for g-C3N4 -based materials [36].

2.1. Enhancing g-C3N4 photocatalysis

The pristine g-C3N4 in photocatalysis utilization is limited due to 
several factors. These limitations include its poor quantum efficiency, 
inadequate interfacial contact, high porosity, large dimension, fast pho-
tocarrier recombination, and difficulty dispersing into specific solvents, 
all of which contribute to poor filtration efficiency. These factors prevent 
the wide application of pristine g-C3N4 in photocatalysis [37]. Therefore, 
it is essential to adjust them into more diminutive structures in order to 
expand their pragmatic utilities. In accordance with the prerequisites, 
the process and concentration parameters are regulated correspondingly 
to generate diverse g-C3N4 morphologies. These minute configurations 
amplify the specific surface area and active sites, thus resulting in an 
increase in photocatalytic efficacy [38]. To reduce the pollution of the 
environment and improve large-scale waste water treatment, different 
morphologies are developed to quickly produce photocatalysts with out-
standing photocatalytic activity [39].

Consequently, these endeavors have stimulated a shift towards in-
novative strategies focused on refining the morphology and structure of 
g-C3N4 to enhance its photocatalytic performance. By overcoming its 
inherent limitations through adjustments to more compact structures, 
scientists have effectively increased both specific surface area and active 
sites, resulting in a notable improvement in photocatalytic efficiency. 
This approach not only addresses the obstacles restricting the broad use 
of pristine g-C3N4 in photocatalysis but also significantly contributes to 
curbing environmental pollution and advancing large-scale wastewater 
treatment capabilities [40].

Gang Wang et al., developed a novel composite catalyst (g-C3N4 /
NCDs/Ag) to degrade organic pollutants in water. By controlling elec-
tronic interactions and dual-doping with NCDs and Ag NPs, this catalyst 
showed enhanced electron transport and widened light absorption. It ef-
ficiently degraded various pollutants within 100 minutes under a xenon 
lamp, outperforming traditional g-C3N4  notably with specific contam-
inants like methyl orange and rhodamine B. Uniform distribution of 
NCDs and Ag NPs through g-C3N4 self-assembly enabled stable catalyst 
recycling. The primary active substance in the process was •O2–, with 
•OH serving as a secondary contributor. This innovative double-doped 
g-C3N4 design holds promise for diverse applications [41].

2.1.1. G-C3N4 Synthesis insights

In the past ten years, g-C3N4 has become a well-known synthetic 
polymer in the realms of material science and chemistry, particularly 
in the subject of photocatalysis. This is because of its low cost, unique 
physicochemical properties, good stability, and ease of preparation, 
following its discovery in 2009 as a metal-free polymer semiconductor 
that produces H2 by photocatalysis. C3N3 and C6N7 rings constitute 
the fundamental tectonic units of C3N4, which are widely regarded as its 
distinctive architecture [26]. Generally, g-C3N4 materials can be easily 
synthesized through heat condensation using small organic molecules 
as nitrogen-rich precursors, such as cyanimide and dicyanamide, urea, 

thiourea, and the tectonic units kind are largely dependent on response 
mechanisms. To gain a better understanding of the synthesis, Zhang et 
al. [42] conducted a study where they utilized either urea or thiourea 
as precursors for g-C3N4 production. Their findings revealed that the 
preparation process primarily consists of nucleophilic furthermore, po-
lymerization, and polycondensation. The conversion of thiourea or urea 
molecules to melamine through condensation reactions was initially 
achieved, whereas dicyandiamide molecules underwent direct conden-
sation to form melamine. Upon elevation of temperature, melamine un-
derwent a rearrangement process to form tri-s-triazine units which were 
subsequently polymerized to produce g-C3N4. Melamine Thermal po-
lymerization, cyanamide, dicyandiamide, urea, or thiourea at tempera-
tures ranging from 450 to 550 °C is generally used to create C3N4 [43, 
44]. In a similar manner, the production of polymeric g-C3N4 through the 
utilization of cyanamide was explored by [26], through the analysis of 
reaction intermediates at varying temperatures in order to earn a deep-
er the reaction mechanisms understanding and microscopic processes 
involved. Through the polycondensation of cyanamide molecules, 
melamine and dicyandiamide were formed at temperatures of approx-
imately 234°C and 203°C, respectively, as noted by [45]. Then, it was 
found that all melamine-revelent intermediates were produced at a tem-
perature of about 335°C and then were changed into basic tri-s-triazine 
rings at a temperature of about 390°C. Upon reaching a temperature of 
520 °C, g-C3N4 was produced via the polymerization of the aforemen-
tioned fundamental units. However, the compound proved to be unstable 
and the structure gradually disintegrated beyond 600 °C, leading to the 
complete decomposition of g-C3N4 into smaller molecules, such as CO2 
and NH3, beyond 700 °C. In light of this, g-C3N4 samples that were de-
rived from different precursors, temperature-rise paths, and thermolysis 
temperatures, were found to exhibit unique characteristics. Mo and co-
workers found that the degree of light absorption and the g-C3N4 shrunk 
bandgap increased when the calcination temperature rose. [46]. The di-
rect heating of melamine at 650°C resulted in the production of g-C3N4 
with optimal photodegradation activity for methylene blue  and 4-chlo-
rophenol, together with exceptional stability. The reaction atmosphere, 
which includes Ar and H2, NH3, and can produce disordered structures 
and defects, is yet another important element that intrinsic structures 
of g-C3N4 and affects the properties. For instance, the dicyandiamide 
thermal status under H2 hydrogen led to the engineering of additional ni-
trogen vacancies [47]. NHx sites, on the other hand, increased the hydro-
gen bonding contact between layers and stopped tri-s-triazine rings from 
degrading on their own. This was because CO2 promoted the growth 
of NHx sites [48]. Pretreatment of nitrogen-rich precursors is done to 
improve the g-C3N4  physicochemical properties before thermal anneal-
ing techniques, including protonation and sulfur-mediated synthesis. 
Improved photocatalytic behaviors are the consequence of controlling 
these reactive variables to produce the optimum level of condensation, a 
smaller band gap, and nanoarchitecture engineering [17].

Iltaf Khan et al., g-C3N4 nanosheets were synthesized using Erio-
botrya japonica like a stabilizer and mediator . These bio-caped g-C3N4 
nanosheets displayed enhanced properties such as strong adsorption, 
abundant organic functional groups, and activated surfaces. Capabili-
ties, suitable for bisphenol A degradation and CO2 conversion. The in-
corporation of LaFeO3 nanosheets via the SrO bridge further increased 
surface area, improved charge separation, and facilitated electron trans-
portation. Compared to pure g-C3N4 nanosheets, the ultimate composite 
showed significant enhancements, improving CO2 conversion by 8 times 
and bisphenol A degradation by 2.5 times. This research introduces an 
eco-friendly and efficient approach for designing green nanomaterials, 
supporting efforts towards net-zero carbon emissions and advancing car-
bon neutrality [49].
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2.1.2. Designing advanced of  g-C3N4 preparation technology 

There has been a notable influx of nanomaterials based on g-C3N4, 
which have been deliberately designed and manufactured to surpass the 
constraints of pure or bulk g-C3N4 when applied. The methodologies 
employed for their synthesis prioritize attaining structural and morpho-
logical control in order to achieve desirable energy bands, fast charge 
transfer, and strong light absorption. In order to produce distinctive 
morphologies and organized porosity onto bulk g-C3N4, both soft and 
hard template approaches are preferred for the design of nanostructures. 
These include multidimensional nanoarchitecture, porous g-C3N4, hol-
low spheres, and more [50, 51]. The traditional method of using hard 
templates involves combining precursors with hard structure directing 
agents during pyrolysis processes, such as colloidal SiO2 and meso-
porous SiO2 nanoparticles [50]. Subsequently, the templates are etched 
using F, NH4HF2, and various strong alkaline solutions to achieve the 
desired nanostructures. Zhang and coworkers, used colloidal SiO2 (12 
nm) and dicyandiamide like the template and precursor, respectively, 
to create mesoporous g-C3N4 [52]. In order to alter the structures, sev-
eral precursor types and concentrations were used. It was demonstrated 
that g-C3N4’s BET surface, which had an ideal weight ratio of 50 wt%, 
could increase with a drop in cyanamide. When exposed to visible light 
irradiation, the optimized sample’s tetracycline removal rate showed the 
rate exceeded that of bulk g-C3N4 by 6.6 times. A variety of mesoporous 
silica templates, like SBA-16, SBA-15, KIT-6, and  KCC-1,  were used 
in addition to SiO2 nanospheres to create well-ordered g-C3N4 structures 
[53]. The ordered g-C3N4 porous design considerably enhances the pho-
tocatalytic performance by enhancing mass transfer and expanding the 
reaction area. A more eco-friendly technique termed “greener” soft-tem-
plate synthesis has been devised to 

replace the usage of risky and expensive etchants like HF and 
NH4HF2. This method uses ionic liquids and amphiphilic block poly-
mers as soft structure-directing agents to create g-C3N4 with a charac-
teristic porous structure [51]. For example, Wang et al., [54] altered the 
g-C3N4 structure using dicyandiamide and a range of soft templates. 
These templates were made from amphiphilic block polymers such as 
P123, Brij30, Brij58, Triton X-100, F127, and Brij76 as well as nonionic 
and ionic surfactants like BmimDCNB, BmimCl, and mimPF6. It is a 
notable accomplishment that mesoporous g-C3N4 materials were created 
with remarkable porosity. Additionally, the employment of non-covalent 
bonding in supramolecular self-assemblage, a unique self-templating 
technique, enables the creation of stable and effectively designed ma-
terials without the need for external templates [54]. The final products 
are composed of the ordered molecular building blocks that are pro-
duced when monomers self-assemble through hydrogen bonding. As 
opposed to bulk g-C3N4, multi-dimensional g-C3N4 nanomaterials have 
been created in a variety of shapes and sizes, including 2D nanosheets, 
1D nanotubes, quantum dots, and others [54]. Both the bottom-up and 
top-down approaches are frequently used in synthetic methods.  Bulk 
g-C3N4 was fragmented into finely scattered and distinct nanostructures 
for the top-down approach with the help of external forces, particular-
ly for its exfoliation into g-C3N4 nanosheets, such as liquid exfoliation 
ways, post-thermal oxidation etching method, etc. However, anisotropic 
bottom-up assembly necessitates certain organic molecules as well as 
a growing environment that includes diverse media, including struc-
ture-directing agents and required templates. At the moment, efforts are 
still being made to create and synthesize g-C3N4-based nanomaterials, 
producing g-C3N4 with various structures, morphologies, and sizes. This 
leads to the attainment of photocatalytic activity and superior optical 
characteristics [17].

Chellapandi Bhuvaneswari and Sundaram Ganesh Babu showed A 
highly robust ternary electrocatalyst, consisting of graphene-based CuS 
spheres on an exfoliated g-C3N4 sheet, has been developed using na-

noarchitecture and surface engineering techniques. This electrocatalyst 
exhibits excellent electrochemical properties and was used to create a 
sensitive electrochemical sensor for detecting furazolidone (FZ). The 
sensor displayed a linear range from 0.1 to 336.4 µM, with a low limited 
detectability of 0.0108 µM, demonstrating a strong relationship between 
current and potential. Moreover, the composite showed remarkable elec-
trocatalytic activity, selectivity against interfering compounds, and good 
reproducibility, stability, and repeatability, making it a promising plat-
form for graphene-based materials in electrochemical FZ detection [55].

2.1.3. Advancements in Synthesis Techniques for g-C3N4 Nanocompos-
ites 

Over the past years, there has been a significant rise in the develop-
ment of g-C3N4-based nanocomposites as potential photocatalysts for 
treating organic wastewater. Numerous synthesis techniques including 
sol-gel methodologies, hydrothermal and solvothermal have been ex-
plored to create versatile g-C3N4-based hybrids [53].

Among these methodologies, the sol-gel approach, a multi-step wet 
chemical process, is widely recognized for its suitability in producing 
nanomaterials due to cost-effectiveness and moderate reaction condi-
tions [56]. This technique involves synthesizing a heterostructure by 
depositing metal nanoparticles on the semiconductor’s surface, result-
ing in active constituents being deposited on g-C3N4. For instance, Li 
et al. fabricated g-C3N4/TiO2 hybrids through an adjusted sol-gel path-
way, creating a type II heterostructure to improve photoinduced electron 
separation and transfer [57]. Similarly, Chang et al. employed sol-gel 
techniques to produce C3N4/TiO2 heterostructures with high BET surface 
areas and solid structures [58].

Additionally, G-C3N4-based nanocomposites have been synthesized 
using the hydrothermal method, which proves an effective approach and 
to be relativvely inexpensive. These structures typically exhibit high pu-
rity, increased crystallinity, and well-designed structures. Ji et al. utilized 
an in-situ hydrothermal synthesis method to decorate CdS onto g-C3N4, 
facilitating charge separation by locating the CdS nanoparticles near the 
g-C3N4 [50]. Similarly, Deng et al. developed SnS2 on g-C3N4, resulting 
in an evenly dispersed system with robust visible light-induced activity 
[59]. Furthermore, the solvothermal method is commonly employed to 
fabricate nanocomposites with distinctive morphologies. Reaction me-
dia, raw material selection, and solution conditions play essential roles 
in determining the catalysts’ structures and activities [60]. Liang et al. 
utilized a solvothermal approach to design Bi2MoO6-gC3N4 heterostruc-
tures at various pH ranges, demonstrating superior photodegradation 
performance compared to single g-C3N4 and Bi2MoO6 for removing 
RhB [61]. Similarly, the ionic liquid 1-hexadecyl-3-methylimidazolium 
bromide was combined with Bi(NO3)3 in an EG/g-C3N4 solution by Xia 
et al., resulting in strong photodegradation efficiency for BPA and RhB 
[62]. Moreover, researchers have employed solvothermal techniques to 
enhance nanocomposite properties. Y. Zhang et al. successfully inserted 
Bi2MoO6 and Bi NPs into g-C3N4, achieving remarkable photodegrada-
tion efficiency and creating indirect Z-scheme heterojunctions and well 
hollow microspheres in g-C3N4/Bi2MoO6/Bi [63]. Additionally, S Meng 
loaded NiSx NPs as a cocatalyst onto g-C3N4, enhancing photocatalytic 
H2 production Nanocomposites produced using the solvothermal meth-
od exhibit impeccable morphologies and distinctive inner structures, dis-
playing superior catalytic performances under visible light. Optimizing 
synthesis parameters like reaction conditions and precursor concentra-
tions is crucial for shaping nanocomposite morphology and improving 
photocatalytic efficacy. These adjustments impact properties like surface 
area and crystallinity, influencing the catalytic [64]. G-C3N4-based nano-
composite’s performance in breaking down pollutants. Additionally, in-
novative techniques such as doping and surface modification enhance 
charge separation efficiency, boosting the overall photocatalytic activity. 
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These modifications refine optical and electronic properties, enabling 
better utilization of visible light for improved pollutant degradation [65].

Zeinab Talebzadeh et al, employed rapid ultrasonic treatment to fab-
ricate La2SN2O7/graphitic carbon nitride (LSO/CN) nanocomposites, 
using broccoli extract as a natural surfactant to control crystal nucle-
ation and growth while preventing agglomeration. Varied experimental 
parameters allowed control over the nanocomposites’ size and shape, 
assessed through diverse characterization techniques. The photocata-
lytic efficiency was evaluated by eliminating different dyes under UV 
light, and studying the impact of particle size, LSO: CN ratio, dye type, 
scavenger, and catalyst loading on catalytic efficiency. The research also 
delved into the potential photocatalytic mechanism underlying dye re-
moval [66].

3. G-C3N4’s photocatalytic mechanism

G-C3N4’s photocatalytic activity involves light absorption, charge 
carrier generation and movement, redox reactions, and the breakdown of 
pollutants or hydrogen production, depending on the specific application 
and conditions [67, 68]. Utilizing photocatalysis, which offers potential 
for cost-efficiency and sustainable use represents an environmentally 
friendly approach for breaking down organic pollutants. However, cre-
ating photocatalysts with superior catalytic performance remains a con-
siderable challenge in terms of their thoughtful design and production 
[69]. Light Absorption: g-C3N4 absorbs light (especially visible light), 
causing electrons to transition from the valence band to the conduction 
band, resulting in the creation electron-hole pairs [70]. Redox Reactions: 
Holes participate and photogenerated electrons in redox reactions. Holes 
can oxidize hydroxide ions or water to form highly responsive radicals 
such as hydroxyl radicals (•OH) or superoxide radicals (•O2-) [71]. For-
mation of Active Species: Electrons in the conduction band can reduce 
oxygen to form reactive species like superoxide radicals (•O2-) or react 
with hydrogen ions to generate hydrogen peroxide (H2O2) [72]. Charge 
Carrier Migration and Separation: Effective migration and separation of 
these charge carriers are crucial to prevent their recombination, there-
by ensuring efficient catalytic activity [73]. Reaction with Pollutants: 
Photogenerated electrons and reactive species attack and break down 
organic pollutants adsorbed on the g-C3N4 surface, leading to their deg-
radation into less harmful substances [74].

Hydrogen Evolution Reaction (HER): Under water’s influence, 
g-C3N4 can also facilitate the generation of hydrogen gas by using pho-
togenerated electrons to reduce protons from water [75].

Under the correct lighting circumstances, photogenerated elec-
tron-hole pairs can be used to explain the g-C3N4 photocatalytic activ-
ity. Reactive oxygen species (ROS) production and  electron transfer 
are shown in Eqs (1)–(4 ) [76, 77]. The valence band (VB) electrons in 
g-C3N4 became excited and migrated from the conduction band (CB) to 
the surface, where they initiated a number of reactions. It is not possible 
to directly create hydroxyl radicals (•OH) via holes in H2O and VB due 
to the negative VB potential being bigger than the typical  H2O/•OH and 
OH-/•OH redox potentials. The primary reactive chemicals assumed to 
be involved in the oxidation of organic pollutants are believed to be 
photogenerated holes, hydroxyl radicals, and superoxide anion radicals 
(•O2 -) [33]. According to [78], the importance of hydroxyl radicals, hy-
drogen peroxide species, and superoxide anion radicals in photocatalytic 
disinfection cannot be emphasized. . These ROS have demonstrated ef-
fectiveness in reacting with cell membranes and cellular constituents,ul-
timately culminating in cellular demise [79].

(1)   g-C3N4  +  light  → g-G3N4 ( h
+ + e- )

(2)   g-C3N4 (e-) + O2 → g-C3N4+O-2                                                                                            

(3)   2 g-G3N (e-) + O2 + 2h+ → 2 g-GN4 + H2O2

(4)   H2O2 + g-G3N4 (e
-) → g-G3N4 + .OH + 0H-

Zuoyin Liu et al. investigated the g-C3N4/BiOI (001) photocatalyt-
ic mechanism using hybrid functional estimations based on first-prin-
ciples theory. The interface exhibits a staggered band design with a 
built-in electric field from g-C3N4 to BiOI. Photo-generated electrons 
in BiOI’s conduction bands combine again with holes in g-C3N4’s va-
lence bands due to the electric field and Coulomb interaction, forming a 
direct Z-scheme heterostructure. This separation of electrons and holes 
enhances their migration, leading to effective participation in redox 
reactions with water/pollutants, creating active species like hydroxyl 
radicals and superoxide ions. The larger difference in carrier effective 
masses in the g-C3N4/BiOI (001) heterostructure contributes to its su-
perior photocatalytic activity observed in experiments, resolving certain 
experimental speculations and controversies [80].

3.1. Improvement of photocatalytic performance of g-C3N4

Enhancement of g-C3N4 photocatalytic capability involves enhanc-
ing its efficiency in utilizing light energy to drive catalytic reactions, 
Either for the degradation of the production or pollutants of valuable 
products. Several strategies can contribute to enhancing g-C3N4’s photo-
catalytic performance inclined Modification of Structure, Doping, Sur-
face Engineering, Heterojunction Formation, Optimization of Synthesis 
Parameters and Surface Defects and Active Sites [81-83]. Each of these 
approaches aims to address specific limitations or enhance the inherent 
properties of g-C3N4 to boost its effectiveness as a photocatalyst for en-
vironmental remediation or energy production applications [84].

3.1.1. Metal or non-metal doping

To enhance the efficiency of semiconductors with low conductivi-
ty, various materials, including metals and non-metals, are incorporated 
[85]. Transition Metals: Utilizing transition metals like Zr, W, Cu, Ag, 
and Fe as dopants for photocatalytic semiconductors has shown potential 
synergistic effects. For instance, Fe-doped g-C3N4 and Co-doped g-C3N4 
exhibit enhanced performance in TOC removal in wastewater due to 
permonosulphate (PMS) activation [18]. Specific Metal Examples: The 
utilization of metals in elemental doping procedures, such as combining 
precursors with the template/metal salt solution during the doping pro-
cess, has been observed. For example, Guo synthesized S and K-doped 
g-C3N4 by mixing KOH, (NH4)2SO4, and Sulphur (S) precursors with 
dicyanamide and melamine templates [86]. Metal doping in g-C3N4, 
such as Zr, Cu, Fe, or Co, has shown promise in activating persulphates 
or hydrogen peroxide, thereby enhancing the removal of total organic 
carbon (TOC) in wastewater treatment processes [87]. The incorporation 
of transition metals like Zr, W, Cu, Ag, and Fe, among others, as dopants 
in g-C3N4 demonstrate potential synergistic effects, accentuating their 
catalytic capabilities in various photocatalytic reactions [88, 89].

Non-Metal Doping: Non-Metallic Elements: Non-metallic elements 
including X, B, Ni, P, S, and O are used in semiconductor doping pro-
cesses to maintain metal-free attributes and prevent irregular chemical 
state fluctuations resulting from metal ions’ presence [90]. Specific 
Non-Metal Examples: Incorporating elements like sulfur, phosphorous, 
and oxygen into g-C3N4 through doping processes leads to alterations in 
electronic band structures, improved stability, enhanced photocatalytic 
activity, reduced bandgap energies, and increased light absorption [91-
94]. Co-Doping Effects: Co-doping, such as S and K co-doped g-C3N4, 
has demonstrated significant reductions in the bandgap, allowing in-
creased absorption of visible light. Co-doping is beneficial as it enhances 
photocarrier separation channels, ultimately improving the photocatalyt-
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ic process [95]. 
Non-metallic elements like X, B, Ni, P, S, and O are utilized in 

semiconductor doping to maintain metal-free attributes while positively 
influencing the compound’s chemical states, thereby preventing anoma-
lous fluctuations due to the presence of metal ions [96]. 

Doping g-C3N4 with elements like sulfur, phosphorus, and oxygen 
has shown notable improvements in altering electronic band structures, 
enhancing long-term stability, and modulating the photocatalytic activ-
ity of the material [45].

Hao Zhang et al.,  discussed alkali metal (Li, Na, K, and Rb) doped 
g-C3N4 through high-temperature calcination and water bath heating. 
Both computational and experimental analyses were conducted to assess 
the photoelectric properties. Computational findings revealed that Rb-
doped g-C3N4 exhibited significantly increased absorption spectra within 
the 500–1100 nm wavelength range, corroborating UV–vis spectrum re-
sults. Specifically, Rb-doped g-C3N4 demonstrated superior performance 
in CO2 photo-reduction, generating CO at a rate exceeding three times 
higher than bulk g-C3N4. This research offers valuable insights for de-
veloping doped g-C3N4 materials applicable in, medical imaging, energy 
conversion, and environmental remediation [97].

3.1.2. Deposition of metals 

An approach that is frequently used to improve the properties of 
semiconductor photocatalysts is metal deposition. This method involves 
the direct application of metals onto the surface of the target materi-
al through the use of heating techniques [94]. Deposition and doping 
are two distinct processes; the former involves the mere introduction 
of metals onto a surface, whereas doping is the replacement of specific 
atoms with dopants. In photocatalysis, the optoelectronic properties of 
catalysts can be improved by depositing noble metals onto their surfac-
es. However, this approach can be costly [95]. Noble metals are known 
to enable the development of robust electromagnetic fields as a result 
of local surface plasma resonance (LSPR), thereby photocatalytic re-
actions benefit from quicker and more efficient light absorption [98]. 
In addition, the formation of Schottky barriers at the catalyst interface 
enhances noble metals’ ability to attract electrons. This prevents internal 
photocarrier recombination, produces an extra hole in place of the elec-
tron, and therefore improves photocatalytic efficiency [44].  To over-
come these challenges, exploring non-precious metals for LSPR and 
optimizing modification techniques becomes crucial. TiN, known for its 
stable nature, wide-spectrum light absorption, and LSPR effect, has gar-
nered considerable attention [99].  RhB was completely eliminated from 
g-C3N4 by placing the ideal quantity of silver NPs there by the reduction 
reaction of NaBH4 in about 60 minutes [100]. several techniques were 
utilized in the production of photocatalysts with varying shapes and siz-
es. These methods comprised deposition using auric chloride (AuCl4-), 
photoreduction, and thermal polymerization with melamine precursors. 
The catalyst has a much greater BET surface area, which is the cause of 
its enhanced stability, which in turn resulted in the remarkable photo-
catalytic activity exhibited against RhB [61], and methyl orange (MO) 
dyes [101]. Regarding cost considerations, non-precious metals have 
surfaced as a viable alternative and have been demonstrated to be ef-
fective counterparts [102]. A number of scholars endeavored to deposit 
non-precious metals onto the g-C3N4 structure through the incorporation 
of  Cu and  Bi metals, which facilitated a more expeditious separation of 
charge carriers and light absorption during the photocatalytic degrada-
tion process [102, 103].

Yuanyuan Liu et al., focused on environmentally friendly ways of 
producing hydrogen peroxide (H2O2) using photocatalysis. Non-metal 
elements (B, P, and S) were doped into g-C3N4 tubes (B-CNT, P-CNT, 
and S-CNT) through thermal polymerization and hydrothermal synthe-
sis, significantly improving the yield of g-C3N4 tube materials. These 

doped photocatalysts demonstrated enhanced photocatalytic H2O2 pro-
duction rates (42.31 μM min−1 for B-CNT, 24.95 μM min−1 for P-CNT, 
and 24.22 μM min−1 for S-CNT) compared to bulk CN (16.40 μM min−1). 
The introduction of B, P, and S elements boosted photocatalytic activity 
by modifying and enhancing the separation of electron-hole carriers and 
electronic structures, showing promise for practical applications of CNT 
photocatalysts [104].

3.1.3. Heterojunction formulation 

Combining semiconductors with additional semiconductor elements 
or compounds of equivalent energy levels to produce binary or ternary 
heterojunctions allows for the enhancement of charge carrier migra-
tion and makes charge separation easier. The mobility of the charges is 
increased in a heterojunction by the capacity of the electrons to move 
across the semiconductors while being influenced by an electric field. 
Many heterojunctions have been created to date, including Z-scheme 
(S-scheme), Schottky, p-n, Type-I, and Type-II heterojunctions. The en-
hancement of g-C3N4-based photocatalysts most frequently employed 
the Type II heterojunction mechanism. The S-scheme (Step-scheme) 
and  Z-scheme heterojunctions have been used and developed for ef-
fective photocatalysis. In particular, the Type II heterojunction aids in 
the migration of electrons from the CB of semiconductor SC1 to the CB 
of semiconductor SC2, as well as holes from the VB of semiconductor 
SC2 to the CB of semiconductor SC1. The resulting free radical entities 
participate in active oxidation processes (AOP) and are made up of the 
leftover electron in SC1’s CB and the hole in SC2’s VB, respectively. 
The greater possibility of Coulombic repulsion of electrons during the 
migration of photogenerated electrons from one CB to another is blamed 
for the progressive decline in the preference for type II photocatalysts. 
A little degree of photocatalytic reduction capability was also demon-
strated by the carriers after they were transferred to the semiconductor 
with low potential. As a result, the Z-scheme heterojunction pathway 
was developed, making it simpler for carriers in the CB of SC1 and VB 
of SC2 to take part in AOP by allowing the photogenerated e- in the 
CB of SC2 to undergo recombination with the VB of SC1 via interfa-
cial transfer [105]. Another team of researchers developed the S-scheme 
heterojunction in order to boost photocatalysis efficiency by accelerat-
ing the recombination rate of holes under an inner electric area and low 
potency electron [106, 107]. The phenomenon of S-scheme heterojunc-
tion, which results in the inward bending of both semiconductors’ band 
edges, is caused by the exact two semiconductors’ alignment at their 
respective Fermi levels. As a result, the redox potential is favorable and 
there is effective photocatalytic activity, which facilitates the migration 
of electrons from the CB of the oxidation semiconductor to the reduc-
tion semiconductor VB [108]. In addition, it has been shown that the 
controlled production of a g-C3N4/BiPO4 Type II heterojunction using 
the ball milling approach results in a 97% breakdown of tetracycline. 
This extraordinary result can be attributed to the synthesized materials’ 
high degree of the particular manner and crystallinity in which the in-
terface formed [109]. In order to create heterojunctions, semiconductors 
are typically coupled with carbonaceous materials that contain conju-
gated structures, such as graphene oxides (GO), fullerenes, and carbon 
nanotubes(CNTs) [110]. By combining reduced graphene oxide (r-GO) 
and g-C3N4, a two-dimensional heterojunction hybrid was created that 
produced better interfacial conductivity and more charge carriers. They 
generate pairs of electrons and holes with relatively high redox poten-
tials. The degradation efficacy of Z-scheme heterojunctions is superior 
to that of conventional heterojunctions. The Z-scheme heterojunction 
is a beneficial structure due to its ability to provide extended light ab-
sorption,  separation efficiency, enhanced interfacial contact, improved 
oxidation capacity,  and long-term stability [111]. Additionally, this 
structure has successfully overcome a number of drawbacks, such as the 
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avoidance of electrostatic attraction between electron and hole ions and 
a decline in the redox potentials of electron/hole pairs  [112]. Z-scheme 
heterojunctions are characterized by the usage of mediators, such as no-
ble metals, in the process of interfacial migration of electrons. Due to 
the semiconductors’ close closeness to one another in the absence of 
these mediators, electron and charge transport occur at rapid rates [113].

Lu Wang et al. focused on creating a g-C3N4 and niobium pentox-
ide nanofibers (Nb2O5 NFs) heterojunction through an electrospinning 
method followed by calcination. Characterization confirmed a well-de-
fined structure of g-C3N4/Nb2O5, where Nb2O5 NFs were tightly bound to 
g-C3N4 nanosheets. Analogized to individual g-C3N4 and Nb2O5 NFs, the 
resulting g-C3N4/Nb2O5 exhibited significantly improved photocatalytic 
performance in degrading phenol under visible light and rhodamine B. 
This enhanced performance stemmed from the synergistic effect between 
Nb2O5 NFs and g-C3N4 sheets, facilitating carrier transfer and prevent-
ing recombination, as supported by transient photocurrent responses and 
photoluminescence spectra. Active species trapping experiments identi-
fied superoxide radical anion (·O2

–) and hole (h+) as major contributors 
to the photocatalytic process. The g-C3N4/Nb2O5 heterojunction, with 
its notable effectiveness and simple synthesis, holds promise for appli-
cations in treating organic pollutants and harnessing solar energy [114]. 

Jiawen Ren et al. focused on creating g-C3N4/NH2-UiO-66 (Zr) 
heterojunction photocatalysts using an in-situ deposition and solvo-
thermal method. These catalysts demonstrated highly efficient removal 
of hexavalent chromium (Cr (VI)) and simultaneous oxidation of tet-
racycline hydrochloride (TC-HCl). The results showed that the hetero-
junction structure had 1.86 times greater photocatalytic Cr (VI) removal 
efficiency compared to pure NH2-UiO-66 (Zr) under visible light, with 
excellent stability and repeatability. Factors affecting the photocatalytic 
performance, such as Cr (VI) concentration and pH values, were inves-
tigated. Moreover, the heterojunction catalyst effectively removed pol-
lutants in mixed solutions, achieving complete Cr (VI) reduction within 
90 minutes under visible light while also enhancing TC-HCl oxidation. 
This study underscores the potential of heterojunction-structured photo-
catalysts for efficient wastewater purification [115].

3.1.4. Adjustment of the structure and regulations of defects 

Formation defects are impurities that are introduced into the semi-
conductor matrix by the atom’s subtraction or addition from the struc-
tural matrix. In particular, the ideal periodic organization of any given 
chemical is altered or impaired, which leads to the creation of defects. 
The presence of imperfections in semiconductors has significant impli-
cations in the realm of photocatalysis, as they can alter the composition 
and characteristics of a given compound [116]. Comparatively to crys-
talline structures, amorphous substances’ chaotic atom arrangement re-
duces the possibility of defects. The effectiveness of photocatalysis can 
be improved by defects, according to an earlier study. The presence of 
vacancies within the semiconductor matrix can facilitate the formation 
of fresh active sites for the absorption of specific pollutants [117]. Until 
now, the majority of defect regulation mechanisms concerning g-C3N4 
have been attained by means of generating nitrogen vacancies. This 
method proves to be convenient as the nitrogen vacancies can be readily 
created through the heating of g-C3N4 particles in an air/H2 atmosphere 
[118]. Niu et al. [119], were able to create N2 vacancies in the g-C3N4 
matrix through the treatment of the substance under high temperatures 
in an air atmosphere. The resultant N-vacant g-C3N4 photocatalyst ex-
hibited an increased absorption of visible light without any alteration to 
its structure conjugation and characteristics. Dong and colleagues [90], 
generated defective g-C3N4 material through the incorporation of carbon 
vacancies within its matrix. Subsequent irradiation with visible light led 
to the reduction of NO to N2, with the defective catalyst exhibiting a 
faster pace of photocatalytic H2 evolution in comparison to non-defec-

tive g-C3N4. In a separate study, Wu and co-workers [120], produced 
N-vacant g-C3N4 catalysts which resulted in a significant decrease in 
the bandgap, thereby facilitating fast charge transfer reactions. Ding and 
coworkers [121], conducted a process to modify the electronic struc-
ture of a material by eliminating N2 atoms from terminal NHx groups. 
This procedure searched to make more active areas in the content more 
readily available. Exact N-void g-C3N4 catalysts have increased photo-
catalytic efficiency, charge separation effectiveness and light absorption. 
A comparable process for improving overall performance has also been 
found as structural tuning, which entails altering a material’s morphol-
ogy, structure, energy levels, and other features  [122]. The catalysts 
made of 3D macroporous/mesoporous g-C3N4 possessed larger surface 
area and porosity, thereby demonstrating superior degradation perfor-
mance. Chen and colleagues  [123] used CaCO3 to create mesoporous 
g-C3N4 NPs and saw a speedy rise in the light absorption range from 
460 nm to 800 nm causing a 12-fold increase in the rate of methylene 
blue (MB) degradation when compared to unmodified g-C3N4. With 
the discovery of porous honeycomb-structured g-C3N4, photodegrada-
tion activity was enhanced [124], and 3D g-C3N4 hollow bubbles [125]. 
Additionally, 2D and 1D g-C3N4 designs were modified to improve the 
multi-electron flow. Jin with his colleagues  [126], through a two-step 
condensation method,    created g-C3N4 nanotubes from melamine that 
resembled carbon nanotubes (CNTs). A six-fold increase in BET sur-
face area and improved RhB removal potential were both seen in the 
synthesis of nanotubes. One method was used by Fan et al. [127] to 
create ultrafine g-C3N4 nanosheets with a thickness of 10 nm that closely 
resembled the graphite’s sheet-like structure. The resultant nanosheets 
showed a significant five-fold increase in H2 production, a remarkably 
high BET surface area of 211.2 m2/g, and the capacity to break down 
RhB in just 12 minutes.

Tao Yu et al., introduced a simple and environmentally friendly 
method to create nitrogen-defective g-C3N4 by employing urea and fu-
maric acid through thermal polymerization. This process induced nitro-
gen defects in the g-C3N4 structure, enhancing its photocatalytic action 
for hydrogen evolution by approximately 2.64 times compared to the 
original g-C3N4. These defects altered the band structure, leading to de-
veloped light absorption, efficient charge separation, and increased hy-
drogen evolution rates. The method’s simplicity and eco-friendliness of-
fer a promising approach for producing nitrogen-defective g-C3N4 with 
adjustable band structures [128].

Yingying Qin et al. explore a method to improve the photocatalytic 
hydrogen evolution of g-C3N4 by π-conjugation structure and integrat-
ing N defect engineering. The optimized DCN350 catalyst exhibited a 
remarkable hydrogen evolution rate of 1541.6 μmol g−1 h−1, representing 
a 7.5-fold increase over pristine g-C3N4 (205.9 μmol g−1 h−1). Through 
density functional theory (DFT) investigations and experiments, it was 
found that DCN350 with N defects not only broadened light absorption 
by reducing band gaps but also facilitated the hydrogen evolution reac-
tion by acting as active sites. Additionally, the –C≡N functional group 
promoted charge spatial separation, enhancing the charge transfer and 
light absorption capacity of g‐C3N4. This study sheds light on the role of 
structural defects in enhancing the photocatalytic hydrogen evolutionary 
activity [129].

4. G-C3N4 for pharmaceutical removal from water

The application of photocatalytic oxidation processes for eliminating 
pharmaceutical drugs from wastewater is regarded as an appealing and 
eco-friendly method [16]. G-C3N4 has appeared as a promising photo-
electrocatalyst for water treatment. Researchers are exploring advanced 
oxidation processes (AOPs), particularly photoelectrocatalytic (PEC) 
systems, to develop sustainable methods for eliminating persistent con-
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taminants from urban wastewater treatment plant effluents [130]. The 
utilization of g-C3N4 in pharmaceutical removal from water highlights 
its potential to address water pollution challenges caused by the presence 
of pharmaceutical residues [131]. Ciprofloxacin, acetaminophen, and 
carbamazepine are commonly found pharmaceuticals in water, under-
going photodegradation to break down their structures into less harmful 
substances when exposed to light, particularly under the influence of 
g-C3N4, a photocatalyst [132]. This catalyst generates electron-hole pairs 
upon light exposure, initiating redox reactions with this pharmaceutical 
[133]. This catalyst generates electron-hole pairs upon light exposure, 
initiating redox reactions with these pharmaceuticals. The adsorption of 
these compounds onto g-C3N4’s surface leads to highly reactive species 
formation, such as hydroxyl radicals (•OH), which break down the mo-

lecular structures of these pharmaceuticals through oxidation-reduction 
reactions [134].

This degradation process facilitated by g-C3N4’s photocatalytic ac-
tivity aids in reducing or removing these pharmaceutical pollutants from 
water bodies [68]. Photocatalytic degradation of pharmaceuticals by 
different materials under varied light sources (summarized in Table 1).

4.1. Photodegradation of Ciprofloxacin

Ciprofloxacin (CIP), a widely used antibiotic belonging to the sec-
ond-generation quinolone category, is prevalent in wastewater due to its 
limited breakdown through metabolic means. A significant portion of 
CIP is excreted unchanged and remains persistent in municipal wastewa-

Fig. 1. Photodegradation of CIP under 
solar light-assisted ZnO/g-C3N4.

Table 1.
Photocatalytic Degradation of Pharmaceuticals by Different Materials under Varied Light Sources - Summary of Main Results

Material Pharmaceutical Light source Main results Ref.

Boron-doped and nitrogen-deficient g-C3N4 (BNCN) Acetaminophen Visible light 100% in 30 min [178]

TiO2/g-C3N4-PS (persulfate) Acetaminophen Visible light
Almost completely degraded in 

30 min
[179]

g-C3N4 nanosheets Acetaminophen Solar light 99% in one hour [180]

g-C3N4@TiO2 (gT), g-C3N4@TiO2@ZnO (gTZ) Acetaminophen Visible light For gT 70.6% and gTZ 92.4% [179]

CoFe2O4/mpg-C3N4 Acetaminophen UV light 100% in 25 min [181]

BiOCl/g-C3N4 (BOC/CN) Carbamazepine Solar light 49% 240 min [182]

g-C3N4/TiO2  Carbamazepine UVA light 71.41% in 360 min [15]

C3N4@CuS Carbamazepine Visible light 98.5% in 5h [183]

carbon-doped supramolecule-based g-C3N4/TiO2 Carbamazepine LED lamp 99.77% in 6h [150]

Heterojunction of (P, S) co-doped g-C3N4 and 2D TiO2

 
Carbamazepine Solar light 100 % in less than 30 min [137]

g-C3N4/Ag3PO4/Chitosan 
Ciprofloxacin

Visible light
90.34% in 60 min

[184]

CoFe2O4/g-C3N4 

Ciprofloxacin
Visible light 97% in 60min [185]

 ZnO/g-C3N4

Ciprofloxacin
Visible light 93.8% under pH 8 [13]

C3N4/Bp/MoS2 Ciprofloxacin
Visible light over 99% in 60 min [186]

CeO2/g-C3N4

Ciprofloxacin
Visible light 96.3% in 100 min [187]
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ter [135]. Despite being discharged into the environment, CIP exhibits 
resistance to biodegradation in traditional wastewater treatment plants, 
leading to its detection in aquatic environments globally [136, 137]. This 
persistence poses risks like the development of bacterial medication re-
sistance and toxicity to probiotics, necessitating effective removal tech-
niques [138]. Photocatalysis offers a promising method for eliminating 
antibiotic residues from water [139, 140]. Studies have demonstrated the 
efficacy of various photocatalysts, such as Z-scheme nanocomposites of 
TiO2/g-C3N4 and nitrogen-deficient g-C3N4 with carbon dots (C-dot@
ND-g-C3N4) in CIP degradation [141, 142]. These photocatalysts exhib-
ited remarkable degradation rates under simulated sun irradiation and 
visible light, showing significant improvement over commercial TiO2 
powder or g-C3N4 alone [143]. Mechanistic studies revealed the involve-
ment of hydroxyl radicals and superoxide in the breakdown of CIP, with 
electron-hole pair separation, nitrogen defects, and carbon dots enhanc-
ing visible light absorption [142]. Additionally, heterojunction photocat-
alysts, such as Sm-doped g-C3N4/Ti3C2 MXene (SCN/MX) and g-C3N4/
RGO/WO3, showcased enhanced charge separation and electron mobil-
ity [144, 145]. The reduced graphene oxide (RGO) incorporation as an 
electron mediator significantly improved the overall performance of the 
photocatalysts, leading to increased CIP degradation efficiency under 
visible light exposure [146]. Photocatalysis stands as a promising tech-
nique for eliminating antibiotic residues from water [147, 148]. Regard-
ing to photocatalytic Removal Efforts Research has explored various ap-
proaches leveraging different photocatalysts to degrade CIP effectively 
[149]. For instance, Hu et al. developed a Z-scheme nanocomposite of 
1D/2D TiO2 nanorod/g-C3N4 nanosheet, demonstrating a 93.4% degra-
dation rate for CIP within 60 minutes [150]. Zhang et al. introduced a 
green photocatalyst, C-dot@Nitrogen Deficient g-C3N4, which showed a 
3.5-fold enhanced efficacy in CIP removal under visible light [151]. re-
lated to advancements in photocatalyst development Studies by Yu et al. 
introduced a heterojunction of Sm-doped g-C3N4/Ti3C2 MXene (SCN/
MX), exhibiting over 99% photodegradation efficiency for CIP in the 
presence of visible light [152, 153]. Similarly, Lu et al. utilized a photore-
duction technique to create the Z-scheme photocatalyst g-C3N4/RGO/
WO3, indicating superior enhanced performance and charge separation 
in CIP degradation [154]. Doan Van Thuan et al. focused on employing 
a ZnO-modified g-C3N4 photocatalyst to degrade Ciprofloxacin (CIP) 
antibiotic compounds in water. The ZnO/g-C3N4 catalyst demonstrated 
a significant removal efficiency of 93.8% for CIP at pH 8.0. Increasing 
the catalyst amount improved pollutant degradation, achieving complete 
oxidation of low concentrations (1 mg L−1) of CIP. At higher concen-
trations (20 mg L−1), around a 13% decrease in removal efficiency was 
observed. The doped ZnO/g-C3N4 catalyst degraded CIP 4.9 times faster 
than undoped g-C3N4 and displayed strong reusability with 89.8% effi-
ciency after 3 cycles. Active radical species like ·OH, ·O2−, and h+ were 
identified as crucial in the degradation process. Additionally, the study 

proposed a mechanism detailing the degradation of CIP using visible 
light-assisted ZnO/g-C3N4 [13] (mentioned in Figure 1). Kang Hu et al., 
developed a Z-scheme nanocomposite using 1D/2D TiO2 nanorods and 
g-C3N4 nanosheets, aiming for CIP-efficient photocatalytic degradation 
in water treatment. Achieving 93.4% CIP degradation in 60 minutes, 
the nanocomposite had optimal conditions with 30% g-C3N4, 15 μmol 
L−1 CIP concentration, and pH 6.3. The study systematically explored 
catalyst effects, and pH on degradation and CIP concentrations, fitting a 
pseudo-first-order kinetic model for CIP concentrations above 10 μmol 
L−1. Under simulated sunlight, this nanocomposite exhibited 2.3 and 7.5 
times higher CIP photodegradation rates compared to commercial TiO2 
powder and g-C3N4 nanosheets, respectively. Further investigations un-
veiled degradation kinetics, and mechanisms, and proposed three CIP 
degradation pathways, highlighting the role of h+ and ĚOH through 
electron spin resonance (ESR) technique and scavenging experiments. 
This research may offer an effective approach for eliminating various 
antibiotics in water treatment processes [155].

4.2. Photodegradation of Acetaminophen (ACT)

ACT, a prominent pharmaceutical compound, underwent photodeg-
radation studies employing advanced photocatalysts in various exper-
iments [156]. The photodegradation of acetaminophen offers several 
benefits, such as Environmental Impact, Water Treatment, Reduced Tox-
icity, and Public Health [157]. ACT photodegradation can be achieved 
through various techniques including Photocatalyst, UV Irradiation, 
Advanced Oxidation Processes (AOPs), Heterogeneous Photocatalytic 
Systems, and Hybrid Systems [158, 159]. Each technique offers distinct 
advantages in terms of efficiency, applicability, and degradation rates 
based on factors like catalyst type, light source, reaction conditions, and 
the concentration of acetaminophen in the system [157, 158]. Li et al., 
produced g-C3N4-CdS/Bi4O5I2 composites that demonstrated excep-
tional photocatalytic efficiency and stability for paracetamol degrada-
tion. The ternary heterojunctions facilitated enhanced charge transfer 
pathways, significantly boosting performance and stability, with the 
optimal sample exhibiting significantly higher degradation rates com-
pared to individual components [160]. Moradi et al., developed TiO2/
graphene/g-C3N4 (TGCN), an efficient Z-type photocatalyst, by incor-
porating graphene as an electron mediator, enhancing degradation per-
formance under simulated solar light. The study elucidated the enhanced 
band gap placement and charge separation mechanisms, leading to the 
efficient destruction of ACM under specific irradiation conditions [161].

Gupta et al., investigated the g-C3N4/PS system, demonstrating im-
proved photocatalytic breakdown of ACT using hydrothermally treat-
ed g-C3N4 illuminated by 400 nm LEDs (HT-g-C3N4/PS system). They 
highlighted the superior charge transfer and photoelectron-hole separa-
tion properties of HT-g-C3N4, outperforming g-C3N4 in ACT degradation 

Fig. 2. Photodegradation of 
ACT for water remediation.
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under different conditions [162].
The comprehensive analysis of these studies evaluated the degra-

dation kinetics, by-product identification, and potential applications 
in treating pharmaceutical pollutants in water resources [163]. Some 
findings presented diverse photocatalytic materials, elucidating their ef-
ficiencies, charge transfer mechanisms, and enhanced degradation capa-
bilities, paving the way for promising solutions in water treatment [164, 
165]. Photodegration of ACT for water remediation is shown in figure 2.

Elvana Cako et al., developed a new photocatalyst by combining 
phosphorus and sulfur co-doped g-C3N4 with 2D TiO2 for solar-driven 
degradation of pharmaceutical pollutants. This composite demonstrated 
impressive photocatalytic activity, achieving almost complete degrada-
tion of carbamazepine (CBZ) within 30 minutes and complete remov-
al of acetaminophen (ACT) in 60 minutes under simulated solar light. 
The composite showed excellent synergy in degrading CBZ and ACT, 
removing 76% and 40% of total organic carbon (TOC) respectively. Re-
active oxygen species like hydroxyl radicals and superoxide played vital 
roles in the degradation process. The composite’s structure effectively 
separated charge carriers, and its stability across multiple degradation 
cycles highlights its potential for environmental applications. They in-
troduced a highly effective and stable photocatalyst for breaking down 
pharmaceutical pollutants, showcasing promising applications in envi-
ronmental remediation [137].

4.3. Photodegradation of Carbamazepine

Carbamazepine is a pharmaceutical compound primarily used to 
treat epilepsy, bipolar disorder, and certain neuralgia pains [166].   Its 
photodegradation involves subjecting the compound to light-induced 
chemical reactions that break down its molecular structure [167]. The 
benefits of carbamazepine photodegradation include reducing its envi-
ronmental impact and toxicity. Photodegradation can convert the com-
pound into less harmful substances, aiding in its removal from water 
bodies or treatment processes [168, 169]. Various methods are employed 
for carbamazepine photodegradation, such as photocatalysis using semi-
conductor materials like TiO2, ZnO, or graphene-based catalysts [170]. 
Advanced oxidation processes (AOPs), involving UV irradiation or the 
addition of hydrogen peroxide or ozone, are also effective in degrading 
carbamazepine [171]. These techniques harness light or reactive oxygen 
species to break down the compound into smaller, less harmful mol-
ecules [170, 172]. Zhou et al., developed a composite material using 
g-C3N4 nanosheets and CoCeOx nanospheres derived from MOF, show-
casing abundant active sites, a compact interface, and a highly specific 
surface. This material demonstrated remarkable hydrogen generation 
efficiency of 1050 mol g-1 h-1 and exhibited significant carbamazepine 
degradation (97% within an hour at 0.05 min-1 rate) when assisted by 
PDS. The degradation products and pathways of carbamazepine were 
proposed through mass spectrometry and DFT calculations [136].

Gan et al.’s research explored the interaction between  Fe2O3@g-
C3N4 (FCN) and persulfate/sulfite in the breakdown of carbamazepine 
(CBZ). It revealed distinct roles of Fe2O3 in FCN for activating S(IV) 
and PS. In FCN/PS/vis and FCN/S(IV)/vis systems, the roles and contri-
butions of Fe2O3 varied significantly, impacting CBZ elimination based 
on pH and catalyst charge [173].

Xu et al., produced ternary graphitic carbon nitride/zinc tetra car-
boxy phthalocyanine/graphene quantum dots (g-C3N4/ZnTcPc/GQDs). 
GQDs addition to g-C3N4/ZnTcPc/0.1GQDs caused the C-NH2 peak to 
move from 286.0 eV to 285.7 eV and enhanced the C-C peak relative to 
the C-NH2 peak, according to X-ray photoelectron spectroscopy (XPS) 
spectra. Under solar light irradiation, the g-C3N4/ZnTcPc/0.1GQDs 
composites showed improved photocatalytic activity. Notably, g-C3N4/
ZnTcPc/0.1GQDs showed improved photocatalytic performance, re-
moving carbamazepine in 180 minutes and sulfaquinoxaline sodium 
in 40 minutes, respectively, with removal rates of 63% and 59%. In-
depth research has been done on the use of the peroxymonosulfate-based 
AOP as an effective method for the organic contaminants degradation in 
wastewater [174].

Yang et al., reported on a new 3D hierarchical heterojunction made of 
protonated g-C3N4/BiOBr, demonstrating high photocatalytic effective-
ness for CBZ removal under simulated solar light. The study delved into 
operational variables like initial solution pH, photocatalyst dosage, and 
coexisting inorganic anions, attributing enhanced catalytic performance 
to efficient charge separation at the interface between phases [175].

 Mei et al., introduced a novel method using potassium persulfate 
(KPS) as an oxidizing agent to create metal-free carboxyl-modified 
g-C3N4. This method efficiently activated PMS for CBZ degradation 
under sunlight, achieving approximately 100% CBZ removal within 20 
minutes, without the use of strong acids or organic solvents [176].

Abdoulaye Kane et al., synthesized a UVA light-driven g-C3N4/
TiO2 photocatalyst for degrading Carbamazepine (CBZ) in water. The 
composite structures and TiO2, g-C3N4,  were examined utilizing var-
ious techniques like UV–vis DRS, SEM with EDX, BET nitrogen ad-
sorption–desorption isotherm, Raman Spectroscopy, and XRD . The 
developed composites (10%g-C3N4/TiO2 and 30%g-C3N4/TiO2) exhib-
ited band gaps of 2.97 and 2.78 eV, respectively, and specific surface 
areas of 80.64 and 59.67  m2/g. Photodegradation studies revealed 
that the 10%g-C3N4/TiO2 composite eliminated 71.41% of CBZ with 
30.38% mineralization yield within 360  minutes of UVA irradiation 
under optimal conditions (10 ppm initial CBZ concentration and 0.1 g 
of 10%g-C3N4/TiO2 loading). The degradation kinetics almost followed 
a First-order kinetic model, showing a high reaction rate constant of 
0.0034 min−1 for the 10%g-C3N4/TiO2 composite. is exhibited the syn-
thesized g-C3N4/TiO2 photocatalyst efficiency under UVA light for de-
grading CBZ, highlighting its potential application in water treatment 
processes [15]. Photodegration of Carbamazephin under UVA light il-
lustrate in Figure 3.

Fig. 3. Photodegration of Carbamazeph-
in under UVA light.
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Zihang Cheng et al., focused on synthesizing g-C3N4 enriched with 
tri-s-triazine groups to activate peroxymonosulfate (PMS) under visible 
light, termed the Vis/g-C3N4/PMS process, for degrading the persistent 
micropollutant carbamazepine (CBZ). This process raised the degrada-
tion rate of CBZ by 2 times compared to g-C3N4 alone under visible 
light, mainly due to the generation of HOradical dot and SO4radical 
dot– from PMS activation. It was observed that the enhanced degrada-
tion was not a result of improved charge separation in g-C3N4 because 
of PMS attendance. The Vis/g-C3N4/PMS process exhibited insensitivity 
to dissolved bicarbonate concentrations and oxygen, and chloride func-
tioned effectively across a wide pH range from 6.0 to 10.0 and showed 
less susceptibility to high natural organic matter concentrations com-
pared to other treatment processes like UV/TiO2 and UV/chlorine. Fur-
thermore, the g-C3N4 photocatalytic activity remained stable over five 
reuse cycles. These characteristics render the Vis/g-C3N4/PMS process 
practically relevant and applicable for degrading micropollutants in var-
ious water sources using natural sunlight or more efficient visible light 
LEDs [177].

5. Conclusions and future perspectives

In conclusion, the remarkable efficiency and cost-effectiveness of 
g-C3N4-based materials in pharmaceutical photodegradation present a 
compelling approach for water treatment. This review affirms the ca-
pability of g-C3N4-based materials to efficiently degrade persistent and 
emerging pollutants like Ciprofloxacin, Acetaminophen, and Carbamaz-
epine in water. However, advancing the optimization of material prop-
erties and operational conditions is essential to maximize efficacy. To 
address the challenges associated with eliminating emerging contam-
inants from water resources, the development of highly effective and 
economically feasible photocatalysts is imperative. Prioritizing sustain-
able synthesis techniques for g-C3N4-based materials and evaluating the 
potential toxicity and environmental impact of generated by-products 
during photocatalytic degradation is crucial. This emphasizes the pivotal 
role of science and technology in tackling environmental challenges and 
underscores the ongoing need for research and development to devise 
efficient water treatment methodologies.
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