Journal of Composites and Compounds 5 (2023) 38-50

Sy Available online at www.jourcc.com

Composites CrossMark
sud Journal homepage: www.JOURCC.com

Journal of Composites and Compounds

2%

e Y
£ ‘%‘@

Nickel sulfide-based composite as electrodes in electrochemical sensors:
A review

Maryam Irandoost 2, Beena Kumari °*, Tuyen Truong ¢, Bhishma Karki ¢, Md Rahimullah Miah®

@ Department of Mining and Metallurgical Engineering, Amir Kabir University of Technology, Tehran, Iran
® Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, Haryana, India -123401
¢ Applied Physical Chemistry Laboratory (APCLAB), VNUHCM-University of Science, Ho Chi Minh City, Vietnam
4Department of Physics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal
¢ Department of IT in Health, North East Medical College and Hospital, Afiliated with Sylhet Medical University, Sylhet, Bangladesh

ABSTRACT ARTICLEINFORMATION

Nickel sulfide (NiS) is an extremely a transition metal sulfide with great potential use as a sensor material be- Article history:
cause of its exceptional conductivity and stability. Herein, we present first, the all of synthesis of NiS into sensor Received 05 October 2022
and biosensor. Electrochemical sensor, Due to the fact that disposal to electrolyte during electrochemical impact Received in revised form 02 January 2023
can rapidly deform NiS, lowering its electroactivity and measurement repeatability, a method for effectively in- Accepted 28 January 2023
tegrating NiS into sensors is crucial. Then, the main focus of this review is the recent advancements in sensor
systems that utilize NiS and its composites. The article discusses the correlation between sensing performance and
electrode construction strategies, and identifies shortcomings and limitations in the current applications of these
sensors. Based on this analysis, the authors suggest potential future directions and areas for further research in the
development of NiS-based sensors. This study focused on developments in NiS-based sensor systems and their
composites throughout the past articles. The article investigates the correlation between the way electrodes are
made and the effectiveness of the sensors they produce. On this basis, we discuss the scope for future of NiS-based
sensors and offer additional directions.
©2023 UGPH.
Peer review under responsibility of UGPH.
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raphy, ink-jet printing, and screen-printing. Among these techniques,
screen-printing has gained popularity since the 1990s due to its ability
to produce low-cost, highly reproducible, and reliable sensors on a large
scale, making use of the technology was derived from the microelectron-

1. Introduction

Electrochemical sensors are devices that use electrochemical re-

actions to detect and quantify the concentration of target analytes in a
sample solution [1]. These sensors find broad usage in numerous fields,
including biomedical, environmental, and manufactering monitoring,
as well as food safety and clinical diagnostics.Several methods have
been used to fabricate electrochemical sensors, including photolithog-
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ics sector [2, 3]. In recent decades, there has been a growing inclination
towards making chemical and biological sensors smaller and incorporat-
ing them into compact sample analysis systems and pre-processing [4].
These devices have numerous benefits such as the capability to examine
quicker analysis speed ,small amounts of samples, appropriateness for
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mechanized processes, and enhanced consistency and dependability [5].
Lately, a considerable amount of research has been directed towards cre-
ating electrochemical sensors in a compact form factor suitable for mea-
suring extracellular fluid, conducting clinical diagnoses, and performing
micro total analysis using microscale or submicroscale devices [6, 7].
The methods used for electrochemical detection are rapid., affordable,
and straightforward to carry out, allowing for accurate quantification
of a diverse array of compounds present in a wide spectrum of sample
[8].At the core of every electrochemical sensor is a working electrode,
which generates an electrical signal through an electrochemical process
and acts as a transduction element. In more advanced biosensors, the
working electrode may be coated with a sensing and biorecognition lay-
er. The progress made in the advancement of electrochemical sensors is

discussed in the review article [9].

Recently, electrochemical sensors have been created using nano-
materials consisting of different metal oxides, metal sulfides, and metal
hydroxides due to their electrocatalytic features [10]. Electrodes that
are enhanced with nanocomposites offer attractive electrochemical and
physiochemical features, including chemical durability, excellent me-
chanical stabilitysurface area of large, biocompatibility and fast elec-
tron transfer kinetics. Besides metal oxides, metal chalcogenides (like
metal sulfides) have become increasingly important in non-enzymatic
electrochemical sensors due to their exceptional physical and chemical
characteristics, including low cost, easy accessibility, and high catalytic
activity [11, 12].

Metal sulfide nanostructures have garnered significant attention
in research Because of their possible uses in a range of areas, such as
energy storage and conversion devices, light-emitting diodes, sensors,
photocatalytic and electrocatalytic reactions, memory devices, and ther-
moelectric devices, they are considered to have significant potential.
Numerous studies have extensively investigated these nanostructures.
[13-15].

NiS, a compound known for its high electronic conductivity, afford-
ability, and ease of production,it has found widespread applications in
a range of fields examples of the mentioned items include photocata-
lysts, electrocatalysts [16], lithium-ion batteries [17], supercapacitors
[18], and dye-sensitized solar cells. Researchers have synthesized var-
ious NiS compounds with diverse morphologies, including including,
nanosheets, nanoflake arrays, nanorods ,core-shell structures, hollow
spheres, nanoframes, and urchin-like micro/nano-structures, that have
been successfully produced and studied in previous research [19-22].
However, the creation of hierarchical flower-shaped NiS has not been
widely achieved. It is worth mentioning that NiS has a distinct feature in
which it tends to create intricate coordination, This means that the atoms

in the material have a tendency to arrange themselves in a complicated
and well-organized manner [23, 24].

The donation of electrons from sulphide to nickel metal atoms leads
to an increase in electron density on nickel, facilitating the interaction
and formation of a complex with suitable moieties. Nevertheless, elec-
trochemical reactions cause instability in pristine NiS due to variations
in electronic and volume conductivity [25]. The researchers used a hy-
brid material called NiS/S-g-C3N4, which contained nickel sulfide and
sulfur-doped graphitic carbon nitride, as an interface for detecting glu-
cose without using enzymes in an alkaline solution. The modified elec-
trode made of NiS/S-g-C3N, was able to detect glucose at an applied
potential of 0.55 V vs. Ag/AgCl, with a low detection limit of 1.5 pM
(S/N = 3), high sensitivity of 80 uA mM™' cm2, and fast response time
of 5 seconds. The sensing process was not affected by various inorganic
ions and organic substances. This nanohybrid material could be applied
to real sample analysis and has potential for various applications in elec-
trochemical glucose sensing[26].

Reduced graphene oxide (rGO) is being used as a supportive mate-
rial to effectively stabilize NiS the redox reactions ofin order to resolve
the problem of instability. The HER activity of catalysts Blending a con-
ductive carbon nanomaterial with a compound of Ni-S. has not been sys-
tematically studied in research on nickel sulfide-based electrodes [27].
To address this gap, a nanocomposite of Ni,S, and MWCNTSs (Ni,S,/
MWCNT-NC) was The glucose-assisted hydrothermal method was em-
ployed to synthesize it, and its kinetics and HER activity were evaluated.
The study also investigated the function of MWCNTSs in the catalyst
and the influence of the morphology of the catalyst.on HER activity to
understand the origin of Ni3sSy/MWCNT-NC’s HER activity. Results
demonstrated that Ni,S,/MWCNT-NC outperformed pure Ni.,S, elec-
trodes due to its relatively small HER activation energy (Ea). Moreover,
Ni3zS,/MWCNT-NC exhibited reasonable stability during long-term op-
eration. These findings suggest that the combination of a compound of
Ni-S combined with a carbon nanomaterial that conducts electricity. can
enhance catalyst performance and provide insights into the performance
of the hydrogen evolution reaction (HER) of NisS,/MWCNT-NC [28] .

This article intends to present a beneficial analysis of the latest re-
search undertakings that concentrate on producing and utilizing nano-
structures made of nickel sulphide.We discussion application and syn-
thesis NiS nanostructures obtained in sensors, this comprises of various
nanostructures such as nanobelts, nanotubes, nanowires, and a few dis-
tinctive nanostructures. Next, some important synthesis composite NiS
with other materials are presented that it is application sevral sensor
which include gas sensor, electrichemical sensor, biosensor, etc. The re-
view will wrap up by providing some viewpoints and predictions about
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the future advancements in the research areas related to NiS composite
nanostructures.

2. Sensors

The purpose of sensors is to improve the capacity of our surround-
ings to detect and communicate information. They aim to make human
life easier and more convenient in almost every field, including Estab-
lishing a particular ambiance or atmosphere, activating water heaters,
Guaranteeing security, monitoring equipment, and etc. Sensors provide
clearer visibility into processes and workflows, examine work patterns
of employees and identify environmental factors across broader facil-
ities. Through monitoring, regulation, and improving operational effi-
ciency, sensors have the potential to enhance business management [29].
As per the Oxford English Dictionary, a sensor is an instrument that
detects or gauges a specific state or characteristic, and records, indicates,
or reacts to the data it receives. Therefore, sensors are accountable for
transforming a stimulus into a measured signal, which may arise from
various sources such as chemical, acoustic, electromagnetic, thermal, or
mechanical. The measured signal is typically electrical, but other forms
of signals likeoptical , hydraulic, or pneumatic signals may also be em-
ployed [30].

Sensors play a crucial role in the functionality of engineering devic-
es, utilizing a wide variety of physical principles for function. With the
vast selection of sensors available in the market, choosing an appropriate
sensor for a new application can be an intimidating work for Design
Engineers.ign Engineer [31].A sensor is typically described as a tool
that can detect and react to a stimulus or signal. This description is quite
all-encompassing, as it applies to a wide range of objects, from the hu-
man eye to the trigger mechanism of a gun[32].

A chemical sensor can be defined as a compact instrument that,
through a chemical interaction or process between the sensor device and
the gas under analysis, converts quantitative or qualitative chemical or
biochemical information into a signal that can be analyzed practically
[33].1n recent decades, Various varieties of gas sensors have been de-
veloped using different sensing substances and conversion techniques,
to create integrated multi-sensors or “electronic noses.” These electron-
ic noses are the most advanced tools for monitoring globally.. Some
important gas-sensing materials include metal oxide semiconductors,
conducting and composite polymers, and other novel materials. These
sensors can be combined with various transduction devices such as
metal-oxide-semiconductor field-effect transistor, optical transducers,
quartz crystal microbalance, surface acoustic wave, andchemo-resistive

[34]. Electrochemical sensors are a type of chemical sensor that uses
electrochemical reactions to detect and quantify a target analyte. These
sensors work by converting a chemical reaction into an electrical sig-
nal, which can be measured and analyzed. Electrochemical sensors are
commonly used for detecting gases, such as carbon monoxide, oxygen,
and hydrogen sulfide, but they can also be used for other applications,
such as glucose monitoring for diabetes management. Examples of elec-
trochemical sensors include potentiometric sensors, amperometric sen-
sors, and conductometric sensors. Electrochemical sensors are a type of
chemical sensor that measure the concentration of a specific chemical
species in a sample by detecting changes in electrical properties. These
sensors typically consist of an electrode and an electrolyte, and operate
by converting a chemical reaction into an electrical signal.

2.1. Classification of sensors

Sensors can be categorized based on their principles of conversion
(i.e., the physical or chemical effects upon which they rely), their intend-
ed use, the type of output signal they produce, the materials used, and
the manufacturing technology employed. The categorization of sensors
based on their method of operation is illustrated in Figure 1.They can
be separated into two groups: chemical and physical sensors. Sensors
that rely on physical phenomena,including magnetoelectricity, magne-
tostriction, photoelectricity, thermoelectricity, ionization, piezoelectric-
ity, and others, are used to transform even the smallest variations in the
measured quantity into an electrical signal. In contrast, chemical sensors
translate minute modifications in the measured quantity into an elec-
tric signal via chemical adsorption, electrochemical reactions, and other
chemical mechanisms [35].

Electrochemical sensors identify distinct analytes by means of elec-
trochemical reactions and can be classified into various types based on
the electroanalytical technique employed .The four main types of elec-
trochemical sensors are conductometric, potentiometric, voltametric,
and amperometric. Amperometric sensors apply a constant potential to
a sensing electrode, also known as a working electrode, causing an elec-
trochemical reaction. The resulting current response is then measured
over a period of time.

Voltammetric sensors utilize a variety of potentials applied to the
working electrode concerning a reference electrode. The resulting cur-
rents are then measured for each potential. In contrast, potentiometric
sensors generally determine the voltage variation between a working
electrode and a reference electrode in the absence of any electric cur-
rent passing through the cell. Conductometric sensors, frequently uti-
lized for assessing the level of ionic analytes, gauge the electrochemical
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cell conductance [36, 37]. In some cases, the production of a signal can
result from a sequence or chain of reactions. Electrochemical sensors
have found widespread application in various domains over the past
few decades, such as environmental monitoring, pathogen detection,
healthcare, automotive industry, food industry, engineering, and various
commercial applications[38] . There are several types of electrochemi-
cal sensors, including:

. Potentiometric sensors: These sensors measure the potential
difference between an indicator electrode and a reference elec-
trode, and are commonly used to measure pH and ion concen-
tration.

*  Amperometric sensors: These sensors measure the current pro-
duced by an electrochemical reaction, and are commonly used
to measure gases such as oxygen and carbon dioxide.

. Conductometric sensors: These sensors measure changes in
electrical conductivity that occur as a result of a chemical reac-
tion, and are commonly used to detect gases such as ammonia
and chlorine.

. Electrochemical sensors are widely used in a variety of appli-
cations, including environmental monitoring, medical diagnos-
tics, and industrial process control.

2.2. Applications electrochemical sensors

Electrochemical (bio) sensors exhibit remarkable analytical advan-
tages over conventional methods Because of their distinct characteris-
tics, such as being easily transportable, capable of being made smaller in
size, simplicity, self-containment, affordability, exceptional sensitivity,
and impressive selectivity [39, 40]. Furthermore, these powerful ana-
lytical tools can be efficiently controlled through sustainable methods
that involve simple preparations of samples and the application of re-
agentsThere is a widespread recognition that the development of elec-
trochemical sensing platforms that can detect target molecules using
various analytical principles depends greatly on the quality of electrode
materials [41]. The employment of different bio-ingredients in various
biological analyses is a distinct attribute of electrochemical technolo-
gy. Maintaining the biological activity and orientation of biomolecules
during immobilization is critical because inadequate fixation can lead
to decreased specificity, loss of activity, and poor biocompatibility. The
latest trend in the immobilization of various biomolecules involves the
use of functionalized nanomaterials. This is because they increase the
electrode’s surface area, which leads to more stable immobilized bio-
molecules and improved electrochemical analysis performance [3].Sev-
eral published reviews [42, 43] in the field of electrochemical biosensors

have provided an up-to-date overview of the literature. The remarkable
specificity of biological recognition events has resulted in the creation of
electrochemical biosensors with exceptionally high selectivity.Among
these biosensors,enzyme electrodes that rely on either potentiometric
or amperometric methods to track variations resulting from biocatalytic
processes have a long-standing tradition. In situ electrochemical moni-
toring of contaminants can achieve enhanced specificity by incorporat-
ing these devices with remotely deployed probes. However, while adapt-
ing enzyme electrodes for in situ operation, it is crucial to account for
the effects of field conditions, including salinity, pH, and temperature,
on biocatalytic activity [44].Research on metal sulfides has primarily
focused on their use in electrochemical usages. For instance, copper sul-
fide has been utilized in nonenzymatic glucose sensors [45] while iron
sulfide has been studied for its ability to detect hydrogen peroxide. Addi-
tionally, nickel sulfide and cobalt sulfide have been investigated for their
potential in dye-sensitized solar cells [46], and molybdenum sulfide has
been examined as a catalyst for hydrogen evolution. At room tempera-
ture, nickel sulfide, also referred to as NisS,, is a metallic conductor that
exhibits a low resistivity of 1.8 10 Q. Ni,§, occurs in different shapes
and structures at the nanoscale and has been researched for its potential
use in supercapacitors, catalysts, and electrochemical sensors [47, 48].
Figure 2,show Electrohemical sensors and applications.

The potential applications of electrochemical technology in a range
of industries have made it a leading subject of basic and applied re-
search . Electrochemical processes are generally viewed as environ-
mentally friendly and sustainable due to their use of electrons as “clean
reagents” to initiate reactions. As a result, electrochemical technology
has found extensive use in energy-related applications [49, 50], envi-
ronmental monitoring [51] and biochemical sensing [52]To this end, de-
veloping selective, sensitive, robust, and sandwich electrode devices for
use in electrochemical sensors and biosensors is of critical importance.
Electrochemical sensors have the potential to address various societal
issues, including those related to the health of human beings and the
environment [53].The major issues faced by electrochemical sensors in
detecting drug compounds are excessively high voltage and overvoltage,
as well as weak signals. To address this problem, electrodes that have
been altered with conductive catalysts are commonly utilized. Among
the various catalysts employed in designing novel electrochemical sen-
sors, nanomaterials are a crucial type [54].

2.3. Components of sensors

hydrophilic membranes called wetting filters separated these elec-
trodes , which are designed to be hydrophilic so that they can facilitate
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the transport of electrolyte among the adjacent electrodes. This enables
ions to move in and out of the electrodes (see Figure 3) [55]. Electro-
chemical sensors are systems that incorporate an electrochemical trans-
ducer that may transform the response received from the interaction of
the target analyte and the element that senses into a quantifiable signal
that corresponds to the analyte concentration. The traditional electro-
chemical sensor, as shown in Fig. 1, is made up of three electrodes:
the working electrode (WE), the counter electrode (CE), and the refer-
ence electrode (RE). WE is the site of the electrocatalytic reaction and
is changed with various nanomaterials to improve the electrocatalytic
reaction. CE completes the circuit, continuing the flow of electrons,
while RE guarantees that the WE potential is applied correctly [56]. The
equilibrium procedures enable the three-electrode configuration to pre-
serve its sensor sensitivity and consistency for most of its lifespan. A gas
permeable membrane is typically used to allow gases into the system.
Its hydrophobic membrane effectively separates water from gases and
controls the gas quantity that can access the working electrode’s sur-
face and simultaneously obstructs any liquid leakage from the sensor’s
interior [57].

The location where either reduction or oxidation takes place depends
on the interaction of the gas species under observation with the system
at the working electrode. To each reaction ,that occurs on the exterior
of the working electrode’s area, there will be a corresponding feedback
from the counter electrode,which acts as a balancing pole. When the sys-
tem is activated, the counter electrode works to equilibrium the potential
change resulting from the response of the working electrode to the gases
being detected. The primary measurement for an amperometric electro-
chemical sensor is the monitoring of the balancing current in a dynamic
manner. To maintain the system, the potential on the reference electrode
is necessary to secure the working electrode[58].

3. Electrodes Materials

Electrochemical sensors rely heavily on electrodes as they are essen-
tial in transforming chemical reactions into electrical signals. Typically,
an electrochemical sensor is consisting of a pair of electrodes, namely
a reference electrode and a working electrode. The working electrode
serves the purpose of identifying the target analyte and generating a sig-
nal, whereas the reference electrode maintains a steady electric potential
that permits the measurement of the potential of the working electrode.
A variety of electrodes are employed in electrochemical sensors, includ-
ing metal electrodes, carbon electrodes, and conductive polymer elec-
trodes n[49]. Metal electrodes, such as gold and platinum, are frequently

used as working electrodes owing to their high stability and conductivi-
ty. Carbon electrodes, like glassy carbon and carbon nanotubes [59], are
also widely used due to their large surface area and low background cur-
rent [60]. The use of conductive polymer electrodes, such as polypyrrole
and polyaniline, is on the rise because of their potential to identify par-
ticular analytes selectively [61]. Electrochemical sensors may incorpo-
rate a counter electrode along with the working and reference electrodes,
to ensure the smooth flow of electrons through the electrical circuit. A
non-reactive metal such as platinum or stainless steel is often utilized for
the counter electrode. Other types of electrodes used in electrochemical
sensors include pseudo-reference electrodes, working electrodes, and
reference electrodes [49].

Metal-based materials, including metal nanoparticles, oxides, and
hydroxides [62-65], are often employed as electrodemodifiers due to
their excellent electrocatalytic properties [66]. These materials can ef-
fectively reduce interference and lower the overpotential needed for
analyte detection. While noble metals such as Pt, Au, and Ag [62] are
well-known for their electrocatalytic potential, cheaper metals like Cu,
Co, and Ni [65] have demonstrated similarly promising results. Of these,
nickel has garnered significant attention as a surface modifier for elec-
trodes, particularly in the form of oxides or hydroxides, owing to its
superior stability in air or solution when compared to pure metallic par-
ticles [67] .

The choice of the suitable electrode type relies on factors such as
the properties of the analyte, the sensitivity required, and the cost con-
straints. Below are the types of electrodes:

Platinum (Pt) electrode: Pt is a commonly used electrode material
due to its high electrical conductivity, stability, and low reactivity with
most chemicals. It is commonly used in electrochemical sensors for gas
detection, oxygen measurement, and pH sensing [68].

Gold (Au) electrode: Au is also a popular electrode material due to
its high conductivity, biocompatibility, and stability. It is commonly
used in biosensors for the detection of biological molecules, like to pro-
teins, DNA, and viruses[69].

Carbon-based electrodes: Carbon-based materials [70], such as
glassy carbon[71], graphen [71, 72], and carbon nanotubes [73, 74], are
commonly used in electrochemical sensors because of their extensive
surface area. low cost, and ease of modification. They are used in a va-
riety of electrochemical sensing applications, including glucose sensing,
DNA sequencing, and detection of environmental pollutants.

Metal oxide electrodes: Metal oxide materials, such as tin oxide, zinc
oxide, and titanium oxide, are used in gas sensors for the recognition
of gases, including carbon monoxide, methane, and hydrogen, through
detection methods.They are also used in electrochemical sensors for the
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detection of environmental pollutants [75, 76] .

Nickel sulfide (NiS) electrode: NiS is a versatile electrode material
that has been used in electrochemical sensors for the detection of various
analytes, such as glucose, hydrogen peroxide, and dopamine. Biosensors
for detecting specific biological molecules can be developed by modify-
ing NiS electrodes with various biomolecules [77, 78].

Selecting the right electrode materials is extremely important be-
cause the harmful nature of Hg can cause risks to both human health and
the environment. Over the past few decades, a range of electrochemical
sensors for heavy metal detection have been developed based bismuth
electrodes [79]. The deposition of these materials on the electrode is a
well-established fact, and they tend to easily amalgamate with heavy
metal ions at negative potentials. The use of anodic stripping voltam-
metry (ASV) produces electric currents that correspond to a particu-
lar heavy metal ion when it undergoes oxidation at a specific anodic
potential. One of the most sensitive, affordable, easy-to-use, and safe
techniques for analyzing heavy metals in water is Square wave anodic
stripping voltammetry (SWASV), which is widely recognized and com-
monly used [80].

Carbon plays an essential role in electroanalysis and electrocatalysis
for sensing purposes is possibly the most extensively utilized materi-
al. Among carbon-based nanomaterials, graphene and CNTSs are highly
sought-after for electrode design in the bioanalytical field because they
offer a combination of desirable properties, including good electrical
conductivity, acceptable biocompatibility, high surface area, and electro-
chemical or chemical durability [81]. owing to their small size and high
conductivity, carbon nanotubes (CNTSs) are appropriate for use as single
nanoscale electrodes. Numerous studies have demonstrated that these
individual nanoelectrodes possess electric properties that can effective-
ly enhance electron-transfer reactions [82]. However, integrating CNTs
into biosensing electrodes has proven to be challenging. They are typ-
ically used as intermediaries linking enzymes to electrodes composed
of glassy carbon, Au, Pt. A binder is utilized to produce a CNT paste
that can be used to obtain arbitrary distributions of carbon nanotubes on
electrodes made of glassy carbon, Au, Pt.

The two-dimensional plane of graphene grants it a vast specific sur-
face area, which makes it ideal for immobilizing substantial quantities
of various substances, including metals, nanoparticles, and biomolecules
[83] Due to the fact that every single atom in graphene is considered a
surface atom, the interaction between molecules and the transportation
of electrons through graphene can be highly sensitive to any molecules
that are absorbed. Due to its properties, graphene can aid in the transfer
of electrons during its use as an electrode. This makes it a cost-effective
replacement for carbon nanotubes [84]. Unlike the curled configuration
of graphene, carbon nanotubes are a planar sheet with an uncovered
structure. As a result, both sides of the graphene sheet can be used for
catalysis support [85]. As a result, it is regarded as a more favorable
catalyst carrier. Until now, graphene sheets have been utilized in the
production of electrochemical sensors for hydrogen peroxide, ascorbic
acid, hydrazine, and biosensors. Conversely, materials based on copper
oxide and copper have been extensively studied for the electro-oxidation
of glucose over an extended period [86, 87].

Thin films of metal chalcogenides are attractive materials for the
production of various devices including photodiode arrays covering a
wide area, coatings that selectively absorb solar energy, cells that con-
vert sunlight into electricity, sensors, and photoconductors [88]. Among
the VIII-VI group of compound semiconductors, Nickel sulphide is a
compound of a transition metal that displays interesting characteristics.
By doping or in response to temperature and pressure changes, nickel
sulphide displays a metal-insulator transition. The compound demon-
strates antiferromagnetic semiconductor properties in its low tempera-
ture phase, and paramagnetic properties In its high temperature phase.

Owing to these unique properties, nickel sulphide thin films are utilized

in several applications such as solar selective coatings. The authors,
SURESH et al, opted for the chemical bath deposition (CBD) method
due to its multiple benefits such as easy instrumental operation, low cost,
large area production, and low elaboration temperature. The objective of
their study is to synthesize NiS thin films produced through the use of
the CBD technique. The micrographs of the NiS thin films demonstrated
that they were homogenous, finely-grained, and thoroughly coated onto
the substrate, with some particle overgrowth. These NiS thin films are
applicable in a range of devices such as storage electrodes in photoelec-
trochemical storage devices, IR detectors, and solar selective coatings
[89].Figure 4, show Materials working electrode modifications in elec-
trochemical sensors.

Luo et al. [90] have reported that in an alkaline solution, glucose
shows a positive response at a nickel electrode. A Ni2*/3" ion pair pres-
ent on the Ni surface that has undergone oxidation was suggested as the
possible mechanism for this response. Ni-NDC (Nickel nanoparticles
distributed in erratic graphite-like carbon) were analyzed by T.You et al
[91] to study their reaction to sugars.

According to their findings, They revealed that the sensitivity of Ni-
NDC towards sugars is enhanced by at least one level, and it shows
a relative standard deviation of 1.75% for 40 successive detections in
comparison to bulk Ni.Prabhu and Baldwin, on the other hand, used am-
perometric detection of glucose at a constant potential in basic solution
with CuO plated on glassy carbon [92].The Cu2+/3+ redox pair medi-
ated the electrocatalysis for glucose oxidation in the same way that the
Ni-electrode did.

Among the accomplishments made possible by the use of nanomate-
rials in electrode modification are the following [93]:

. Improved surface kinetics

. Increased electrochemical processes due to increased electro-

active surface area.

. Nanomaterials, also offer a robust foundation as well as highly

active integration sites that enhance electrode selectivity.

4. Synthesis and properties of nanomaterials nickel
sulfide

There are several types of nickel sulfide, including:

. Nickel monosulfide (NiS): a binary compound of nickel and
sulfur, with the chemical formula NiS.

. Nickel disulfide (NiS,): a binary compound of nickel and sul-
fur, with the chemical formula NiS2.

. Nickel subsulfide (NisS): a ternary compound of nickel and
sulfur, with the chemical formula Ni,S,.

. B-Nickel sulfide (B-NiS): s transitional stage of nickel sulfide,
which is the most commonly studied form of nickel sulfide in
electrochemical sensors.

The properties and applications of these nickel sulfide compounds
can vary depending on their structure and composition. For example,
B-NiS has shown promise as a sensing material in electrochemical sen-
sors because its the distinctive characteristics like excellent conductiv-
ityand good catalytic activity. Nickel sulfide is a potential nanomaterial
that has various uses in the fields ofenergy conversion , catalysis, and
electronics. The synthesis of NiS nanoparticles has been widely investi-
gated using various methods such as chemical precipitation, hydrother-
mal synthesis, and solvothermal synthesis. These approaches provide a
significant level of mastery in regulating the dimensions, structure, and
crystal morphology of the nanoparticles obtained.novel hierarchical A
solvothermal technique was employed to produce NiS with a flower-like
structure, which was found to exhibit remarkable catalytic performance
towards the electrochemical oxidation of H;O, on a carbon paste elec-
trode under alkaline conditions. The resulting material displayed high
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catalytic activity for MOR.

According to a study conducted by Jingchao Zhang et al [94], they
found that the H,O, sensor had remarkable consistency, a broad range
of detection 0.5 uM to 1.37 mM, and strong electrocatalytic capabili-
ties. Furthermore, the NiS with a flower-shaped hierarchical structure
demonstrated excellent electrocatalytic activity in an alkaline medium
for the methanol oxidation reaction (MOR) and displayed significant
tolerance towards the catalyst-poisoning species produced during the
reaction. The process of MOR was observed to occur by directly elec-
tro-oxidizing methanol on the surface layer of oxidized NiS. This was
attributed to the redox reactions of Ni (I11)/Ni (l11).

As far as we know, this study represents the first documented instance
of creating a distinctive hierarchical flower-shaped NiS material using a
solvothermal technique for the purpose of detecting H,O, through an
electrochemical method. Furthermore, the material showed strong cata-
lytic activity for the MOR in an alkaline setting when applied to a car-
bon paste electrode. The strong electrocatalytic capabilities displayed by
the NiS nanostructures for the MOR in an alkaline environment implies
potential new applications for them as effective electrocatalysts in DM-
FCs.Wengin Wu et al [95] reported in their study that they synthesized
Ni7S6 particles using a one-pot hydrothermal method, with NiC,,-6H,0
and thiourea as the precursors. To elaborate, they first dissolved 454.46
mg NiC,,-6H,0 in 6 mL of distilled water, and so added 24 mL of EA
and 114.18 mg of thiourea to the solution.The solution was stirred for
approximately 25 minutes and introduced into an autoclave composed of
stainless steel that is lined with Teflon and has a volume of 50 mL. It was
subsequently heated at 180°C for a duration of 12 hours. Following this,
the sulphide was collected and washed multiple times with ethanol and

Table 1.
Nickel sulfide-based composite as electrodes in electrochemical sensors.

deionized water, before being dried under vacuum. The structure and
morphology of the synthesized Ni;Ss were then examined through SEM
analysis, revealing that it had a flower-like appearance with multiple
nanoplates featuring sharp tips that extended from the core. The particle
size was estimated to be roughly 1 pm.

Ongoing research is dedicated to improving the performance of
non-enzymatic glucose sensors using NizS, as a material. The promising
properties of NisS, make it an attractive candidate for glucose monitor-
ing applications. Recent research by Soochan Kim et al. involved the
development of NisS; with diverse morphologies on Ni foam through
adjustments to solvent composition.

The structure and morphology of the resulting products can be sig-
nificantly influenced by the polarity and coordination of the reaction
medium, which in turn can have a notable impact on the reactivity and
diffusion of the reactants.Nevertheless, no research has been reported
yet on the confinement of the NisS, structure’s morphology with the
help of a solvent. Several different structures of NizS, were created on
Ni foam by means of a hydrothermal technique in a environmentally
friendly solution of water and ethanol, with the aim of filling this void
[96]. By controlling the reaction medium, a hierarchical structure of
NisS; was produced, and its electrochemical properties were investigat-
ed with regards to its morphology. The prepared NisS, electrode with
a hierarchical structure was then employed to detect glucose, demon-
strating excellent selectivity , sensitivity, and repeatability [97]. Ni3S;
nanosheet arrays were synthesized via a simple one-step hydrothermal
process on Ni foam substrate, and directly utilized as an electrode for
a high-performance supercapacitor and non-enzymatic glucose sensor.
The resulting electrode demonstrated both high energy density and ex-
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cellent long-term stability. Furthermore, as a non-enzymatic sensor, the
3D NS, nanosheet array electrode exhibited exceptional electrocata-
lytic activity towards glucose oxidation, with a exellent sensitivity of
6148.0 mA mM cm.In addition, the Ni S nanosheet array electrode
exhibits extraordinary glucose electrocatalytic activity, including high
sensitivity, excellent selectivity, a low detection limitation, and an im-
mediate response. All of these remarkable performance metrics indicate
that the NisS , nanosheet array is a promising electrode material for glu-
cose sensors that do not rely on enzyme [98].

Electrodeposition is another method for synthesizing nickel sulfide.
In a study by Padmanathan et al., a thin film of NiS was successfully de-
posited via chronoamperometry onto ITO-coated glass substrates. Prior
to electrodeposition, the ITO substrates were cleaned to remove surface
impurities. This was done by using Ultrasonic treatment using ethanol
as the solvent and then in water for a period of 10 minutes.To prepare a

solution for a NiS thin film sensor, 0.01m Ni(NO,),-6H,0 and 0.1m thio-
acetamide were mixed in 100 mL of water that has been distilled twice.
The NiS thin films were deposited on an ITO substrate by applying a
fixed potential of 0.9 V for 500 s. The produced sensor demonstrated a
low detection limit and high sensitivity, with values of 0.32 mm and7.43
mAmm-1cm-2, respectively. Additionally, it had a response time of less
than 8 seconds [78]. In a separate study conducted by Rekha Bhardwaj
and colleagues [99], the process of creating mesoporous rhombohedral
B-NiS involved using thiourea as the source of sulfur, and was done
through a solvothermal method. By conducting a Rietveld refinement,
it was verified that the formation of rhombohedral B-NiS occurred in a
single phase.The optical, electro-catalytic, and morphological properties
of the synthesized B-NiS nanoparticles were found to be influenced by
the reaction temperature. The FESEM pictures showed that there were
structures resembling cluster beans and 1-D nano-rods.
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5. Composites of nickel sulfide

The composite of nickel sulfide (NiS) electrode is a commonly used
material in electrochemical sensors. Electrochemical sensors are devic-
es that measure the concentration of a specific substance in a solution
by measuring the current produced by an electrochemical reaction. The
composite of nickel sulfide electrode is a versatile material that can also
be used in biosensors. Biosensors are instruments that employ biologi-
cal substances like antibodies or enzymes for the purpose of detection.
and measure the concentration of specific substances in a sample. These
devices are widely used in healthcare, food safety, and environmental
monitoring.

NiS-based electrodes have been used in various electrochemical sen-
sors for the detection of different analytes such as glucose, hydrogen
peroxide, and neurotransmitters.One of the main advantages of using
NiS-based electrodes in electrochemical sensors is their high electrocat-
alytic activity, which enables the efficient conversion of analyte mole-
cules into measurable electrical signals. The exceptional catalytic per-
formance is credited to the distinctive configuration of NiS, which has
abundant active sites and a vast surface area that helps in the transfer of
electrons during reactions. Moreover, NiS-based electrodes possess ex-
cellent stability and durability, making them suitable for long-term sens-
ing applications. They also have good biocompatibility, which makes
them ideal for biosensing applications.Several methods have been re-
ported for the fabrication of NiS-based electrodes, including chemical
vapor deposition, electrodeposition, and hydrothermal synthesis. Table
1 shows the types of nickel sulfide-based electrodes, along with their
fabrication methods and applications .In the following, research about
nickel sulfide composites has been discussed. Among methods, the hy-
drothermal method is a popular technique for synthesizing nickel sulfide
composite electrodes due to its several advantages.the hydrothermal
method allows for precise control over the size, shape, and composition
of the synthesized nanoparticles. The reaction occurs in an aqueous solu-
tion under high pressure and temperature, which facilitates the formation
of homogeneous and crystalline nanoparticlesand this is a simple and
cost-effective technique, which makes it suitable for large-scale produc-
tion of nickel sulfide composite electrodes. The method does not require
complex equipment and can be easily scaled up.Therefore, due to its
precise control over nanoparticle size and shape, simplicity and cost-ef-
fectiveness, and excellent electrochemical properties, the hydrothermal
method is a good method for the synthesis of nickel sulfide composite
electrodes. NiS electrodes show significant promise for the advancement
of electrochemical sensors due to their exceptional electrocatalytic ac-
tivity, long-lasting stability, durability, and compatibility with biologi-
cal systems.Further research is required to optimize the fabrication and
functionalization of NiS-based electrodes for to detect a wide spectrum
of analytes with high sensitivity and selectivity.

Electrode materials can be categorized into three types based on their
composition: The original text refers to three types of materials inorganic
polymer compound materials, metal compound materials, and non-me-
tallic materials [100, 101]. The ability of an electrode material to store
energy is influenced not only by its individual characteristics, but also by
its microstructural properties. Among metal compound materials, The
nanofibers made of NiS and shaped like flowers have a unique structure
made of nano-sheets. This structure provides multiple pathways for the
transfer of ions and electrons, which results in excellent rate perfor-
mance. Additionally, these nanofibers have a high specific capacitance.
Furthermore, the sensor assembled with the CLFW@Ni-NiS/V hybrid
can detect even small amounts of deformation or external pressure by
converting them into current signals. This sensitivity showcases the sen-
sor’s ability to detect subtle changes [102]. The exceptional properties

displayed by a hybrid that is intelligent and can perform multiple func-
tions, such as self-healing capabilities, shape-memory, and good reshap-
ing, make it a promising candidate for a vast array of uses, which may
involve sensing, catalysis, and energy storage. These applications have
been extensively studied and are of great interest to researchers [18-20].
The limited conductivity of NiS has hindered its further application. To
address this issue, some researchers have combined NiS with materi-
als that exhibit good conductivity to achieve enhanced electrochemical
performance. Examples of such materials include carbon [103] and met-
al nanoparticles. Sunil Kumar Naik et al [104], reported on the use of
graphene oxide / NiS to modify a glassy carbon electrode in order to
improve the conductivity of NiS. This modified electrode was referred
to as NiS/IGO/MGCE. Both electrochemical and electrochemical im-
pedance spectroscopy (EIS) modes were used to assess the detection
abilities ertaining to the electrode that has been altered or adjusted in
some way towards urea in water. The results suggest that the electrode
modified with NiS/GO nanocomposite showed an exceptionally low
level of detection and that the process of the electrode was found to
be controlled by diffusion. The newly developed sensor was evaluat-
ed for its practicality, long-term stability, interference, and selectivity.
Consequently, the MGCE /GO/ NiS showed impressive electrocatalytic
properties when detecting urea, showcasing strong sensitivity, selectiv-
ity, and reproducibility. In reseach about nickel sulphide by R.M. Abdel
Hameed et al [105], the process of electrospinning was employed in or-
der to create carbon nanofibers that have nickel sulphide nanoparticles
incorporated onto them. This was achieved by using a sol-gel mixture of
DMF and PAN, and NiAc and NH,S were added. The mixture was then
subjected to an electrospinning process at 20 kV, afterwards, the material
was subjected to calcination in an argon environment at a temperature of
900 degrees Celsius for a duration of 2 hours. The nanomaterial that was
obtained showed exceptional catalytic efficiency in the electro-oxidation
of urea under basic conditions, mainly due to the enhanced surface area
of the metallic nanofibers and their effective dispersion.The NiS/CNFs
nanocomposite exhibited higher oxidation current density values in
KOH solution when the concentration of urea molecules was increased.
Through an EIS examination, it was discovered that there was a better
charge transfer mechanism occurring at the surface of the nanomaterial,
suggesting its potential to be an efficient nanocatalyst for electrocatalytic
reactions involving urea.Furthermore, The method utilized to produce
the nanocomposite has the potential to be expanded for the synthesis of
multiple bimetallic nanocomposites in various proportions, which can
be utilized in sustainable energy system [106]. In recentely study, NiS
was utilized to selectively interact with analytes as it helps with electron
distribution. However, neat NiS is unstable during the interaction, so
stabilizing the compound is crucial. Thus, the researchers synthesized
nickel sulfide/graphene oxide (NiS/GO) via the superficial hydrothermal
method to stabilize the compound. They characterized the synthesized
functionalized GO nanoparticles to fine-tune the size, surface area, and
morphology for the specific application. The results showed that the
NiS/GO nanocomposite modified electrode had a very low detection
limit and that the electrode process was controlled by diffusion. Addi-
tionally, the developed NiS/GO/MGCE showed excellent electrocatalyt-
ic behavior towards urea sensing with good sensitivity, selectivity, and
reproducibility in sensor .

6. Conclusion and future perspectives

Electrochemical sensors are essential tools used in various fields,
such as environmental monitoring, medical diagnostics, and energy stor-
age. The development of novel electrode materials with enhanced sensi-
tivity, selectivity, and stability is crucial for the advancement of electro-
chemical sensing and energy storage technologies. Nickel sulfide (NiS)
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is a promising material for use as electrodes in electrochemical sensors
due to its excellent electrical conductivity, low cost, and high surface
area. However, the sensitivity and selectivity of NiS-based sensors can
be improved by incorporating other materials into the NiS structure to
form composite electrodes. This article discussed the use of NiS-based
composites as electrodes in electrochemical sensors, highlighting their
potential applications and benefits.The use of NiS-based composites
as electrodes in electrochemical sensors has shown significant prom-
ise for various applications. For example, NiS-carbon nanotube (CNT)
composite electrodes have been shown to have high sensitivity towards
glucose, making them suitable for glucose monitoring applications. The
high sensitivity of this composite electrode can be attributed to the syn-
ergistic effect between NiS and CNT, which enhances the interaction be-
tween the electrode and glucose molecules.NiS-reduced graphene oxide
(rGO) composite electrodes have also been explored for use in electro-
chemical sensing applications, such as the detection of dopamine. The
NiS-rGO composite electrode showed high sensitivity and selectivity
towards dopamine, making it a promising candidate for dopamine de-
tection in biological samples. Furthermore, NiS-based composites have
also been used as anodes in lithium-ion batteries due to their high theo-
retical specific capacity and excellent cycling stability. NiS-carbon com-
posites have been shown to have enhanced electrochemical performance
as anodes in lithium-ion batteries, making them promising candidates
for energy storage applications.The use of NiS-based composites as
electrodes in electrochemical sensors and energy storage devices shows
great promise, but there are several challenges that need to be addressed.
One of the main challenges is the stability of the composite electrode un-
der various conditions, such as high temperatures and corrosive environ-
ments. The development of stable NiS-based composite electrodes with
high performance and stability is crucial for their practical applications.
Another challenge is the scalability and reproducibility of the NiS-based
composite electrode fabrication process. The development of cost-ef-
fective and scalable fabrication methods is necessary for the practical
application of NiS-based composite electrodes.

Future research can focus on developing new NiS-based composites
with improved sensing and energy storage properties for various appli-
cations. The design and optimization of NiS-based composite electrodes
can also be explored to improve their performance and stability. In ad-
dition, the integration of NiS-based composite electrodes with micro-
fluidic systems and portable devices can further enhance their potential
applications in various fields. In conclusion, the incorporation of other
materials into NiS structures to form composite electrodes has shown
great potential for various electrochemical sensing and energy storage
applications. Future research can focus on developing new NiS-based
composites with improved sensing and energy storage properties for
various applications. The design and optimization of NiS-based com-
posite electrodes can also be explored to improve their performance and
stability. Overall, the use of NiS-based composites as electrodes in elec-
trochemical sensors and energy storage devices shows great promise and
is an exciting area of research for future development.
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