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ABSTRACT ARTICLEINFORMATION

Because of their unique physical, chemical, and biological characteristics, conductive nanomaterials have a lot of - Article history:

potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/bio- Received 19 January 2023

sensors, and other fields. Recent breakthroughs in the manufacture of carbon materials, conductive polymers, met- Received in revised form 18 March 2023
als, and metal oxide nanoparticles based electrochemical sensors and biosensors for applications in environmental = Accepted 20 May 2023

monitoring by detection of catechol (CC) and hydroquinone (HQ) are presented in this review. To achieve this

goal, we first introduced recent works that discuss the effects of phenolic compounds and the need for accurate, in-

expensive, and quick monitoring, and then we focused on the use of the most important applications of nanomate- % .
eywords:
rials, such as carbon-based materials, metals, and metal oxides nanoparticles, and conductive polymers, to develop v .
. . . R . . Advanced materials
sensors to monitor catechol and hydroquinone. Finally, we identified challenges and limits in the field of sensors .
. - . . L Carbon based materials
and biosensors, as well as possibilities and recommendations for developing the field for better future applications. .
. . . . .. Organic pollutant
Meanwhile, electrochemical sensors and biosensors for catechol and hydroquinone measurement and monitoring i .
L . . . . O . . Electrochemical sensing
were highlighted and discussed particularly. This review, we feel, will aid in the promotion of nanomaterials for

the development of innovative electrical sensors and nanodevices for environmental monitoring.
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1. Introduction

The determination and examination of organic pollution (car-
bon-based compounds) with analogous chemical properties is an inter-
esting topic in analytical chemistry [1]. This topic is interested in the an-
alyzing of the amount or the kind of the chemical compounds including
organic pollutants [2, 3].

Hence, the electroanalytical aspect of the chemical compounds is de-
voted to the detection and study of organic/inorganic pollutants having
comparable electrochemical characteristics. Catechol (CC) and Hydro-
quinone (HQ) are phenolic compound isomers that are widely employed
in a variety of sectors including textiles, paints, plastics, petroleum refin-
eries, cosmetics, antioxidants, insecticides, medicines, and photography
[4-7]. Phenolic chemicals are extremely hazardous to human health [6,
8]. Furthermore, United States Environmental Protection Agency and
the European Union consider them to be environmental contaminants
even at extremely low quantities. A high dose of hydroquinone (e.g., 1
gram or more) might induce weariness, headache, edema, nausea, in-
ternal organs, dermatitis, eczema, collapse, and potentially death from
respiratory failure in the patient [9-11].

DM de Oliveira et al. (2010) studied the toxic properties stimulated
by catechol using human glioblastoma GL-15 cells to get more data
about its toxic effects on the human central nervous system. In addition,
they reported that it can reduce the glutathione amount and prompted
the cell death principally by apoptosis [12]. They also point out that it
lowers glutathione levels and induces cell death predominantly through
apoptosis. Furthermore, because catechol and hydroquinone have sim-
ilar structures and properties, they exist concurrently and interact with
each other via environmental recognition samples. As a result, break-
throughs in sensitive and quick diagnostic procedures are required for
their concurrent analysis. Capillary electrophoresis, gas chromatogra-
phy, and liquid chromatography are more prevalent procedures that need
an isolation step. Electrochemical techniques have the advantages of
being simple to operate with precision equipment and saving time, and
depending on the features of the isomers of dihydroxybenzene, elec-
trochemical processes may be appropriate alternatives, as many reports
have been referenced in the literature [13-15].

To detect CC effectively, sensitive, easy and fast analytical methods
for quantitative and qualitative CC monitoring are strongly needed [16].
Hence, various analytical methods for detecting CC have been devel-
oped and applied over the years, including gas chromatography/mass
spectrometry [17], chemiluminescence [18]synchronous fluorescence
[19], electrochemical methods [20], high-performance liquid chroma-
tography (HPLC) [21]. Although these analytical methods exhibited
effective detection of CC, they involve many disadvantages. Some of
them are expensive [17,18] or need training personnel because these
analytical tools require complicated processes [19]. Others require too
long sensing and response time [21], have low sensitivity and specificity
or need a sample of pretreatment [22]. One of the most promising and
widely used methods for CC detection is electrochemical sensing due to
its prominent characteristics including simplicity, short analysis time,

wide linear range, high selectivity, high sensitivity, and low cost [23].

Modified electrodes have been frequently employed in electro-
chemical analysis for sensitive and selective compound detection [23].
Glassy carbon electrodes (GCE) offers various benefits over convention-
al solid electrodes, including biocompatibility with test samples and a
quick and simple technique of production from inexpensive materials
[24]. They have a repeatable and renewable surface with little residual
current during analysis. GCE also has a cheap production cost, porous
surfaces, and once it is modified, it may be utilized to reduce fouling
in electrochemical sensor electrodes when working with phenolic com-
pounds such as CC and HQ [25, 26]. However, the GCE modified with
nanomaterials has lately gained prominence. Increase the electrochem-
ical characteristics of the substances under consideration. The key ben-
efits of utilizing modified GCE with nanoparticles on large electrodes
or unmodified GCE include effective surface area, enhanced sensitivity
and selectivity, and efficient mass transfer via electron transfer media-
tion between electrically active species during reactions in solution [27,
28]. Carbon-based nanomaterials (such as carbon nanotubes (CNTS),
graphene oxide (GOs), and reduced graphene oxide (rGO)), metals,
metal oxides, polymers, and printed polymers are nanoparticles with
chemical characteristics, distinctive physical, and electrical components
that distinguish them from bulk materials. These distinct features enable
them to be employed in a variety of analytical procedures, including the
fabrication of new and better sensors. Similar to electrolysis sensors.
The nanoparticles cited below have been frequently employed to modify
electrodes used in the sensitive and selective detection of CC and HQ
and other phenolic compounds using analytical procedures [29, 30].

To resume, the use of nanostructured materials in these electrodes is
suggested. Significant increases in compound electrochemical behavior
due to high effective surface, stimulating action, and mass transfer. Car-
bon-based nanomaterials (such as CNTs, GOs, and rGOs), metal oxides,
metals, polymers, and printed polymer nanoparticles are all nanoparti-
cles that are utilized to perform the electrocatalytic activity of the elec-
trodes due to their superior electrochemical characteristics. They are em-
ployed to improve the detection limit, offer a large electroactive surface
area, a catalytic action, high electromagnetic activity, attractive electron
transport, sensitivity, and chemical stability [31]. The nanomaterials dis-
cussed above have a conductivity effect, which makes them excellent
for improving electron transport between analytes and electrodes [32].
These nanoparticles have a wide range of applications, including bioma-
terials, bioseparation, biomedical and bioengineering applications, and
food analysis [33, 34].

The purpose of this chapter is to investigate the electrochemical be-
havior of various phenolic compounds (Figure 1). Hence, an overview
about the advanced methods and technical challenges made for prepar-
ing a novel electrochemical sensor for monitoring organic compounds

with high analytical performances was presented.

2. Organic pollution in water and its effects

Industrial development has caused a huge increase in the release
of potentially toxic compounds into the atmosphere, water bodies, and
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Fig. 1. A typical schematic presentation of a three-electrode system. Reproduced
with permission from MDPI [73].
soils. In the last decades, environmental pollutants have been directly

connected to the increase in human diseases, particularly those involved
with the immune system. The contribution of benzene and its metabolites
to this issue is well recognized, making them a public health problem.
Catechol (CC) and Hydroquinone (HQ), the major benzene metabolites,
are ubiquitous chemicals in the environment due to their widespread
application in human and industrial activities. They can be used as a
developing agent in photography, dye intermediate, stabilizer in paints,
varnishes oils, and motor fuels. In addition, hydroquinone has been used
as an antioxidant in the rubber and food industry. From 1950s to 2001
CC and HQ were applied in the commercially available cosmetic skin
lightening formulations in European Union countries and since 1960s
they were both commercially available as a medical product. They are
also present in cosmetic formulations of products for coating finger nails
and hair dyes [4-7].

On the other hand, CC and HQ can be components of high molecular
aromatic compounds (e.g., resin), an intermediate, or appear as a degra-
dation product generated by the transformation of aromatic compounds.
Advanced oxidation processes (APOs) of aromatic compounds, particu-
larly of phenol, yield several benzene derivatives, such as hydroquinone,
catechol, and resorcinol, as intermediate metabolites of their transforma-
tion. The formation of HQ and CC and ( and p-benzoquinone at early
stages of phenol oxidation increases the toxicity of phenol wastewaters,
showing that these compounds were more toxic and less degradable than
Table 1.

Some of the physicochemical properties of CC and HQ. Reproduced from Springer [54].
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Fig. 2. Electrochemical techniques - parameters andcharacteristic voltammo-
grams: A) cyclic voltammetry, B) differential pulse voltammetry, C) square-wave
voltammetry and D) amperometry. Reproduced from Elsevier [77].

the original pollutant [35, 36].

2.1. Effect and toxicity of CC

Catechol (1,2-dihydroxybenzene) is used in a variety of applications
such as a reagent for photography, dyeing fur, rubber and plastic produc-
tion and in the pharmaceutical industry [37]. Substituted catechols, espe-
cially chlorinated and methylated catechols, are by-products in pulp and
oil mills [38]. Catechol is an intermediary product from the degradation
of aromatic compounds and lignin by microorganism [39]. In humans
and mammals catechols can occur as metabolites in the degradation of
benzene or estrogens or as endogenous compounds, such as neurotrans-
mitter and their precursors [adrenaline, noradrenaline, dopamine and
L-DOPA (L-3,4-dihydroxy-phenylanaline) [40, 41].

Parameters CcC HQ
OH HO OH
OH
Chemical structure
CHO, CH,(OH),

Other names

Amax (nm)
Boiling point (°C) at 101.3 KPa
Density (g/cm®)

Molecular weight (MW. g/mol)
Water solubility (g/1) at 25 °C
Molecular size (nm)
pKa
Dipole moment (Debye: D)
Polarity/Polarizability parameter (n:cm?)
Hydrogen-bonding donor parameter (a )

Hydrogen-bondign acceptor parameter (Bm)

Pyrocatechol,
1.2-benzenedio,
1,2-dihydroxybenzene.

p-Benzenediol,
1,4-Benzenediol, dihydroxtbenzene,
1,4-dihydroxybenzene, Quinol.

275 289
2455 287
1.344 1.3
110.11 110.159

430 59

0.55x 0.55 -
9.25,13 9.9-11.6
2.620 0.0
11.89+- 0.5*10% 0.21+-0.02
0.85 -
0.58 -
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Additionally, catechols can be taken up in the form of tabacco smoke
(as catechol, catechol semiquinones and polymerized catechols) [42] or
as food components (e.g.catechol, dopamine, caffeic acid, tea catechin)
[43]. The toxicity of catechols for microorganisms has been demonstrat-
ed in the past years [44, 45], and has been suggested to be the reason
for the difficulties in cultivating microorganisms on benzene, toluene or
chlorobenzene [45, 46]. Despite the fact that catechols are ubiquitous,
and their toxicity has been observed in a variety of organisms the modes
of action causing the toxicity are hardly understood. In the following
review, an overview about the chemical properties of catechols is given,
which is required to understand their possible toxic modes of action. The
molecular modes of action found for catecholic compounds are summa-
rized and discussed, subsequently. Because basic toxic processes in the
context of catechol toxicity are similar in different cell types, ranging
from microorganisms to mammals, the information from reactions in
different cell types is integrated.

Several studies additionally indicated the toxicity of CC for water
flea, zebra fish, trout, rabbit, cat, rat, and mouse and for human cell lines
[47]. As mentioned earlier, CC is strongly irritating to the eyes, skin, and
respiratory tract, and it has been proven to cause DNA damage, vascular
collapse, coma, and death. However, these compounds are considered
as the primary pollutants in wastewater due to their high toxicity, high
oxygen demand, and low biodegradability [9, 48].

2.2. Effect and Toxicity of HQ

Hydroquinone is an aromatic compound consisting of the benzene
ring and two —OH groups at para position. It is available in the form
of white crystals, but industrial use grades may be light grey or light
tan. Contact with air and light causes oxidation and darkening of color.
Hydroquinone is soluble in water, methanol, and ether. However, it has
less solubility in water than the other two dihydroxybenzenes, which
means hydroquinone has less affinity towards hydrophilic solvents. Its
octanol/water partition value is also less than that of catechol and resor-
cinol (Table 1). Hydroquinone can occur naturally in many plant foods,
as glucose conjugate, namely, arbutin, for example, in the wheat, pears,
coffee, onion, tea and red wine [49, 50].

Dihydroxybenzene and quinones are recognized to induce oxidative
stress as well as to nonspecifically bind both DNA and protein [49].
Hydroquinone can form complexes with various di- and trivalente metal
ions, such as copper and iron. In the case of copper, the complex formed
increased H,O, production by hydroquinone and enhances its autooxi-
dation to benzoquinone [51]. Hydroquinone can be originated during
phenol [49] or benzene biotransformation [52]. The benzene is first me-
tabolized by liver cytochrome P-450 monooxygenase to phenol. Further
hydroxylation of phenol by cytochrome P- 450 monooxygenase or by
human peroxidase resulted in the formation of mainly hydroquinone,
which accumulates in the bone marrow [53].

Hydroquinone can also be produced through three chemical process-
es, involving oxidation, reduction, and alkylation reactions. Firstly, it
can be generated by oxidation of phenol; secondly, the oxidation of ani-
line with manganese dioxide in acidic conditions, followed by reduction
with iron dust in aqueous medium; finally, the alkylation of benzene
with propylene to originate the para-di-isopropylbenzene isomer, be-
sides other isomers, which is oxidized and produces the corresponding
dihydroperoxide, that is subsequently treated with an acid to originate
hydroquinone [54, 46].

It is known that phenolic compounds are extremely toxic for aquat-
ic organisms at the concentration level of part-per-million and most of
them can influence the organolectic properties of shellfish and fish at
part-per-billion level [55]. Studies on Photobacteriumphosphoreum
showed that hydroquinone is one hundred and one thousand times more
toxic than catechol and resorcinol, respectively [56]. Meanwhile, it was

reported that hydroquinone was the less toxic dihydroxybenzene to the
gram-positive bacteria Bacillus subtilis; however, it was shown that hy-
droquinone and catechol mixture exerts a synergistic joint action while
the other mixtures have an additive actions [57]. The toxic effect of phe-
nolic compounds on soil microbial activity has been evaluated, showing
hydroquinone as the most toxic dihydroxybenzene [44]. The number of
cultivable microorganisms decreased with increasing concentration of
phenolic compounds. Table 1 highlights key feature properties of CC
and HQ.

3. Electrochemistry and electrochemical sensing

Electrochemistry is a field of chemistry that deals with the interac-
tion of electrical and chemical processes [58]. For hundreds of years,
scientists have been working on the electrochemical techniques [59,
60]. More sensitive and precise micro- or nano-electrodes have been
created and fabricated as a result of the advancement of nanotechnology,
bringing the electrochemical technique back to the platform for point-
of-care testing [61, 62]. Just before, gas-liquid chromatography, mass
spectrometry, nuclear magnetic resonance (NMR), infrared (IR) spec-
troscopy, and flame element analysis were well-known as examples of
laboratory analytical procedures [63, 64]. They are classified as destruc-
tive (e.g., mass spectroscopy, flame analysis) or non-destructive (e.g.,
infrared spectroscopy, electron microscopy, etc.) based on whether the
sample is destroyed as a result of the processing phase. These techniques
are commercially available, extremely sensitive and accurate, and may
be used for a wide range of studies. They are, however, time-consum-
ing and expensive to conduct, need specialized training, and, in some
circumstances, significant sample preparation. The equipment used also
necessitates a high level of maintenance in order to remain operational
and, in most cases, must be used in a clean lab environment [17, 22].

Electrochemical techniques, on the other hand, are gaining populari-
ty in the field of analytical chemistry. These techniques provide the same
sensitivity at a cheaper cost, with fewer complicated operating processes
and faster on-site detection [65, 66]. For organic pollution detection,
many electrochemical systems have been developed. Nanomaterials,
in particular, have provided numerous benefits in this field due to their
unique electrical, chemical, and mechanical characteristics [67, 68] . As
a result, several electrochemical sensors based on nanoparticles have
been developed for organic pollution detection [67, 69].

Voltammetry techniques are the most frequently used electrochemi-
cal techniques in the detection of organic pollution ions. Voltammetry is
a broad term that encompasses all electrochemical systems that rely on
measurements of dependent potential current [70-72].

The measurement of a cyclic voltmeter (CV) consists of linearly
scanning the voltage in one direction and then inverting the potential
of a working electrode. To put it another way, it contains one or more
triangular potential waveforms [70]. The basic principle underlying the
measurement of a pulse voltmeter is the use of a voltage signal pulse.
Different varieties of pulse voltmeters exist by varying the form and am-
plitude of the pulses [71]. Differential pulse voltammetry (DPV) works
by superimposing constant-size pulses on a linear potential slope [74].
When a symmetric square wave waveform is overlaid on a base tray
voltage and delivered to the working electrode, square wave voltage
(SWV) is measured [75]. A cut-off voltmeter, more precisely an anod-
ic voltmeter (ASV), works in two stages. The first step is to oxide the
organic pollution molecule and generate electrons that will be transport-
ed on the electrode surface. The pickling stage is the second step, in
which the pollution molecule will be reduced. Following the two stages,
various variables, such as electrode material, scan rate, matrix material
and its concentration, pH of the studied sample are known to impact the
analysis [69, 76]
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Figure 2 depicts how the possibility for CV, LSV, DPV and SWV to
create a signal evolves over time. The combination of several of these
approaches improves sensitivity and detection limitations. Differential
pulse anode voltmeters (DPASV), square wave anode scanning voltme-
ters (SWASV), and linear scanning anode voltmeters are included in the
kits (SWASV).

3.1. Three-electrode system

A working electrode, a counter electrode, and a reference electrode
are often used in a three-electrode electrochemical setup. Between the
working and reference electrodes, a voltage is supplied, and the current
is measured between the working and meter electrodes [78]. The electro-
chemical reaction occurs with the transport of electrons at the working
electrode. The working electrode material is generally chosen to be re-
dox sensitive. The reference electrode maintains a constant voltage and
current over time. Normal hydrogen electrode (NHE), saturated calomel
electrode (SCE), and silver-silver chloride electrode are examples of
standard reference electrodes [79, 80]. There are certain disadvantages
to this sort of bipolar system. Current flowing via the reference electrode
depolarizes over time, resulting in a steady drift potential. Because such
a tiny voltage difference between the working and reference electrodes
can lead to significant measurement error, the three-electrode method
is currently utilized by adding a counter electrode that can assist pass
the bulk of the current to assure the reference electrode’s steady poten-
tial [78]. The counter electrode is frequently made of gold or platinum,
which is difficult to polarize. The meter electrode is generally the big-
gest, which aids in current conductivity.

3.2. Types of sensors

The use of chemical sensors is a very interesting topic in environ-
mental monitoring [67, 69, 81]. A sensor typically consists of three com-
ponents: a sensing element that responds to a certain analysis (target
chemical type); a transducer element that transforms this response into
a quantifiable signal; and lastly, a measurement element that records the
sensor’s [82].

Electrochemical sensors are less versatile (they are unique to a sin-
gle analyzer) than in vitro analytical methods, but they have the benefit
of being extremely portable and capable of providing quick (if not re-
al-time) detection of pollution and other target compounds in situ. They
also have basic designs that need little or no sample preparation, are
simple to install and use, and are yet reasonably priced. However, they
are typically restricted in that they are less accurate and more vulnerable
to false positives due to chemical species interference from the labora-
tory analytical process. Depending on the recognition element used to
detect the target analyte, portable chemical sensors are classified into
three types: biosensors [83], electrochemical sensors [67], and biomi-
metic sensors [84].

3.3. Electrochemical sensor

Electrochemical sensors make use of an identifying element known
as a matrix, which can be MIPs [85], MOFs [86], carbon compounds
[87], or metal oxides nanoparticles (NPs) [88]. Natural recognition el-
ements attach to a specific chemical molecule with great precision [82,
89] and are then converted into a quantifiable outcome.

3.3.1. Background of Electrochemical Sensors

As can be seen in Figure 3, an electrochemical sensor includes a) the
identification of elements related to analysis; b) the transducer where a
specific reaction occurs interface with recognition elements and results
in the appearance of a signal; and c) an electronic system that converts
the electronic signal into a meaningful parameter describing the running

process [90, 91]. A human operator interface was used to study and show
the final data. The following requirements must be met by a high-perfor-
mance electrochemical sensor for the non-specialized market:

. For the objectives of analysis, the elements of recognition must
be highly specific. It is stable under normal storage settings and
exhibits acceptable variations between tests.

. The reaction must be unaffected by physical factors such as
convection, pH, and temperature.

. The response must be timely, accurate, repeatable, clear, and
written on the proper focus range. Untreated samples, such as
human blood or urine, must be able to be measured.

. The entire sensor should be low-cost, compact, tiny, portable,
and simple to install.

Nanomaterials that function as chemical catalysts are used in the
sensor array or sensor recognition element. Its porous structure con-
ducts electricity and serves as an electron transfer agent. The matrix
components’ electrocatalytic activity allows them to convert the target
analyte into a product molecule and transmit the generated electrons to
the sensor surface and then to the transducer [90-92]. Nanomaterials
such as MIPs [85], MOFs [28], carbon compounds [87], or metal oxides
nanoparticles (NPs) [88] must be immobilized and bonded to the surface
of a working electrode such as glassy carbon (GCE) electrodes, plati-
num (Pt) electrodes, and gold (GE) electrodes to alter this interaction. A
detecting capability is provided to the working electrode, allowing elec-
trochemical measurements (CV, DPV, SWV, etc.) to be done within the
framework of an electrochemical half-cell holding the sample to detect
the reduction or oxidation of any analyte.

It was created for this purpose, which is an important element of
electrochemical sensor design. Choosing an electrochemical detection
approach that allows for easy, quick, and precise measurements of the
reaction of interest [87, 93]. Typically, in electrochemical detection, the
investigated reaction produces either a detectable current (amperomet-
ric) [94], a measurable potential or charge buildup (potentiometric) [95],
or a measurable change in the conductive characteristics of a medium
(conductivity measurement)between the electrodes [96]. When an elec-
tric field is produced between two electrodes immersed in electrolyte
solution, current flow is created by migration of ions with opposing
charges. Among the three major electrochemical methods, this conver-
sion is the least sensitive. It is hard to differentiate between two ions be-
cause conductivity is cumulative. Furthermore, if the ion concentration
is too high, it might cause injury to others. The voltage measurement is
determined by the difference in output potentials. Activity is transmitted
across a membrane put between two solutions with different kinds of
charges. Voltage sensors are well suited to detecting low concentrations
in tiny volumes. Because it has no chemical effect on the sample, sample
volume. Amperometry measures the current generated by the oxidation
or reduction of a sample’s electrically active species [94, 97]. Since then,
this has been the most commonly utilized method. An analyte’s inherent
characteristic is its oxidation or reduction potential. In general, if the
current is measured at a constant voltage, it is referred to as measuring
the current; if the current is measured within a regulated potential range,

it is referred to as Voltmeter measurement.

4. Analytical characteristics of electrochemical sensor

Any electrochemical sensor has certain static and dynamic attributes.
Optimization of these parameters affects the performance of the sensor
[98].

4.1. The linear range

Linearity expresses the precision of the response to a group of mea-
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Fig. 3. The fabrication process of the sensor and the catalytic mechanism for
the oxidation of catechol and hydroquinone. Reproduced with permission from
Springer [92].

surements at different concentrations, where the slope of linearity is the
sensitivity of the sensor. linearity good resolution is required because
most biosensor applications require not only detection of the analyte,
but also measurement of analyte concentrations over a wide operating

range [99].

4.2. Limit of detection (LOD)

It is defined as the smallest concentration of the analyte to be de-
tected by the sensor. To calculate the limit of detection (LOD), the re-
searchers conventionally use the formula (LOD = 3S / N) to distinguish
the signal (S: calculated by the standard deviation SD of the calibration
curve) from the noise of the device ( N: Noise) [100].

4.3. Selectivity

Selectivity is an important characteristic to consider when choos-
ing a biometric sensor receptor. The receptor can detect a specific tar-
get analyte molecule in a sample. It consists of a mixture of spices and
unwanted contaminants. To construct a sensor, selectivity is the main
consideration when choosing bioreceptors [101, 102].

Sensitivity and selectivity are two additional key elements of electro-
chemical sensor development [66, 103]. What differs an electrochemical
biosensor from a sensor is the immobilization of a biomolecule in the
recognition element of the sensor [104]. Immobilization of biomolecules
on the working electrode surface such as enzyme [105] and DNA [106]
are very efficient approach to enhance current responses and interfaces
with a highly precise binding affinity for the targeted analyte [107-109].

4.4. Reproducibility

Reproducibility is the ability of a sensor to generate identical re-
sponses for a reproducible experimental setup [110]. It is characterized
by precision (similar output when the sample is measured more than
once) and precision (the ability of the sensor to generate an average val-
ue closer to the actual value when measuring the sample every time). It
is the ability of a sensor to produce identical results whenever they are
similar. The sample has been measured more than once (44).

4.5. Stability

Stability is the degree to which environmental disturbances are de-
tected in and around the detection system. This is the most important
feature in applications where the biosensor requires long incubation
steps or continuous monitoring. The response of transducers and elec-
tronics can be temperature sensitive, which can affect the stability of the
biosensor. Therefore, proper adjustment of the electronics is necessary
to ensure a stable response of the sensor [111].
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Fig. 4. Illustration of the nanoscale relative to biologically active molecules, and
examples of nanomaterials of relevance for biomedical and bio sensing applica-
tions. Reproduced with permission from Springer [117].

5. Electrochemical sensors preparation using conduc-
tive and semi-conductive nanomaterials

A few years ago, the uses of nanotechnology appeared far-fetched.
However, with the discovery of new nanomaterials with novel character-
istics, nanoscience research has grown dramatically, and as a result, nan-
otechnology applications and products have just lately begun to appear.
However, nanotechnology applications are starting to emerge, and more
research is needed to create novel discoveries and uses for these sorts of
materials [112-114]expanding nanomaterials application and reducing
costs along with the increase in the global energy consumption.

As highlighted in Figure 4, nanostructured materials with charac-
teristics smaller than 100 nm in particle size, layer thickness, or form
are gaining prominence in nanotechnology [115, 116]. The science and
technology of nanomaterials and devices, as well as their applications in
functionally categorized materials, molecular electronics, nanocomput-
ers, sensors, actuators, and molecular machines, are all included in the
topic of nanotechnology [66, 103].

5.1. Carbon Materials

The discovery of atomic-level micro-materials such as fullerenes
in the mid-1980s and carbon nanotubes (CNTs) in 1991, as well as
graphene, resulted in a significant advancement in nanotechnology
[118]. Other materials, including as metal-organic frameworks [119],
metals and metal oxides NPs [88], and MIPs [120], have since been
developed for application in nanotechnology advancements. Because of
the remarkable characteristics of these materials, an intriguing new field
of study in nanoscience and nanotechnology has emerged. Furthermore,
new characteristics have been identified, and prospective applications
for this material are frequently proposed.

Carbon nanoparticles, polymers, and metal oxides study now spans
numerous fields, with the objective of better understanding and utilizing
these interesting materials. Other areas of research have been devoted
to fundamental sciences in order to change the structure and surface of
these nanomaterials. These materials characteristics have opened new
vistas in chemistry, physics, engineering, medicine, and materials sci-
ence [121, 103].

5.1.1. Carbon nanotubes (CNTs)

The discovery of fullerenes at Buckminster Fuller in 1985 marked
the beginning of a new era in carbon chemistry and the development
of novel materials. Sumi Ijima of Japan discovered carbon nanotubes
(CNTs) in 1991 [118]

Carbon nanotubes have gotten a lot of interest since they were dis-
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covered because of their field emission and electron transport capabil-
ities, as well as their superior mechanical and chemical properties. As
a result, there is a rising possibility for carbon nanotubes to be used
as field-emitting devices [122], nano-transistors [123], microscopy tips
[124]the flexible deformation during the tip manipulation modifies the
original shape of these nanotubes, which could affect its electrical prop-
erties and reduce the accuracy of AFM nanomanipulation. Thus, we
developed a protocol for searching the synergistic parameter combina-
tions to push single-wall carbon nanotubes (SWCNTSs, or components of
composite materials [125]. Single-walled carbon nanotubes (SWCNT)
and multi-walled carbon nanotubes (MWCNT) are the two kinds of car-
bon nanotubes [126]. As can been in Figure 5, SWCNTs are cylindrical
nanostructures formed by rolling a single sheet of graphite into a tube.
As a consequence, SWCNTs can be compared to molecular threads, with
each atom on the surface [127, 128]. MWCNTs are made up of a collec-
tion of such nanotubes that are piled concentrically like tree trunk rings.
The figure below presents single walled carbon nanotube (SWCNT) and
multi walled carbon nanotube (MWCNT) [129].

Carbon nanotubes are one of the most common nanotechnology con-
struction materials. Carbon nanotubes look to be an outstanding mate-
rial, with tensile strength 100 times that of steel, thermal conductivity
greater than the finest diamond, and electrical conductivity equivalent
to copper but with much higher current carrying capacity. Much more
crucial.

5.1.1.1. Structure and properties

Some properties of CNTs are stated below.

Electricity: The structural characteristics of the nanotube reveal
how twisted it is. Carbon nanotubes have the property of being extreme-
ly conductive and hence metallic. Its conductivity has been demonstrat-
ed to be a function of its symmetry, degree of torsion, and diameter [130,
131].

Mechanical: The tiny diameter of carbon nanotubes has a large ef-
fect on mechanical characteristics when compared to graphite fibers of
typical micron size. The ability to connect high elasticity and strength
with high toughness, which is not present in graphite fibers, is perhaps
the most noteworthy consequence. These characteristics of carbon nano-
tubes open the way for the creation of a new generation of high-perfor-
mance composites. The nanotube as a whole is highly flexible because
to its length [132].

Chemical: The large specific surface area and -rehybridization enable
particle adsorption, doping, and charge transfer on nanotubes, as well as
electronic property modification [133].

Thermal and thermoelectric: The heat conductivity of nanotubes is
quite high. As a result, nanotube reinforcements in polymeric materials
are predicted to improve the thermal and thermomechanical characteris-
tics of these compounds substantially [134].

Table 2.
Summary and comparison of the most important synthesis procedures for CNTs.

5.1.1.2. Synthesis and purification

Arc vacuum, laser ablation, and chemical vapor deposition (CVD)
are three well-established techniques for constructing carbon nanotubes
(Table 2).

However, in order for carbon nanotubes to be employed in new tech-
nologies, these highly crystalline materials must be mass-produced at a
reasonable cost on a huge scale. CVD catalytic technology, namely the
floating catalyst technique, is the best way for producing high number of
carbon nanotubes in this context. This approach is more regulated and
cost-effective than arc unloading and other procedures [135-139].

5.1.1.3. Carbon nanotube in electrochemical sensors

As highlighted in, Carbon nanotubes have an extremely high elec-
trical, thermal, and mechanical conductivity. It opens up a slew of new
opportunities in materials research, electronics, chemical processing,
energy management, and a variety of other fields [87, 140, 133].

5.1.2. Graphene

Graphene is an atomically thin two-dimensional (2D) honeycomb
sheet of sp? carbon atoms [147, 148] (Figure 6). It has been demon-
strated to have several desired qualities, including strong mechanical
strength [149, 132], electrical conductivity [150], and molecular barrier
capabilities [151]. As a result of these factors, several research attempts
have been made to combine graphene into various nanomaterials and
nanocomposites such as carbon nanotubes, polymers, metals, and metal
oxides to manufacture and develop electrochemical sensors and biosen-
sors [152-154].

5.1.2.1. Synthesis and preparation

When it comes to the production of graphene and its derivatives, the
intended structure and characteristics are heavily influenced by the size,
shape, and functional groups linked to the material’s surface [155]. The
ideal structure is a single-atom sp? monolayer graphene with minimum
imperfections, which is a completely hybridized carbon structure. How-
ever, because to the ease with which graphene sheets may be stacked,
a multilayer graphene structure will be created. As previously stated,
installing such structures from the ground up has proven difficult for
industrial purposes [156]. As a result, it is easier to generate the high-
ly oxidized form of graphene, GO, with sp? and sp*carbons containing
abundant oxygen groups, which upon reduction (rGO) can remove most
of the oxygen groups and sp’carbon to generate a more “graphene-like”
material with significantly improved properties. The top-down method
may then be used to control GO and rGO to create quantum dots of
both GOQD and rGQD [157]such as graphite, macromolecules polysac-
charides, and fullerene. This contribution emphasizes the utilization of
GQD-based materials in the fields of sensing, bioimaging, energy stor-
age, and corrosion inhibitors. Inspired by these numerous applications,

i - SWCNTs

Synthesismethod Principle Refs.
or MWCNTs
Carbon atoms are produced via an arc discharge between two electrodes at temperatures [135]
. exceeding 3000°C. Nanotubes (Fe, Co, or Ni) form when appropriate catalyst metal Both
Arc-discharge . [136]
particles are present.

Carbon nanotubes are created utilizing laser ablation technique, which involves irradiat- [137]

Laser-ablation ing a graphite rod with stimuli heated to 1,000 °C or more with a pulsed laser. SWCNTs

Metal nanoparticles (Co or Fe) increase the breakdown of the gaseous source of

ChemicalVaporDe-  hydrocarbons at high temperatures (500-1000 °C) (ethylene or acetylene). Carbon has Both [138]
position(CVD) a poor solubility in some metals at high temperatures, causing it to precipitate and form [139]

nanotubes.
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SWCNT
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Fig. 5. Schematic of an individual (left) SWCNTs and (right) MWCNTs. Repro-
duced with permission from Scielo [129].
various synthetic approaches have been developed to design and fabri-
cate GQD, particularly bottom-up and top-down processes. In this con-
text, the prime goal of this review is to emphasize possible eco-friendly
and sustainable methodologies that have been successfully employed in
the fabrication of GQDs. Furthermore, the fundamental and experimen-
tal aspects associated with GQDs such as possible mechanisms, the im-
pact of size, surface alteration, and doping with other elements, together
with their technological and industrial applications have been envisaged.
Till now, understanding simple photo luminance (PL.

5.1.2.1.1. Synthesis of GO

Bottom-up procedures, in which single carbon molecules are utilized
to produce pure graphene, and “top-down” methods, in which layers
of graphene derivatives are removed from a layer, are the two primary
types of GO synthesis. Graphite is a common carbon source [158, 159].
Bottom-up synthesis (for example, chemical vapor deposition, epitaxial
growth on silicon carbide wafers, and so on) is time-consuming and has
scaling issues [160, 161]. As a result, top-down techniques that produce
GO and/or rGO first are more common for producing graphene deriva-
tives, particularly for usage in nanocomposites materials. Brodie [162],
Staudenmaier [163], Hummers, and Offeman [164] are generally cred-
ited with the first synthesis of GO, both of which are produced from
graphite oxide by oxidizing graphite using distinct methods. To make
the two original techniques safer, Hummers and Offeman modified them
by using KMnO, as an oxidant (rather than KCIO,, which generates haz-
ardous CIO, gas) and adding sodium nitrate (to create nitric acid on site
rather than using nitric acid as a solvent). Because the Hummers tech-
nique is more safe and scalable, it is generally used (or, in most cases,
somewhat modified) to construct GO [162, 165].

3D scaffold

Graphene Oxide Reduced Graphene oxide

Reduction

Fig. 6. The structure of Graphene, Graphene Oxide and Reduced Graphen Oxide.
Reproduced from Science direct [148].
5.1.2.1.2. Reduction of GO to rGO

Extensive research has been conducted to remove functional oxygen
groups from GO in order to generate materials with characteristics as
near to pure graphene as feasible [166, 167]. This reduction can be ac-
complished by a variety of methods, ranging from thermal to chemical
to electrochemical, each of which results in variations in morphology,
electrical characteristics, and so on [166, 168]. The final product’s C/O
ratio, selectivity in eliminating one kind of oxygen group (hydroxyl vs.
carboxylic acid vs. epoxy, etc.), and healing of surface defects are all
important design variables for GO reduction. Oxidation, selection of
green reducing agents, and preservation or enhancement of the required
physical and chemical properties of GO (mechanical resistance, conduc-
tivity, optical properties, solubility/dispersion of nanosheets, and so on).

5.1.2.2. Electrochemical sensors and RGO

As previously stated, when encapsulated in carbon nanomaterials
and/or metal-based arrays, rGO exhibits excellent electrical conductivity
characteristics. It is not unexpected, then, that this rGO has good oper-
ability in the presence of electrical catalysts [169, 170]. Recently, the
combination of nanomaterials with electrochemical sensing platforms
has shown to be a strong analytical technique for detecting phenolic
compounds [170, 153] (Table 4).

5.2. Layered double hydroxide (LDH)

Layered double hydroxides (LDHs) are two-dimensional nanostruc-
tured materials with unique physicochemical properties. They are the
enthralling class of inorganic materials with adjustable chemical com-
position and structures. They are also identified as hydrotalcite or an-
ionic clays. By composition, they consist of positively charged layers
of metal hydroxides with charge-balancing anions and some water mol-
ecules situated in between the layers. They are denoted by the general
formula [M*" 1-xM?'x (OH),Jx+ (An x/n —).mH,O, where M*" and M**
are di- and trivalent metal cations and An— is the interlayer guest ions

with n- valence [179, 180]. From the structural point of view, LDHs

Table 3.

Comparison with state-of-the-art catechol sensors based on carbon nanotubes.
Sensing interface Pollutant Linear range (nM) LOD (pM) Refs.
Lac/MWCNTsCOOH/AuNPsSDBS/PEDOT/GCE CcC 11.99 - 94.11 12.26 [141]
GCE/MWCNT@CADE CcC 0-1000 - [142]
Co,0,/MWCNTs/GCE CcC 10— 700 8.5 [143]
MWCNTs@reduced graphene oxidenanoribbon/GCE cC 15-1101 1.73 [144]
PDEA-PS/C, MWCNT/GCE cC 4-135 1.45 [145]
¢-MWCNTs/PDAd(b-CDe)/c-MWCNT/GCE cC 0.25 — 4000 0.04 [29]
Gr-CDP-MWCNTs/GCE CcC 0.1-27.2 0.03 [30]
Modified CPE (RGO-MWNTs) HQ 1-120 0.3 [51]
Modified GCE [Cu(Sal-B-Ala)(3, 5- DMPz),]/SWCNTs HQ 8-391 1.46 [145]
MWCNTs@RGONR/GCE HQ 15-921 3.89 [144]
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have resemblance with brucite, Mg(OH),, in which Mg** is surrounded
by six OH" ions and the resulting octahedral structures are connected
to each other forming an infinite two-dimensional layer. Brucite layers
get positively charged by replacing some divalent ions with trivalent
ions. This positive charge is then balanced or neutralized by localizing
anions in the interlayer spaces. Water molecules are also intercalated in
the interlayer spaces stabilizing the structure of resulting LDHs. The
stability of LDH structure comes from electrostatic interaction and hy-
drogen bonding between the layer and interlayer contents. The structures
of LDHs are amenable to desired fine-tuning by changing the divalent
and trivalent ions and intercalated anions. The selected di and trivalent
ions should have their radii not significantly different from those of Mg?*
and AI*.LDHs are characterized by the unique features of being low-
cost, nontoxic, high surface area, two-dimensional structure, replaceable
intercalated anions, positively charged surface and tunable internal and
external architecture [181]. Their unique applications emerge from their
highly porous structure, large anion exchange capacities, and water-re-
sistant structures. LDHs have been extensively used in catalysis [182],
flame retardants [183]a series of functionalized layered double hydrox-
ides (LDHs, fuel cells [184], drug delivery [185], analytical extractions
[186], and in many other areas [187].

5.2.1. Synthesis and preparation

Layered double hydroxide based electrochemical sensors fabrication
is facile and their miniaturization in the laboratory is easy. Numerous
methods are being used for the synthesis of the LDH including sol-gel
method, urea hydrolysis, hydrothermal synthesis and the co-precipita-

tion.

5.2.1.1. Urea hydrolysis

LDH with large crystallites, homogeneous distribution of particle
size and with high crystallinity could be achieved using urea hydroly-
sis [188]. Urea considered as attractive precipitation agent for several
metal ions as their hydroxide due to controllable hydrolysis rate using
temperature and high-water solubility. One of the major drawbacks of
the Urea hydrolysis as only the carbonate containing LDH could be
prepared. The carbonate is continuously being generated due to the de-
composition of the urea. It put a severe limit to get a wide variety of
the LDH for varied applicability. R. Xu et al. synthesized 3D hierar-
chical flower-like Mg—Al-LDHs using urea for electrochemical sensor
development and applied for the sensing of Cd(Il) [189]. Similarly, a
biosensor was developed consist of bi-protein/layered double hydroxide
(LDH) ultra-thin film for catechol. The LDH for the fabrication of the
biosensor was synthesized by urea method under hydrothermal treat-
ment [190]. In some reports, synthesized LDH was vigorously agitated
in formamide under a N, flow at room temperature for several hours.
The formamide allows to swell and exfoliate the LDH particles and it is
a facile method to get LDH single nanosheets without provision of heat
or refluxing treatment [191].

5.2.1.2. Hydrothermal synthesis

Hydrothermal method is generally used when co-precipitation or ion
exchange method is not feasible for synthesis of the desired LDH and es-
pecially in a situation where organic guest species of low affinity are re-
quired to intercalate in the LDH layers [192]. Yang et al [193], proposed
a facile hydrothermal strategy is adopted to synthesize the composite of
NiCo-layered double hydroxide(NiCo-LDH) with biomass carbon while
another group prepared a novel Zn-Mg-based LDHs over a copper sub-
strate by using a hydrothermal method. The work reported Two types of
Zn-Mg-based LDH coating are prepared based on hydrothermal reaction
time [194].

5.2.1.3. Ion exchange method

Ion exchange is another method through which the LDH could be
prepared. The ion exchange method is preferred over co-precipitation
where the divalent or trivalent metal cations or the anions involved are
unstable in alkaline solution. The ion exchange method is promising
when there is more feasibility of the direct reaction between metal ions
and the guest anions. This method could be used to replace the inter-
layer anions with guest anions to achieve desired characteristic LDH.
J. Dong replaced the interlayer’s anions of the LDH by EDTA2— anion
to attained EDTA-LDHs composites for ultra-trace level determination
of Pb (II) [195]. Mg-Al- thioglycolic acid (TGA) LDH nanoparticles
were also synthesized by anion exchange method. The method consisted
of two steps; synthesis of LDH and then incorporation of TGA through

anion exchange reaction [196].

5.2.1.4. Co-precipitation method

For most of the LDH and LDH-hybrid modified electrochemical
sensors, LDH was synthesized using Co-precipitation method [197,
198]. For instance, a co-precipitation method was used to synthesize Fe/
Mg/Ni ternary LDHs which were later used for fabrication of modified
electrode [199]. Generally, the hydrothermal assisted co-precipitation
was used for the synthesis of the desired LDH [200]. M. Asif et al. syn-
thesized core-shell Fe,O,@CuAl LDH NSs using a facile hydrothermal
and co-precipitation method, and it was drop cast on GCE [201]. The
schematic is given below in Figure 7. Similarly, CutO@MnAl NSs were
prepared by facile co-precipitation and hydrothermal routes. The synthe-
sis protocol is given in Figure 8.

5.2.1.5. Electrochemical synthesis of LDH on the electrode surface

In this method, LDH is electrochemically synthesized on the bare or
previously modified electrode surface [202, 203]. This is accomplished
through dipping the electrode into a solution containing LDH precursors
of known concentration. Some other methods have been reported for
electrosynthesis of LDHs on different electrode surfaces [204, 205].

Table 4.
Comparison with state-of-the-art catechol sensors based on reduced graphene oxide.
Modified electrode Linear range (nM) Detection limit (uM) Refs.
CcC CCHQ
CNCs-rGO 1-400 1-300 0.4 0.87 [171]
Au-PdNF/rGO 2.5-100 1.6-10 0.8 0.5 [172]
P-rGO 5-120 5-90 0.18 0.08 [173]
AgNP/MWCNT 20-260 2.5-260 0.2 0.16 [174]
rGO 1-200 6-200 0.1 0.2 [176]
rGO-MWCNTs 5.5-540 8-391 1.8 2.6 [177]
rGO/Fe,0,/AuNPs 0.05-550 0.1-500 0.02 0.17 [178]
NiO/rGO/fMWCNTs 10-300 10-300 0.019 0.040 [13]
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Fig. 7. Flow chart of the synthesis mechanism of MgAIl-LDH-St. Reproduced
from Science Direct [201].
5.2.2. LDH in electrochemical sensors

synthesis

Several studies have shown that LDHs are emerging materials for
chemical modification of electrode surfaces (Figure 9). Generally, in
trace and ultra-trace analysis, such materials allow analytes to confine
into a minimal volume near the electrode during preconcentration step
leading to low limits of detection (LODs). LDHs can improve sensitivity
and selectivity of detection as they allow to immobilize electrocatalytic
reagents [206].

LDHs in electrochemical sensing play one or more of the following
roles.

. Electrocatalysts.

. Adsorbents for stripping analysis.

. A surface for immobilization of other modifiers or biomole-

cules.

J. Dong et al. fabricated a highly sensitive carbon paste electrode for
the detection of the Pb based on the EDTA/Mg/Al/LDH. EDTA [H4Y]
is a well-recognized chelating agent. It forms stable complexes with
the heavy metals. In LDH, the EDTA is intercalated by anion exchange
method. EDTA can easily replace the anions of the interlayer of the LDH
when pH is maintained from 4 to 6 due to its presence in form of anion
[H,Y] . The fabricated electrode is suitable for the stripping analysis of
different metal cations. Modified electrode displayed an excellent elec-
trocatalytic activity and sensitivity for the sensing of ultra-trace level Pb
in the tap water and demonstrated very low limit of detection 0.95 ng/L.
Apart from this, the developed method was also validated by ICP-AES
[195]. Isa et al. successfully used Zn/Al-LDH-MPP/SWCNT/PE for the
determination of Hg (I) in various samples. In this method, the syner-
gistic effect of the SWCNT and the LDH has been used to enhance the
sensitivity of the electrode. The SWCNTSs have excellent conductivity,
fast response time and a wide working range while LDH has an excellent
ion exchange capability. The developed sensor exhibited superb detec-
tion limit of 1 nM. The regeneration of the surface could be attained
by mechanical polishing and does not need for various cleaning agents
[207] .

The sensitivity and the selectivity of the electrochemical sensor for
the determination of the Hg (II) can also be improved by introducing the
chelating agent. Thiol group demonstrates an excellent chelating capa-
bility for the Hg (II). The thiol group eSH form the mercaptides by in-
teracting with the metal ions [208]. K. Asadpour-Zeynali and Roghayeh
Amini incorporated thioglycolic acid (TGA) in the interlayers of the
Mg-Al LDH. TGA was intercalated into the LDH using anion exchange
method. The developed electrochemical sensor was applied for the trace
level quantification of Hg (II). The response of the Mg—-Al-TGA LDH/
GCE towards Hg (II) was infulenced by the pH change. The maximum
response was attained at pH 4. At higher pH, the response was decreased
due to the hydrolysis of the metal ions and at lower pH due to LDH
instability. TGA in LDH is playing great role for accumulation of Hg
(IT) due to the strong chelating capability thiol group for the Hg (II).
The chelating behavior is one of the factors that improve the sensitivity
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Fig. 8. Schematic illustration of the fabrication mechanism of Cu Cr-layered
double hydroxide nanosheet intercalated with 2,3-dimercaptopropane sulfonate
(DMPS-LDH). Reproduced from Elsevier [202].
of the Mg—Al-TGA LDH/GCE and helps to achieve very low limit of

detection 0.8 nM [196].

Due to its increasing use in different applications and concerns about
toxicity, it is imperative to monitor H,O, levels in various environmen-
tal compartments. CoAl LDH/MWCNTs nanocomposite modified CPE
was used for determination of H,0,. Cobalt species in the composite
catalyzed the electrooxidation reaction, and CoAl-LDH enhanced the
electro-reduction process while MWCNTs have shown the significant
electrocatalytic effect on both the electro-reduction and electrooxida-
tion of hydrogen peroxide. The applicability of the proposed sensor was
tested in river and wastewater, and very good recoveries were obtained
[209]. Silver was electrodeposited on LDH-modified GCE to fabricate a
sensor for H,O, detection. LDH provided a stable matrix for electrode-
position of Ag structures. The porous structure of the Ag nanodendrites
provided a large surface area for the electrochemical reactions and en-
hanced the sensitivity of the sensor. The LOD was 2.2 uM. The sensor
was used to determine H,O, in spiked milk samples, and outstanding
recoveries were obtained [200]. LDH modified electrodes have been
fabricated for the sensitive, selective and low-cost detection of various
pesticides. S. Khan et al. used zinc and vanadium for the formation of
LDH on the silver electrode. The i-v curve was attained at different con-
centrations of thiourea. The current was increased as the concentration
of the thiourea increased. The change in current due to the addition of
thiourea could be explained by the adsorption of atmospheric oxygen on
the LDH prior to analysis. The LDH attained positive charge due to the
transfer of electrons to oxygen and formed Oads—. The potential barrier
increased at grain boundaries and the transducer conductance decreased.
Oads— could decrease the potential barrier at grain boundaries by releas-
ing the trapped electrons to LDH conduction band. The conductance of
the sensor increased as the energy released by the decomposition of the
adsorbed molecule is sufficient for transfer of an electron to the conduc-
tion band. Thiourea reacts with negative charged adsorbed oxygen and
facilitates the transfer of electrons to the conduction band. The linear
range was observed from 10 to 500 uM for thiourea [210]. Similarly,
pentachlorophenol is also included in priority pollutants list by USE-
PA. At a large scale, the pentachlorophenol is being used as bactericide,
disinfectant and the wood preservative. The territorial and the aquatic
ecosystem is badly contaminated due to large scale use of pentachlo-
rophenol. S. Yuan developed a bi-functional sensor which could simul-
taneously analyze the copper ions and the pentachlorophenol. For this
purpose, the multilayers films of the humic acid and the Mg—Al-LDH
were developed on the ITO electrode using a layer-by-layer methodolo-
gy. The layer-by-layer assembly is facilitated by electrostatic attraction
of the negatively charged humic acid and positively charged LDH. The
combined properties of humic acid and Mg—AILDH facilitate the fast
charge transfer, enrichment of the target analytes and simultaneous sens-
ing. Very low limit of detection 0.4 nM and 2 nM was attained using
(LDH/HA)B/ITO for pentachlorophenol and copper ions, respectively
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Fig. 9. Key characteristics of LDH modified electrodes.

[211]. Similarly, the simultaneous determination of catechol and hydro-
quinone in the presence of resorcinol was done by fabricating a dihy-
droxybenzene sensor. The Zn/Al layered double hydroxide film sensor
was developed by direct electrochemical deposition of the divalent Zn
and trivalent Al on the surface of the glassy carbon electrode. The de-
veloped sensor exhibited good capability to cope with potential inter-
ferences in the presence of targeted analytes [212]. M. Shen et al. syn-
thesized hierarchical NiAl/LDHs using room temperature ionic liquid
1-butyl-3-methylimidazolium tetrafluoroborate as a soft template. The
hierarchical NiAl/LDHs could provide more exposure to the electroac-
tive site, huge surface area, fast charge transfers and better stability. The
fabricated sensor with H-NiAl/LDHs exhibited a great electroactivity
for the electrooxidation of hydroquinone and catechol by shortening the
diffusion path and facilitating with mass transport channels and easing
the electron transfer. The limit of detection 3 nM was observed for the
hydroquinone and catechol [213]. Table 5 represents recent electro-

chemical sensors based on LDH as sensing platform.

5.3. Metal organic framework (MOF)

Metal organic framework(MOF) are a developing class of porous
nanostructures formed by ions/metal groups and membership connec-
tions, with promising applications in gas absorption, rejection, stimu-
lation, energy storage, chemical sensors, cancer therapy, and medicines
[217-219].

Delivery Particularly considering its wide selective surface space,
multi-chemical activities, changeable pore size, and close relationships
with essential molecules.; plus, apparent interactions, including n-n
stacking, hydrogen bonding, and electrostatic force, can be formed be-
tween the functional groups (-NH2 or -COOH) in MOFs linkers and
probe biomolecules, making MOFs an excellent platforms for biomole-
cules and drug delivery systems in the environment or medicine appli-
cations [220,221].

More precisely, as shown in Figure 10, metal organic frameworks
(MOFs) are a kind of crystal porosity composed of inorganic metal cen-
ters and organic bridge connections [222]. Because of its high surface
area, numerous and customizable pores, and chemical resistance, it has
been widely used in heterogeneous stimulation, absorption, medication
administration, power storage, and sensors [218, 219].

Metal organic reinforcements have piqued the interest of numerous
researchers during the last two decades as novel functional materials.
These novel hybrid porous materials are created by combining organ-
ic and aggregate connections that include metals or contractual metals.
Almost any metal, as well as a wide range of organic species, may be
utilized to construct adhesion frames, resulting in a wide range of organ-
ic metal tires with varying topologies and properties [224]. Hence, metal
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Fig. 10. Schematic representation of important reported MOFs which are known
for high gas storage properties. Reproduced from Iucr [223].

organic frameworks have the capacity to adapt during their chemically

changed state due to the presence of functional groups in organic de-

pendency. The capacity to create pores and their functions by selecting

organic connectivity, functional group, metals, and activation technique

distinguishes mineral organic frameworks from other solids

5.3.1. Synthesis and preparation

Because of the potential of customizing its structure dependent on
its uses, it has been clearly focused on table spoliation of metal organic
frameworks during the last decade. There are several ways for producing
metal organic frameworks, including conventional, aided microwave,
sonochemical, and chemical [225,226]. The primary difference between
these methods is the type of the power input, which will be discussed in
the following sections.

5.3.1.1. Conventional Synthesis routes (Ca)

It should be mentioned that the conventional method of assembling
metal organic frameworks is the most popular. The needed energy is
delivered into the system via typical heating sources. Because tempera-
ture is crucial in chemical processes, this path differs from the tract of
heat solvent interactions (hydrothermal) and maximal thermal. While
heat reactions take place in the CSS reactor (which is generally closed
by baggage) under self-contained pressure, the temperature of the re-
action must be higher than the solvent boiling point [227]. Typically,
the temperature range for enlarging metal organic frameworks extends
from ambient temperature to around 250 °C. Because of the simplici-
ty of installation, most metal organic frameworks are produced using
heat solvents. As previously stated, this interaction often happens via
the format link between organic and mineral salt in the solvent under the
aforementioned circumstances, with the end result taking the shape of
crystal or powder. Although temperature is an important component in
most combinations, only few of the known metal organic frameworks,
notably HKUST-1, MOF-5, MOF-177, MOF-74, and ZIF-8, were pro-
duced at ambient temperature [228].

The aspect associated with such interactions is that the sediment hap-
pens in a short period of time, which is sometimes referred to as direct
sedimentation reaction; as a result, there will be a considerable decrease
in interaction time [229]. In instance, ZIF-8 has superior chemical sta-
bility when compared to other compounds [230]. In general, the organic
frameworks are significantly affected by the temperature of interaction,
so that metal organic frameworks with different properties, such as dif-
ferent surface spaces and crystallization, can be obtained at different
temperatures, whereas intensive metal organic frameworks are generally
obtained at high interaction temperatures [231]. Furthermore, not only
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does high synthesis affect crystallization, but it also increases interaction
rates, particularly when more intractive ions are employed [232]. As a
result of the long reaction time and significant energy consumption, oth-
er techniques of synthesis were developed.

Furthermore, different approaches can only diminish interaction.
Save time and energy while simultaneously having a significant impact
on particle formation, dispersion, and size. Pores, which have a signifi-
cant impact on the properties of metal organic frameworks. In terms of
gas separation and storage, the size of holes influences the distribution
of guest molecules as well as the adsorption properties of porous mate-
rials such as metal organic frames. Because of these objectives, other
artificial means such as microwave-assisted tracks, sonocular chemical
corridors, mechanical and electrical systems have been used.

5.3.1.2. Microwave Synthesis (MW)

Microwave irritation is a well-known method for creating materi-
als [233]. This technique is based on the interaction of mobile electric
charge with electromagnetic radiation. Electrons or ions in solids, as
well as the presence of polar solvent and molecules / ions in solution,
can offer electric shipment. As a result, the power supply and heating
are generated in a solid form and a solution on the basis of the afore-
mentioned discriminating mechanism. In the case of a solid article, the
power is generated as a machine to compensate for the electrical resis-
tance of the solid object Materials. The power supply is created in the
solution by aligning the particles / ions when exposed to an electromag-
netic field, the direction of which is constantly changing. where, For the
best final product, a suitable frequency is required to create a suitable
collision between The reagents contribute to increasing kinetic energy
and temperature reaction Furthermore, due to the possibility of interac-
tion between raw materials and megawatic radiation [234], the selection
of selective power inputs and appropriate solvents is required and must
be taken into account.

The synthesis reaction takes place in a microwave oven, and the in-
teraction conditions must be met. It is specifically regulated in terms
of temperature and pressure. Be reactionary for organic frameworks. It
was finished at temperatures exceeding 100 ° C in less than an hour,
which is faster than traditional procedures. The MW advised on how to
raise the syrup rate while keeping the crystalline size low (mainly in the
nanoscale). This artificial road is an excellent heating energy Effective
technique due to its high reaction speed, short reaction time, and the
interaction between the detector and radiation. As a result, the synthesis
reaction can also take place at a rapid rate of heating. Many studies re-
ported the advantages of using microwave synthesis of MOF [235, 236].
These studies confirmed that microwave irradiation reduces the time of
reaction considerably, suggesting the effectiveness of this methodolo-
gy in the synthesis of metal-organic frameworks. It is noteworthy that
microwave assisted synthesis produces monocrystals suitable for X-ray
diffraction studies, reducing reaction time and with higher yield than the
classical hydrothermal procedures. To construct metal organic frame-
works, other routes are available, including electrochemical, mechano-

chemical, and Ultrasound-mediated chemical interactions.

5.3.2. MOF in electrochemical sensors

Because of the structure of the macro / total porosity, high connector,
and wide surface area, the composite of the organic metal works (MOFs)
are becoming more attractive in the field of electrochemical senses
[237]. However, the rational design of metal-metallic metal frameworks
is still in its early stages for electrochemical vital sensors, and more sig-
nificantly, there were a few metallic metal organic frameworks to detect
phenolic compounds [27, 28]. When employed in electrochemical vi-
tal sensors, nickel and copper-based organic frameworks, in particular,
have good stability, stimulation, and low fascination activity, as well as
a low vital conflict [238].

A series of nanoscale MOFs, such as Ni-MOFs and Cu-MOFs, have
beenreported to be efficient electrocatalysts for detecting analytes [2397ti-
tle-short”:”Size controlled synthesis of Ni-MOF using polyvinylpyrro-
lidone”,”volume™:”829”,”author”:[ {“family”:”Arul”,”given”:”P.”} ,{**-
family”:”John”,”given™:”’S.  Abraham”}],”issued”: {“date-parts’:[[*2
018”,11]1}}}],”schema”:https://github.com/citation-style-language/
schema/raw/master/csl-citation.json”} -241]. Compared with their bulk
analogues, the nano-MOFs based electrochemical sensors showed sig-
nificantly improved sensitivities and greatly decreased detection limits,
even down to Nm or pM concentrations. Liu group [231] also investi-
gated the influence of the nanostructure and particle size of Cu-BTC
MOFs on the electrochemical response of sensors for detecting glucose.
However, the decrease in the particle size may to a large extent result in
serious aggregation during the electrode preparation process, which may
in turn reduce the number of exposed active sites. To solve this problem,
Liu et al. prepared monolayer-oriented Cu-BTC nanotube arrays via a
facile interfacial emulsion synthesis method and further integrated these
arrays in a flexible amino-functionalized graphene paper (NH,-GP) elec-
trode for both the static and dynamic measurement of lactate and glucose
in human sweat [232].

MOF-based materials with core—shell heterostructures have been
reported to have a good selectivity for detecting analytes. For instance,
Yanng et al. [233] prepared a core-shell heterostructure of Cu O NPs@
ZIF-8 via the direct calcination of Cu,(BTC),@ZIF-8 composites by
considering the different thermostability of the two MOFs. The small
Cu O NPs cores derived from Cu,(BTC), were uniformly dispersed in-
side the ZIF-8 shell, which allows only small sized H,O, molecules to
pass through, while larger molecules are blocked. As a result, the fabri-
cated electrochemical H,0, sensor displayed a high selectivity towards
interferents including uric acid, dopamine, amino acid, ascorbic acid,
etc. Meanwhile, Cu O NPs without protecting MOFs suffered from seri-
ous interference effect. Although noble MNPs@MOFs were also widely
reported for use in electrochemical sensor applications, noble MNP-
based electrochemical sensors usually work best at high potentials, lead-
ing the electrochemical sensors to exhibit a poor selectivity.

Various methods have been employed to prepare MOF/MNP com-
posites, most of which involve loading the MNPs on the as prepared

Table 5.

Comparison with state-of-the-art electrochemical sensors based on LDH.
Sensing interface Pollutant Linear range (uM) LOD Refs.
Co-Al-SDBS HT/GCE 2-chlorophenol 0.005-0.5 pM 0.002 uM [197]
(LDH/HA)8/ITO Cu(II), pentachlorophenol 3-320 nM, 2.0 nM, [211]
Mg-Al-SDS/GCE Bisphenol A 0.008-2.808 pM 2.0 nM, [214]
CHT/[Zn3-Al-Cl]/PPO/GCE cCc 3.6 nM—40 pM 0.36 nM [215]
HeNiAl/LDHs CC/HQ 0.6 uM—6 mM 0.1 uM [213]
LDH/HB/LDH/HRP),UTF cCc 6-170 uM 5uM [190]
LDH-PCNT/GCE cC 10-200 uM 0.27 uM [216]
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MOF surfaces, forming surface attached structures, or encapsulating
the as-prepared MNPs into MOF cages/channels, forming a totally sur-
rounded structure [242]. For instance, Ma et al. [243] reported the at-
tachment of AuNPs on metal metalloporphyrin frameworks (Au NPs/
MMPF-6(Fe)) via electrostatic adsorption. Due to the strong synergistic
catalysis effects, enlarged active surface area, and high conductivity, the
AuNPs/MMPF-6(Fe) composite could ultra-sensitively detect hydrox-
ylamine at concentrations as low as nanomolar levels in real pharma-
ceutical and water samples. Likewise, Li et al. prepared composite by
decorating Ag NP surfaced with MIL-101 MOFs to detect tryptophan
[244]. In similar work, Ce-MOF/CNTs nanocomposites were prepared
by a simple method and post-treated with NaOH/H,O, mixed solution
was prepared by Huang et al., [69]. The electrochemical behaviors of
nanocomposite were also investigated on electrochemical work station.
By utilization of the good electrical conductivity of CNT, the two-va-
lence of Ce and the high surface area of MOF, the nanocomposites
were used to fabricate the electrochemical sensor for the simultaneous
electrochemical detection of hydroquinone (HQ) and catechol (CC).
Compared to the Ce-MOF/CNTs/GCE, the post-treated Ce-MOF (TV)/
CNTs/GCE exhibited two well-defined peaks for the electrochemical
oxidation of HQ and CC. The linear ranges responding to HQ and CC
are 10 ~ 100 uM and 5 ~ 50 puM respectively. Another work published
by Dand et al, AuNPs-NH,/Cu-MOF/GCE exhibits itself as a highly
sensitive and selective electrochemical enzyme-free sensor for H,O,
detection. A quantitative detection to H,O, can be found with a wide
linear response toward H,O, concentrations ranging 5-850 uM, its
limit of detection (LOD) is as low as 1.2 uM with a high sensitivity of
1.71 uA/em?-pM. AuNPs-NH_/Cu-MOF/GCE sensor has been applied
to determine H,O, effectively in human cervical cancer cells by adding
the ascorbic acid as the stimulant. Our work presented a AuNPs-NH,/
Cu-MOF/GCE composite electrode which is a promising enzyme-free
electrochemical sensor for quantitively H,O, detection in human cervi-
cal cancer cells [245].

5.4. Metals and metal oxides

In the realm of electrochemical detection, nanoparticles, particular-
ly metallic nanoparticles, provide several benefits. Nanoparticles, be-
cause to their tiny size, can enhance the surface area of the electrode
utilized (Figure 11). Furthermore, metallic nanoparticles can speed up
electron transport and enhance the sensitivity of the electrodes employed
[252, 253]. In this section, we will discuss how different forms of metal
nanoparticles may be used in electrochemical sensors.

Metal oxide nanoparticles have been the focus of extensive research
in electrochemical detection in recent years. Varied techniques were used
to produce different sizes, stability, and morphology. Because of these
variations, they exhibit distinct electrical and photochemical character-
istics, resulting in diverse applications [251]. Porous metals and porous
metal oxides are examples of porous and nanostructured materials. They
offer numerous exceptional properties (for example, their unique pore
structure, huge apparent surface area, and high electrical conductivity)

Table 6.
Comparison with state-of-the-art electrochemical sensors based on MOFs.

Metal oxide NPs Noble metal NPs
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Fig. 11. Schematic representation of different structures of noble metal-metal
oxide nanocomposite. Reproduced from Royal Society of Chemistry [260].

that make them an amazingly attractive candidate for a wide range of
essential applications (such as energy storage, detection and catalysis).
Different metal oxides, particularly transition metal oxides, have been
utilized to modify electrodes for the detection of various analytes, in-
cluding heavy metals. Although virtually all transition metals have been
utilized to manufacture these oxides, only a handful have been employed
to detect organic pollutants [254].

Many inorganic and organic components are found in porous materi-
als, including carbon, metals, metal oxides, inorganic and organic hybrid
materials, and polymers. Porous materials are classified as microporous
(pore size 2 nm), porous (2 nm pore size 50 nm), and microporous (pore
size [S0 nm]) by the International Union of Pure and Applied Chem-
istry (IUPAC) [255]. Porous materials have pores with a diameter of
less than 100 nanometers. Porous nanometals/metal oxide-based mate-
rials produced by dispersing them have garnered extensive interest in
various domains such as energy storage, sensing, and catalysis due to
their high-order networks and excellent pore size distributions. Excel-
lent electrical stimulation, for example, can, on the one hand, extend the
active region accessible to reactive molecules; on the other hand, it can
boost electron mobility in solid ligands due to their metallic porosity
frameworks [256].

Furthermore, additional significant uses of large porous materials
have been investigated, ranging from sensing to energy storage systems
[257]. Various strategies for adapting porous architectures and ratio-
nal design of porous metal/metal oxide materials have been developed
during the last decade. The physicochemical performance and funda-
mental information of these effectively manufactured metal/metal ox-
ide nanomaterials allowed for a systematic experimental investigation,
which led to the creation of numerous functional devices, such as micro-
sensors and ultra-thin supercapacitors [258, 259]. The field of applica-
tion of nano-metals/metal oxide-based materials is now undergoing an
exciting development with growing success. It is necessary to provide
timely updates of such type of advanced materials, including in the es-
sential properties and new applications. This study summarizes major
applications such as supercapacitors, lithium-ion batteries, energy stor-

Modified electrode Linear range (nM) Detection limit (M) Reference
CcC CcC HQ
Ce-MOF(TV)/CNTs/GCE 10-100 2.05 2.05 [69]
TiO,/C900/GCE 5-10 1.24 2.05 [246]
MOEF-ERGO-5/G 0.1-566 0.1 0.1 [247]
ZIF-8@rGO-0.02/GCE 10-70 0.47 0.37 [248]
Cu-MOF 0.2-184.5 (H,0,) 0.067 mM [249]
Ni-MOF Nitrobenzene 0.25-1.5 mM; NA [250]
Cu-MOF Histidine 0.1-200 uM 25nm [251]
Cu-MOF ASCORBIC ACID 0-4MM 14.97
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Fig. 12. Schematic Illustration of the Hydrothermal Synthesis of ZnO nanosheets.
Reproduced from ACS [278].

age, detection, electrocatalysis, and photocatalysis [253, 252]. This will

be useful for research on nanoscale metals and metal oxides, and it may
lead to more sophisticated functional materials in associated sectors.

5.4.1. Synthesis and preparation of Metals

Metal manufacturing from mineral compounds has been a major hu-
man activity since time immemorial, and minerals have played an im-
portant part in building the modern world as it is now [261]. The chemi-
cal reduction of many minerals results in the formation of many minerals
[262]. Their specific oxides and reduction technique are determined by
the relative stability of the metal oxides and the oxides of the reducing
agent employed. Transition metal and actinide stable oxides require re-
duction with strong reducing agents such as lithium, sodium, calcium, or
magnesium and even plants extracts [263, 264].

Metallic thermal reduction does not pose such issues; however direct
one-step reduction is frequently problematic due to oxygen contamina-
tion of the metal result. often enjoy Metal oxides must be converted
to specific halides before being chemically reduced with alkaline earth
metals to produce metals with low oxygen pollution [265]. Metal oxides
are also difficult to electrolyze conventionally due to their limited sol-
ubility in electrolyte melting, high working temperature, strong metal
affinity for oxygen, and other factors [266]. These metal manufacturing
methods create huge volumes of toxic gases, such as fluorine or chlo-
rine, salts, and used trash, all of which require extra treatment to avoid
pollution of the environment [267]. In the recent past, there has been
much discussion regarding the electrochemical process of molten salt
in which a solid metal is produced. At very low oxygen levels, oxides
can be directly reduced to related metals or alloys [268]. The patented
process’s simplicity and the predicted claims Capable of generating met-
als or alloys more effectively and inexpensively than existing traditional
techniques, the novel technology has sparked global research efforts to
extract various metals/alloys from their respective oxides.

Up to now, the control of the size, shape and structure of MONCs
have been achieved by various synthetic methods. Vapor phase growth
is always carried out in a thermal furnace. It is necessary to regulate the
reaction between oxygen gas and metal vapor source. In order to achieve
it, various methods have been developed to control the aspect ratio,
diameter and specific surface area of the product. It mainly involves
thermal chemical vapor deposition (CVD) and metal-organic chemical
vapor deposition (MOCVD), etc. [269, 270] (Figure 12) . Meanwhile,
the mechanism could be classified as vapor—solid (VS) and vapor-lig-
uid-solid (VLS) [271, 272] (Figure 13). Generally, metal nanoparticles
are used as the nucleation seeds, which have essential influences on the
growth direction and diameter of products in VLS process. In the begin-
ning, catalysts are molten into liquid alloy droplets which also contain
source metal. When the alloy droplets achieve supersaturated, source
metal start to precipitate and form metal oxide under the oxygen flow.

—~
~ —— 7

Chemical precursors
Alloy l l

G
g

Fig. 13. Vapor-Liquid-Solid (VLS) method for vapor-phase synthesis of metal
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nanowires. Reproduced from Research gate [279].

In general, the as—synthesized metal oxides preferentially grow along
particular orientation, which lead to the formation of 1D nanostructures.
So far, the preparation of metal oxide nanowires, such as ZnO [273]
and TiO, [274], have been achieved by means of VLS mechanism. From
what have been discussed above, VLS process belongs to catalyst—as-
sisted growth, while VS process belongs to catalyst—free growth. In the
course of VS process, the reactants are first heated to form vapor under
high temperature and directly condensed on the substrate, on which seed
crystals will take shape and be served as the nucleation sites located.
Facilitate directional growth followed will minimize the surface energy
of product. Electrochemical deposition has been successfully applied
to fabricate metal oxide nanostructures. It exhibits many advantages
during synthesis process. Take the preparation of ZnO [275] for exam-
ple, making use of appropriate electrolyte, ZnO have been successfully
prepared. Meanwhile, researchers also try to introduce the template into
electrochemical deposition method. A gel comprising of sol particles is
essential for sol-gel process [276, 277].

Back in the 1970s, hydrothermal process was firstly employed to
synthesize crystalline structures. The reactants are placed in a closed
vessel with water as a reaction medium. The reaction is conducted un-
der high temperature and pressure conditions. Hydrothermal process
can accelerate the reactions between ions and promote the hydrolysis
reaction. Ultimately, the growth and self—assembly of crystals will be
achieved in solution. The advantages of the method involve low cost,
mild reaction conditions and controlling the device easily. By changing
the experimental parameters (temperature, pressure, time, the reaction
medium, etc.), the morphology, structure and properties of the product
can be well regulated. In order to improve the hydrothermal process,
surfactants are introduced to the system. Surfactant—promoted process
has been demonstrated to be an effective method to fabricate metal oxide
with a variety of morphologies. The system is always composed of three
phases: oil phase, surfactant phase and aqueous phase. In the course of
process, surfactants can confine the growth of product.

5.4.2. Electrochemical sensors based on metals and metal oxides

Metal and metal oxide based electrochemical sensors are attracting
more studies for sophisticated applications in the biomedical, environ-
mental, and security industries because to their high sensitivity, compact
size, and low cost [246, 280]. In recent years then, novel nanostructures
based on metal oxides have been proposed as detecting materials to in-
crease their detection characteristics (Table 7). Detection of hazardous
compounds, toxic molecules, viruses and even cancer in real samples
such as water, food, human body, industrial sites, or industrial waste-
water are just a few examples of situations where using metal and metal
oxide based sensors and biosensors for a sensitive, rapid and selective
detection of the target analyte is critical [280, 246, 281]. Indeed, quick
and precise detection is critical in light of practical applications in do-

mains such as medical diagnosis, environmental monitoring and hazard-
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ous compounds detection.

Pan et al. have prepared hierarchical hybrid films of MnO, nanopar-
ticles/multi-walled fullerene nanotubes—graphene (MNPs/ MWFNTs—
GS) via a simple wet chemical method for the detection of H,O,. Studies
revealed that MWFNTs can further enhance the conductivity and cata-
lytic performance of MNPs/GS by providing extra electron/ ion transfer
paths and inhibiting the aggregation of GS and MNPs [282]. -MWCNT/
MnO,/GCE modified film provides a good platform for the determina-
tion of ferulic acid and the synergistic effects of CNTs and the metal ox-
ide nanocomposites could improve the electrode conductivity [283]. For
the detection of catechin, a Pt/MnO,/f-MWCNT/GCE modified elec-
trode was developed by the electrochemical treatment of the f-MWCNT
coated GCE. This electrode was able to determine catechin from real
samples like red wine, black tea, and green tea and have a good linear
range and low limit of detection [284]. Molecularly imprinted polymer
modified electrochemical sensor based on manganese oxide nanoparti-
cles were also studied. The synthesized MnO,/GO/CuO nanocomposites
were reinforced by poly vinyl acetate molecularly imprinted polymer of
glucose which coated on copper wire surface was used as the working
electrode. This sensor exhibited linear range from 0.55 to 4.4 mM and
the detection limit was 53 uM [285].

Copper oxide nanoparticles integrated with carbonaceous materials
like graphene [286], carbon nanotubes [287], mesoporous carbons [288]
and carbon nanofibers [289] can improve the performance of the sensor
by enhancing the charge transfer between support matrices and analytes.
In the case of imprinted polymer-based sensors, CuO nanoparticles
were used to enhance the number of imprinted sites of the electrode and
thereby improving the selectivity and sensitivity of the electrochemical
sensor [290]. Cu O NPs@ZIF-8 composite derived from core-shell met-
al-organic frameworks were synthesized by Yang et al. and found that
well dispersed Cu O NPs possessed good crystalline structure and the
encapsulated Cu O NPs presented good electrocatalysis for H,0, oxi-
dation [291].

Molecularly imprinted polymer-based sensor for 4-nitrophenol was
described using ZnO nanoparticles/multiwall carbon nanotubes-chi-
tosan nanocomposite. This was coated onto an ITO electrode and then
imprinted sol-gel solution was electrodeposited onto the modified elec-
trode to construct the sensor. The developed nanocomposites have po-
rous electrodeposition imprinted film with abundant selective binding
sites and functional monolayer with electrochemical catalytic activities
[292]. Roy et al, presented a novel imprinted polymer-based sensor for
the detection, removal, and destruction of Escherichia coli bacteria on
the surface of Ag-ZnO bimetallic nanoparticle and graphene oxide nano-
composite. This nanocomposite provided a platform for imprinting of
bacteria as well as participated in their laser-light induced photo killing.
The MIP-modified glass plate is able to remove 98% of bacteria in a
single analysis [293]. Nickel nanoparticles incorporated ZnO sensors
possessed strong electrocatalytic ability towards the sensing of glucose,
dopamine and uric acid [294]. A sensor for electrochemical monitoring

of nucleic acid hybridization related to the Hepatitis B Virus (HBV) con-
tains, ZnO NPs enriched with poly (vinylferrocenium) (PVF+) modified
single-use graphite electrodes [295].

Electrodeposited cobalt oxide has been a promising material for FAD
immobilization with excellent catalytic activity for nitrite reduction over
a linear range of 1-30 uM and limit of detection of 0.20 uM [296]. Sin-
gle crystal and vertically aligned cobalt oxide (Co,0,) nanowalls coated
on GCE via conductive silver paint were used for the electrocatalytic ox-
idation and reduction of hydrogen peroxide in 0.01 M pH 7.4 phosphate
buffer medium up to 10 mM concentration of H,0, [297].

6. Conclusions and future insights

Design and fabrication of electrochemical sensors for organic pol-
lutant (CC, HQ and 5-CP) is an active area of research that has drawn
the interest of scientific communities due to the high toxicity of these
pollutants. In the present work, several types of electrochemical sensors
for CC, HQ and 5-CPdetection were developed based on advanced ma-
terials namely CNTs, MOFs, LDHs, graphene, metals and metal oxides
NPs. These systems are offering new opportunities with advantages such
as high sensitivity and selectivity, rapid response, and cost efficiency.

Electrochemical techniques coupled with the use of nanomaterials
are useful for the development of electrochemical sensors capable of
sensitive monitoring of CC, HQ and 5-CP with fast-responses. A com-
bination of nanomaterials offers a high degree of specificity and makes
the sensing formats attractive for the design and fabrication of integrated
detection systems. In the present thesis, the use of nanostructured mate-
rials in the development of sensors has led to an increase in sensitivity,
sensibility, and reproducibility, which confirms the benefits of nanoma-
terials combinations.

Nanomaterial based sensors provide a new and powerful paradigm
in terms of novel and augmented functionality that encompasses a wide
variety of applications in clinical diagnostics and biological research.
The rapid and precise real-time detection of analytes requires that elec-
trochemical sensors be endowed with low energy consumption, rapid
response time, enhanced selectivity, sensitivity and swift recoverabili-
ty (refresh ability). Each of these parameters will undoubtedly undergo
further improvements and refinements in the future due to advances in
nanomaterials synthesis, processing, integration and testing techniques.
It is anticipated that nanomaterials will play an unprecedented role in the
future development of advanced diagnostics.

Based on the results obtained in the present thesis, we highly empha-
size the following points to readers:

. Because of their multiple unique properties, CNTs, MOFs,
LDHs, graphene, metals and metal oxides NPs provide sig-
nificant advantages. Outstanding mechanical strength, huge
surface area, excellent electrical conductance, electrochem-
ical stability in aqueous and non-aqueous samples, and high
thermal conductivity. Because of their extraordinary charac-

Table 7.
Comparison with state-of-the-art electrochemical sensors based on metals and metal oxides nanoparticles.
Linear range (nM) Detection limit (M)
Modified electrode Refs.
CcC HQ cC HQ
MgO/GO/MCPE - -
0.45 0.37 [7]
AuNPs/Fe,0,-APTES-GO/GCE - - 0.8 11 298]
AuNPs@MoS,-rGO-AuNPs/GCE 1-145 3-137 ) )
UNPs@MoS,-rGO-AuNPs 0.95 0.04 [299]
Ag/MWCNT/GCE 3-160 0.1-40
. 0.2 0.16 [174]
NiO/MWCNT/GCE 20-260 2.5-260 0.015 0.039 (300]
Au-PdNF/rGO/GCE 7.4-56 7.4-56 : ’
0.8 0.5 [172]
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teristics, they are ideal materials for ultrasensitive nanoscale
sensors and biosensors.

. The development of appropriate methods for tackling the chal-
lenges connected with the quick and sensitive detection of or-
ganic pollutant in aqueous environments is now underway in
scientific research including materials science platforms. How-
ever, the path “from laboratory to reality” is difficult and must
be improved by inventing new gadgets based on nanomaterials
such as CNTs, MOFs, LDHs, graphene metals and metal ox-
ides NPs, which are inexpensive to manufacture and have the
fewest negative environmental consequences. However, the
cost of preparation, as well as the stability and biocompatibility
of these nanomaterial, must be considered, and better control
over their properties is necessary.

. Researchers must explore the potential for synergistic effects
of CNTs, MOFs, LDHs, graphene with other nanomaterials,
in particular metals and metal oxides and its biocompatibility
with biological components. Such combinations can promote
performance and speed up the biosensor response to organic
pollutant and even viral diagnosis including SARS-CoV-2.

In conclusion, the field of carbon nanomaterial-based sensors is
growing quickly with the invention of many new carbon nanomaterials
taking into consideration their synergetic effect with metals and metal
oxides NPs. Carbon nanomaterials have many advantages for electro-
chemistry including fast electron transfer rates, high aspect ratios, and
resistance to fouling. While many new materials are still being devel-
oped, future studies will likely help narrow down which are the most
effective for mediating electron transfer. Newer methods that allow
growth of carbon nanomaterials directly on the electrode substrate or
fabrication of electrodes solely from CNTs for example might be helpful
for making sensors of pure carbon nanomaterials.

However, combinations of carbon nanomaterials, polymers, and
metal particles will also continue to be popular because of the syner-
gistic effects of combining materials. In the future, advances in funda-
mental knowledge of new nanomaterials along with a focus on practical
applications in real-world systems will drive the field and lead to break-
throughs in sensing and biosensing technology.
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