

Available online at www.jourcc.comJournal homepage: www.JOURCC.com

Journal of Composites and Compounds

Carbon-based composites for removal of pharmaceutical components from water

Saeed Bahadorikhahili ^a, Fariborz Sharifianjazi ^{b *} , Maryam Azimpour ^c, Neda Min Bashi ^d, Aliasghar Abuchenari ^e,

Mahsa Borzouyan Dastjerdi ^f, Zahra Hashemian ^g, Masoud Soroush Bathaei ^h, Mahnoosh Fatemi ⁱ,

Mahsa Hojjati ^j, Amirhossein Esmaeilkhani ^k, Elahe Ahmadi ^l

^a Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain

^b School of Science and Technology, The University of Georgia, Tbilisi, Georgia

^c Hospital of Shahid Ayatollah Dastgheib, Shiraz University of Medical Science, Shiraz, Iran

^d Department of Pharmacy, University of Georgia, Tbilisi, Georgia

^e Materials Engineering, Shahid Bahonar University, Kerman, Iran

^f College of Engineering, Science, and Environment, School of Engineering, The University of Newcastle, Australia

^g Faculty of Agriculture, Roudehen Branch, Islamic Azad University (IAU), Tehran, Iran

^h Department of Mining and Materials Engineering, McGill University, Montréal, Canada

ⁱ Department of Biology, Falavarjan Branch, Islamic Azad University (IAU), Isfahan, Iran

^j Faculty of Chemistry, Shahrood University of Technology, Shahrood, Semnan, Iran

^k Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran

^l Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran

ABSTRACT

Carbon-based materials, including carbon nanotubes, graphene, and activated carbon, are among the most effective materials for pharmaceutical components removal from water. Despite the severe effect of pharmaceutical micropollutants in the aquatic environments and the effectiveness of carbon-based composites for water treatment, only a few studies have reviewed carbon-based materials for the removal of pharmaceutical components. Carbon-based materials with special properties like tunable surface functions, abundant pore structure, and high specific surface area are used in different water treatment mechanisms such as adsorption and advanced oxidation processes. Graphene, activated carbon, and carbon nanotubes have been widely studied for pharmaceutical components removal. Herein, we have introduced carbon-based materials and reviewed recent studies on their properties, application in water treatment, and possible mechanism for removal of pharmaceutical components from aquatic environments.

©2022 UGPH.

Peer review under responsibility of UGPH.

ARTICLE INFORMATION

Article history:

Received 10 July 2022

Received in revised form 22 October 2022

Accepted 06 December 2022

Keywords:

Pharmaceutical

Carbon-based

Composite

Compound

Removal

Water

Table of contents

1. Introduction.....	233
2. Removal Mechanism	233
2.1. Adsorption Mechanism	233
2.2. Advanced Oxidation Processes	233
2.2.1 Oxidation processes	234
2.2.2 Reduction processes.....	234
3. Carbon-based Materials for Removal Pharmaceutical	234
3.1. Activated carbon	234
3.2. Carbon Nanotubes.....	235
3.3. Graphene	236
3.4. Carbon quantum dots (CQD)	237
4. Removal efficiency of carbon-based composites and other materials	238
5. Conclusions and future insights	238

* Corresponding author: Fariborz Sharifianjazi; E-mail: f.sharifianjazi@ug.edu.ge

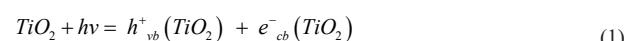
1. Introduction

There are many concerns about the effect and presence of active pharmaceutical compounds in water in recent years, additionally, cost-effective and efficient technologies have been developed to treat groundwater, surface water, and industrial effluents and remove these compounds [1]. About 100 different substances of pharmaceuticals up to various milligrams per liter have been discovered in water environments including drinking, surface, and underground water [2]. Direct toxicity to environmental media, endocrine disorders, antibiotic resistance spread in microorganisms, genetic toxicity, and potential risks for human health are the effects of the contamination of these medicinal substances for the aquatic environment [3]. Antibiotic residues reduce the quality of drinking water because they affect the structural metal ions' properties. Therefore, when residues of antibiotics are received from the environment through drinking and eating, they may affect the gut microbiota due to the effect of potential biomagnification. More than 700,000 deaths per year are reported due to drug resistance-related diseases, which, if the main reasons are not addressed, could reach 10 million annually by 2050 [4]. It is worth mentioning that unfortunately medicinal substances with aromatic structures are resistant or difficult to decompose in nature.

The destruction of pharmaceuticals in waters has been accomplished through the use of a variety of techniques, the majority of which are classified as advanced oxidation processes (AOPs). These techniques include electrochemical oxidation, ozonation, ultrasound radiation and sonolysis, Fenton and photo-Fenton, photolysis and photocatalysis and other similar processes [3, 5-7]. As a result, a number of techniques for removing antibiotics from systems have been created, such as membrane procedures, chlorination, improved oxidation technology, electrochemical processes, ultrasonic cavitation, and adsorption [8]. chitosan [9], polymeric compounds [10] metals and their oxides, Carbon, and clay minerals [9, 11] are among the substances that have been developed to remove antibiotics from aqueous solutions. Because of its high specific surface area, plentiful pore structure, and adaptable surface functions, carbon materials have been widely utilized to remove antibiotics [12, 13].

This study focuses on carbon composites for the removal of pharmaceutical from water. Variety of this composites, mechanisms is discussed herein.

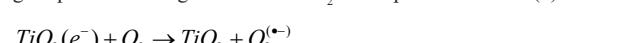
2. Removal Mechanism

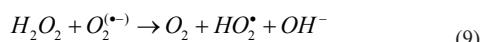

2.1. Adsorption Mechanism

Traditional biological wastewater treatment methods are unable for removing antibiotic residues effectively and need a significant amount of additional energy. Due to high removal efficiency, comparatively low prices, global applicability, and its simplicity of operation, adsorption is regarded as a highly promising technology [14]. The process of adsorption involves the pharmaceutical compounds accumulation on the surface of the adsorbent [8]. Capturing molecules of interest is driven by the interaction between the adsorbent and adsorbate. Therefore, adsorbent selection must be judicious [15]. The pore size, functional group composition, surface area, and ash concentration all have a significant impact on how effective this method is. In addition to this, it is dependent on the chemical factors such as the other competing solutes availability, pH, polarity, concentration of the adsorbate, and temperature [16, 17]. Additionally, the process of adsorption is dependent on the pore size

of surface, adsorbate molecules mobility toward the adsorbent exterior or boundary layer, and active surface sites [18]. The functional groups (-NH₂, -OH, and -COOH) of carbon-based adsorbents have a significant impact on the adsorption efficiency and adsorption process [19]. The fundamental adsorption process between antibiotics and AC is electrostatic interactions, which include attraction between the adsorbents as well as an oppositely charged adsorbate [20]. In addition, the antibiotics adsorption onto carbon-based adsorbents is facilitated in large part by π - π electron donor-acceptor (EDA) interactions, hydrogen bonds, π - π interactions and hydrophobic interactions [8].

2.2. Advanced Oxidation Processes


Due to the following benefits among these AOPs, heterogeneous photocatalysis looks to be one of the most appealing technologies: (1) Heterogeneous photocatalysis does not generate residues and secondary sludge during the pharmaceutical residues breakdown from complex molecules into simple, nonhazardous substances; (2) Because catalysts and activity of photocatalyst during the treatment procedure stay essentially constant, heterogeneous photocatalysis can be re-usable; (3) owing to the nanoscale catalysts' enormous surface area and the pharmaceuticals' strong adsorption to the catalyst surface, the photocatalyst concentration utilized to break down residues of pharmaceutical in water is extremely low; (4) Heterogeneous photocatalysis is an alternate solution to environmental cleanup and remove pharmaceutical residues that is both effective and inexpensive [21]. In the process of photocatalysis, a semiconductor material is employed for generating hydroxyl radicals (OH[•]), which play the principal oxidant function. In addition, several reactive oxygen species that have a high level of reactivity are also engaged in the degradation of pharmaceutical residues [22]. stimulation of the catalyst by a photon with an energy which is equal to or greater than the semiconductors band gap energy is required for the initiation of photocatalytic processes [23]. In semiconductors, the production of electron-hole pairs (e⁻/h⁺) in response to light stimulation with a wavelength that is less than 400 nm, as shown in Equation (1),



Where conduction band or cb is the lowest available energy and valence band or vb is the greatest available energy. According to pH and the semiconductor characteristics, these holes in the vb can be significantly oxidized (+1-3.5V vs. typical hydrogen electrode (NHE)) and subsequently react with molecules of water or hydroxide ions (OH) for generating OH[•]. As shown in Eqs., has a powerful oxidising capacity that is involved for the mineralization of contaminants and organic molecules to produce RX⁺ (Equations (2-4)).

According to Equations. (5-9), the electron conduction band is highly lowering (+0.5 to 1.5V versus NHE) and can decrease dissolved oxygen species for the generation of HO₂ and superoxide ions \bullet . (9).

At last, they reach the photocatalyst's surface, where they interact with adsorbed species. As a result, the oxidizing power of the holes is employed by heterogeneous photocatalytic processes to either directly or indirectly destroy medicinal substances [24-26].

2.2.1. Oxidation processes

Heterogeneous photocatalysis, a kind of AOP, is a very successful approach that generates a hydroxyl radical (OH^\bullet) that readily decomposes pharmaceutical compounds into CO_2 , inorganic acids, and H_2O [27]. The oxidation procedure has three steps [8]: (1) contaminants diffusion to the semiconductor's surface. (2) the same pollutants are diffused onto the surface of the catalyst on which they were degraded by OH radicals produced by the water oxidation or positive holes OH formed in the valence band (2 and 3 Eqs.). Adsorbed contaminants can interact with positive holes directly, although interactions with water happen more often and lead to oxidative breakdown. The results of pollutant oxidation are then desorbed and dispersed from the semiconductor's surface. Moreover, in the use of wastewater and water, the oxidation process primarily aids in the destruction of various pharmaceutical chemicals [28-31].

2.2.2. Reduction processes

A series of complex reactions of heterogeneous photocatalytic decomposition of the remaining pharmaceutical substances causes the

conversion of photon energy into chemical energy through a redox reaction [23]. Along with the oxidation carried on by the holes, according to Eq. (5), the reduction process happens on the surface of the catalyst, where O_2 combines with the electron in the conduction band, in order to generate superoxide ion (O_2^\bullet). According to equation (6), O_2^\bullet can react with hydrogen ions and produce HO_2 [25]. The formation of H_2O_2 from HO_2^\bullet via Eq. (7) and subsequent cleavage of OH^\bullet (Eq. 8) by an electron in the cccb on the surface of catalyst is what causes certain leftover medicines to break down into intermediate compounds [32].

3. Carbon-based Materials for Removal Pharmaceutical

Up to date, numerous adsorbents have been created and due to carbon-based adsorbents have large specific surface areas, plentiful pore structures, and strong interactions they have been recognized as useful adsorbent for pollutant removal. Carbon based materials include AC, graphene, CNTs, and their composites which are promising materials for removal of antibiotic [33-35].

Up to date, Researchers have developed various absorbents among which carbon-based absorbents show excellent properties such as high specific strong interactions, surface areas, and abundant pore structures. In next section we introduce these materials and review their properties.

3.1. Activated carbon

AC is a solid substance containing active black carbon with good

Table 1.

Different activated carbon based composites and their removed capacity for removal of various pharmaceutical components.

Material	Removed Pharmaceutical	Mechanism	Removed Capacity	Ref.
α -Fe/ Fe_3C	Tetracycline	Adsorption	156 mg/g	[46]
	hydrochloride		158 mg/g	
$ZnFe_2O_4/AC^*$	Gemifloxacin mesylate	Adsorption	433.4 mg/g	[43]
	Moxifloxacin hydrochloride		388.8 mg/g	
Chitosan/40%NAC*/2%APT-ES*	Acetaminophen	Adsorption	407.83 mg/g	[47]
MAC/ Fe_2O_3	Ibuprofen	Adsorption	95%	[48]
	Amoxicillin		90%	
$NiFe_2O_4/AC$	Ibuprofen	Adsorption	261.35	[49]
	ketoprofen		97.75 mg/g	
$Fe_2O_3@bismuth carbonate/AC$ fiber	Antipyrine	Photocatalysis	60%	[50]
$TiO_2/ 10 \%AC$	Benzodiazepine	Photocatalysis	90%	[44]
MAC*/ TiO_2	Tetracycline	photocatalysis	93%	[51]
	Diclofenac		153.8%	
AC/ TiO_2 -9%	Carbamazepine	Photocatalysis/Adsorption	105.3%	[52]
	Sulfamethoxazole		125%	
AC/ TiO_2	Sulfamethazine	Photocatalysis/Adsorption	90%	[53]
Oxygen-activated carbon fibre	Acetaminophen	Photocatalysis	99.9%	[54]
Activated carbons from Brazil nutshells	Acetaminophen	Adsorption	98.9%	[55]
CA*-OGR*-NPs*Ag/CuO	Cephalexin	Adsorption	756.8 mg/g	[56]
AC/TiO_2	Ceftriaxone	Photocatalysis	99.6%	[57]
GAC/ TiO_2	Metronidazole	Photocatalysis	97.4%	[58]
Ag/AgBr-Activated Carbon	Tetracycline	Photocatalysis	925	[59]

* AC: Activated Carbon

* MAC: Magnetic Activated Carbon

* NAC: Nano Activated Carbon

* APTES: (3-Aminopropyl)Triethoxysilane

*CA: Activated Carbon

*OGR: Graphene

*NPs: Nanoparticles

pore size, high absorption, and a high surface area that is frequently utilized in the industry for purification of air and water. In general, any carbon-based materials may be used to make AC, but its characteristics and activation procedures determine its application [36-38].

Thermal activation and Chemical activation are the methods for production of activated carbon. Thermal activation is a physical process with two primary phases. In the first step, volatile compounds are removed from the raw materials by thermal carbonization at temperatures between 500 and 600 degrees Celsius. In the second stage, the surface and porosity are modified by means of gasification. Steam or Methane, CO₂ are employed as an oxidizing gas in the gasification process at temperatures over 800-1000 °C [39]. Activation by chemicals: The surface area and microporosity of activated carbon can be enhanced by adding inorganic salts like metal chloride prior to the carbonization procedure [39]. ZnCl₂, CaCl₂, ZnCl₂, H₂O₂[40] K₂CO₃, and other salts are among the most frequently employed activators [41, 42]. The composite of porous carbon formed from the metal-organic framework (MOF) is an effective adsorbent for the separation of antibiotics owing to its unique features. However, the use of a costly substance as an organic ligand, like terephthalic acid (H₂BDC), reduces the material's cost benefits and practical applicability. It has been reported that H₂BDC was recovered from discarded polyethylene terephthalate (PET) bottles by alkaline hydrolysis catalyzed by ultrasonication and phase transition under moderate circumstances. In the production of magnetic porous carbon composite (-Fe/Fe₃C) formed from iron-based MOF, high-purity H₂BDC was utilized and also it was examined as an adsorbent for the removal of TCH from an aqueous solution [42].

Li et al. reported the synthesize of ZnFe₂O₄/AC as a magnetic adsorbent via microwave method. 433.4 and 388.8 mg/g adsorption capacities for removing Gemifizacin Mesylate and Moxifloxacin Hydrochloride was achieved via ZnFe₂O₄/AC composites respectively [43]. pH, scavenging agents, initial pollutant concentration, and chemical oxidation are such input which have an effect on the performance of carbon-based composites systems. Temperature is one of the parameters which affects removal efficiency of pharmaceuticals. Cunha and et al. reported the lower efficiency of TiO₂/AC10% calcined at 500°C than TiO₂/AC10%

calcined at 400°C. This can attribute to TiO₂ nanoparticles aggregation into clusters on the surface of active carbon. So, at this temperature, the number of activation sites on the surface of TiO₂ particles and a specific surface area of TiO₂ will decrease [44].

Due to the rise of oxygen-containing functional groups on the AC surface after three cycles of adsorption-ozonation, the adsorption capacity of AC rose from 80 to 215 mg/g.

Ren and et al. increased Chlorobenzene removal efficiency of powdered activated carbon from 80 to 215 mg/g by Ozonation. This was because of rise of oxygen-containing functional groups on the activated carbon surface [45].

To eliminate acetaminophen from aqueous solutions, beads made of chitosan/nano-activated carbon composite (CS-NAC) were combined with (3-aminopropyl)triethoxysilane (APTES). A greater adsorption capacity (407.83 mg/g) was observed for the aminated adsorbent (CSNACAPTES beads) produced with 2% v/v APTES and 40% w/w NAC. The CS-NAC-APTES beads surface area was found to be greater than that of the CSNAC beads using a Brunauer-Emmett-Teller (BET) study (1.16 times).

3.2. Carbon Nanotubes

The use of carbon nanotubes (CNT) as adsorbents for cleaning water has shown promising results. CNTs are cylinder-shaped carbon allotropes that have an aromatic surface and are rolled into shape [38, 60, 61]. Carbon nanotubes' distinctive structure results in low electrical resistance, great thermal conductivity, and high mechanical strength [38, 62]. CNTs are divided into two main types based on cylindrical shells' number, which include multi-walled CNTs (MWCNT) and single-walled CNTs (SWCNT). Each end of a single-walled carbon nanotube (SWCNT) which has a cylindrical's diameter about 0.42nm, is capped with a ring of graphite [63, 64]. MWCNTs, on the other hand, take the form of concentrically arranged cylinders whose diameters range from 2 to 25 nm and whose layer-to-layer spacing is 0.34 nm [33]. Ranjbar et al. studied deference of single- and multi-walled carbon nanotubes adsorption of pharmaceutical components. The performance of multi-walled carbon

Table 2.

Carbon Nanotube based composites and their removed capacity for removal of various pharmaceutical components.

Material	Removed Pharmaceutical	Mechanism	Removed Capacity	Ref.
CNT ^a /MOF-808	Carbamazepine	Photocatalysis	68%	[71]
WO ₃ /CNT	Tetracycline	Photocatalysis	60 mg/L	[72]
MWCNT ^b -TiO ₂ -SiO ₂	bisphenol A	Photocatalysis	95%	
	Carbamazepine	Photocatalysis	98%	[73]
N-CU@TiO ₂ /CNTs	sulfamethoxazole	Photocatalysis	100%	[68]
CNTs/L-cys ^c @GO ^d /SA ^e	Ciprofloxacin	Adsorption	200 mg/g	[14]
CDs*/CMNTs*	Carbamazepine	Adsorption	65 mg/g	[74]
Single-walled CNTs	Aspirin	Adsorption	83.72%	
	Atrazine	Adsorption	84.08%	[75]
Multi- walled CNTs	Aspirin	Adsorption	86.38%	
	Atrazine	Adsorption	86.88%	[75]
Ceramic Membranes/MWCNTs	Tetracycline	Adsorption	45.4%	[65]
MWCNTs/AC	Ciprofloxacin	Adsorption	73%	[76]
Fe/N-CNT + PS ^f	Acetaminophen	Adsorption	98.4%	[77]
Magnetic chitosan/ MWCNTs	Acetaminophen	Adsorption	98.1%	[78]
CNT/Clay/Fe ₂ O ₃	Amoxicillin	Adsorption	87.56%	[79]
Ti/Fe /CNT@Alg ^g	Tetracycline	Adsorption	294.12	[80]
CNT-COOH/MnO ₂ /Fe ₃ O ₄	Ibuprofen	Adsorption	103.093	[81]
	Paracetamol	Adsorption	80.645	
Bi ₂ WO ₆ /CNT/TiO ₂	Cephalexin	Photocatalysis	99.2%	[82]

^a CNT: Carbon Nanotubes

^b MWCNT: Multi Wall Carbon Nanotubes

^c L-cys: L-Cysteine

^d GO: Graphene Oxide

^e SA: Sodium Alginate

^f PS: Persulfate

^g Alg: alginate microbeads

nanotubes in absorbing atrazine has been reported to be superior than that of single-walled carbon nanotube. Polak et al. used GO, MWCNTs, and SWCNTs for modification of ceramic membranes for tetracycline removal from water. Results showed MWCNTs increased adsorption properties more than other modifier components [65]. Their adsorption properties is determined by factors like as purity, porosity, site density, functional groups, CNT type, and surface area [64, 66, 67].

Isari et al. modified single-walled carbon nano-tube with N-Cu doped TiO_2 . The study showed that 60 mg/L sulfamethoxazole removed in 60 min and pH of 6. The adsorption capacity was significantly increased Because of the large SBET of CNT. N and Cu were introduced into the TiO_2 crystals, and as a consequence, above-valance bands and sub-conduction bands were formed above and under the TiO_2 vb and cb respectively. The rate of formation of e-/h+ couples was boosted by these sub-cb and above-vb. Furthermore, effective SMXZ mineralization was made feasible owing to the potential formation of $\pi-\pi$ conjugated bonds between organic molecules and the CNT surface [68].Sheng et al. investigated the effect of polyethylene microplastic on the adsorption of carbamazepine MWCNTs. The adsorption capacity of carbamazepine by MWCNT decreased by entry of polyethylene microplastic [69].

Because of their special structure and functional groups, CNT surfaces interact with both organic and inorganic substances through a variety of intermolecular interactions [70].

3.3. Graphene

Graphene is a two-dimensional carbonaceous nanomaterial formed from a layer of sp₂ hybridized carbon atoms. The graphene nanomaterial has exceptional properties such as high specific surface area, high electrocatalytic activity, great thermal conductivity, high stiffness and strength and high speed electron mobility. one of the two-dimensional nanomaterial made of carbon is which graphene made of a layer of

carbon atoms that have performed sp₂ hybridization. high stiffness and strength, High great electrocatalytic activity, high-speed electron mobility superior thermal conductivity ,and specific area are only a few of the extraordinary qualities of graphene nanomaterials [83].

Because graphene is hydrophobic, it may interact with contaminants that are hydrophobic through van der Waals or $\pi-\pi$ interactions. Hydrophobicity, nevertheless, could potentially restrict its use in aquatic conditions. Thus, graphene is often altered for generating reduced graphene oxide (rGO) or graphene oxide (GO) [33]. The application of GO in aqueous environments becomes possible due to the presence of highly reactive functional groups which caused hydrophilicity improvement. Due to its unique physicochemical features, including as high mechanical strength, electroconductivity, thermal stability, and adsorption capacity, there has been increased interest in graphene-based nanomaterials in recent years [8, 84, 85].

Amali et al., reported 99.60% removal of sulfasalazine by Fe@ Fe_2O_3 /3D-GO composite. 3D graphene was synthesized by hydrothermal method and loaded with core-shell nanowires of Fe@ Fe_2O_3 , Khalil et al., synthesised porous graphene (PG) at low temperature for the removal of carbamazepine, diclofenac, ibuprofen, gemfibrozil, and ciprofloxacin. Removal efficiency PG and GO was compared and And it was suggested that rGO had a lower specific surface (98 m²/g) area than PG (670 m²/g). So, PG showed better performance [86]. In another study, Khalil et al., compared single and double layer of PG for filtration of carbamazepine and gemfibrozil and revealed that double layer PG had more outperformance [87]. Graphene can also be used as a solid electron mediator/acceptor. El-Fawal et al., constructed Ag FeO_2 -graphene/ $Cu_3(BTC)_3$ nanocomposite for photocatalytic removal of amoxicillin and diclofenac. This tertiary heterojunction photocatalysts showed excellent act due to enhanced charge transfer mechanism via Z-scheme from CB of $Cu_3(BTC)_3$ to VB of Ag FeO_2 and graphene as a solid elec-

Table 3.

Graphene based composites and their removed capacity for removal of various pharmaceutical components.

Material	Removed Pharmaceutical	Mechanism	Removed Capacity	Ref.
MGO ^a	Amoxicillin	Adsorption	98.41 mg/g	[89]
	Carbamazepine		154.25 mg/g	
Nanostructured porous graphene	Gemfibrozil	Adsorption	40 mg/g	[86]
	Diclofenac		76 mg/g	
Graphene Nanoplatelets	Sulfamethoxazole	Adsorption	210.08mg/g	[90]
	Acetaminophen		56.21mg/g	
MnO ₂ /Graphene	Tetracycline	Adsorption	99.4%	[91]
Carbon xerogel/graphene	metronidazole	Adsorption	110-166 mg/g	[92]
GO-PFB ^b	Sulfadiazine	Adsorption	10020.21	[93]
GO-PFBS ^c			567.17	
Fe@ Fe_2O_3 /3D-GO	sulfasalazine	Photocatalysis	99.60%	[94]
TiO ₂ -ZnO/CS-Gr	Tetracycline	Photocatalysis	20 mg/L	[95]
MgO/ZnO/G	Sulfamethoxazole	Photocatalysis	55 mg/L	[96]
Porous Amine-Modified Green-Graphene	Metronidazole	Adsorption	74%	[97]
TiO ₂ -graphitized	Tetracycline	Photocatalysis	94.64%	[98]
rGO/ HoVO ₄ -TiO ₂	ibuprofen	Photocatalysis	96%	[99]
Graphene/Ni@TiO ₂ /W	Acetaminophen	Photocatalysis	100	[100]
graphene quantum dots(Spinel like)	doxycycline	Photocatalysis	796 mg/g	[101]
	tetracycline		672 mg/g	
Ag FeO_2 -graphene/ $Cu_3(BTC)_3$	Amoxicillin	Photocatalysis	87.4%	[88]
	Diclofenac		95.5%	

^aMGO: Magnetic Graphene Oxide

^bPFB: Pentafluorobenzene

^cPFBS: Pentafluorobenzoate

tron mediator/acceptor [88].

3.4. Carbon quantum dots (CQD)

Because of their unique characteristics like simplicity/low cost, photoluminescence, water-solubility, easy surface modification, optical stability, and biocompatibility, scientific studies pertaining to carbon dots, an carbon nanomaterial unique type with a quasi-spherical shape and size below 10 nm, have been growingly released [102]. CDs are broken down into subcategories such carbon nanodots (CNDs), carbon quantum dots (CQDs), and graphene quantum dots (GQDs), based on whether or not their central carbon core is nanocrystalline, amorphous, or a mixture of the two [103]. With an average crystal lattice size of 0.24 nm, GQDs are single- or multi-layer structure nanoparticles that display quantum confinement thanks to their conjugated π -electron graphene layers. CQDs are restricted by quantum mechanics, despite having a crystal structure with an interlayer spacing of 0.34 nm, the same as that found in graphite [104]. Furthermore, CNDs are nanoparticles that lack quantum confinement due to their amorphous structure, which is made up of stacked or networked monomers or linear polymers. As a result of their complicated structure and the wide range of changes that might result from different precursors and different synthesis processes, car-

bon dots fall into a number of different categories [105]. CQDs, being nanosized materials with a high surface area to volume ratio, might offer up more active surface area for the interface's adherence of contaminants [105, 106]. [2]. Adsorption mechanisms are generally divided into two categories: chemical and physical absorption, which differ in terms of interaction with various reactive species (ions, atoms, molecules) [107]. CQDs' sp₂ conjugated carbon structure may enhance molecular interactions in aqueous solution with the aromatic rings of organic contaminants via π - π stacking interaction. However, the functional groups' high concentration (e.g. epoxy, amino, carboxyl, carboxyl, and hydroxyl groups) on the surface of CQDs would improve their ability for interacting with a wide variety of molecules and heavy metal ions, resulting in greater adsorption performance [108].

Koe et al., fabricated and deposited N,S-CQDs/TiO₂ nanocomposite on polysulfone (PSF) membrane for photodegradation of diclofenac. According to the results, an increase in degradation performance from 3.33% to 62.3% was observed by the use of N,S-CQDs [109]. Yuam et al. used N-CQDs on BiVO₄ for photodegradation of tetracycline. The formation of surface defects on N-CQDs is advantageous for the photocatalytic performance. The photodegradation efficiency for pure BiVO₄ was only 50.9% while it was increased to 75.7% for N-CQDs/BiVO₄

Table 4.

Carbon quantum dots based composites and their removed capacity for removal of various pharmaceutical components.

Material	Removed Pharmaceutical	Mechanism	Removed Capacity	Ref.
N,S-CQDs/TiO ₂	Diclofenac	Photocatalysis	62.3%	[109]
CQDs/rGO/S@g-C ₃ N ₄ /B@g-C ₃ N ₄	Chloramphenicol	Photocatalysis	99.1%	[112]
CQD- g-C ₃ N ₄ -PANI ^a	Ciprofloxacin	Photocatalysis	87.6%	[111]
BiVO ₄ /N-CQDs/Cu ₂ O	Tetracycline	Photocatalysis	99.1%	[110]
Si-CQDs/TiO ₂	Acetaminophen	Photocatalysis	100%	[113]
N-CQDs/InNbO ₄	Iproniadazole	Photocatalysis	97.2%	[114]
CQDs@CoO/La ₂ O ₃ /NiO	Ofloxacin	Photocatalysis	93.8%	[115]
CQD/C-TiO ₂	Sulfamethoxazole	Photocatalysis	100%	[116]
Cu-TiO ₂ /CQD4 wt%	Sulfamethoxazole	Photocatalysis	100%	[116]
CUS/CQD	Panadol	Photocatalysis	96.5%	[117]
N-SCQDs	Sulfadiazine	Photocatalysis	100%	[118]
CQDs/g-C3N4	Diclofenac	Photocatalysis	99.9%	[103]
CQDs/g-C3N4	Tetracycline	Photocatalysis	~100%	[119]

^aPANI: Polyaniline

Table 5.

Removal efficiency of carbon-based composites and other materials.

Removed Pharmaceutical	Carbon based composite			Other material		
	Material	RE%	Ref.	Material	RE%	Ref.
Sulfamethazine	CQD/C-TiO ₂	100%	[116]	Ferroxane	80%	[127]
		62.3%				
Diclofenac	N,S-CQDs/TiO ₂		[109]	Crystalline MnO	21%	[129]
Diclofenac	AgFeO ₂ -graphene/Cu ₃ (BTC) ₃	95.5%	[88]	Moringaoleifera adsorbant	87.4%	[130]
Tetracycline	WO ₃ /CNT	60 mg/g	[72]	Non-activated sludge-based	10 mg/g	[131]
Tetracycline	BiVO ₄ /N-CQDs/Cu ₂ O	99.1%	[110]	HA/Fe-Al ₂ O ₃ /O ₃	75%	[132]
Tetracycline	MnO ₂ /Graphene	99.4%	[91]	Mn(2.62%)-MoS ₂ @AABs*	80%	[122]
Acetaminophen	Fe/N-CNT + PS*		[77]	CoS/S(IV)	83.1%	[133]
Acetaminophen	Magnetic chitosan/ MWCNTs	98.1%	[78]	Fe ²⁺ /persulfate	70%	[121]
Acetaminophen	Si-CQDs/TiO2	100%	[113]	Fe-TiO ₂ /Ag-ZnO	85%	[134]

[110]. Balakumar et al., decorated porous g-C₃N₄ / polyaniline with CQDs using ultra-sonication approach. The 5.0% g-C₃N₄ / polyaniline decorated CQDs composite showed 87.6% photocatalytic degradation of ciprofloxacin. This photocatalytic degradation is because of its higher charge separation and surface area, which lowered the recombination rate [111]. In another study, the modification of S@g-C₃N₄/B@g-C₃N₄ with CQDs and rGO was reported. The S@g-C₃N₄/B@g-C₃N₄/CQDs/rGO composite resulted in 99.1% photo-degradation of chloramphenicol [112].

4. Removal efficiency of carbon-based composites and other materials

Other than carbon based composites, Metal oxides, Sulfides, and Natural Coagulants are also used for removal of pharmaceutical components from water [120-122]. Nurhasanah et al. studied the potential of cerium oxide as an adsorbent for the tetracycline removal from a water/alcohol environment with the removal efficiency of 80-97% in 60 min reported for cerium oxide [123]. TiO₂ has been used in a wide variety of studies for the removal of pharmaceutical components. However, because of the wide band gap of TiO₂, and fast electron-hole recombination, it has low removal efficiency. To improve its removal efficiency, many researches have attempted to decorate it with other materials [124]. YaluWuYinyinXu et al. reported the synthesize of TiO₂/polypyrrole decorated NiCoP nanocomposites. The absorbance capacity for NiCoP/TiO₂/polypyrrole was reported to be 83% [125]. Leong et al, synthesized Ni(OH)₂ modified TiO₂ nanorods via hydrolysis process. Ni(OH)₂-modified TiO₂ showed 76% removal efficiency after 30 min adsorption process; whereas commercial TiO₂ showed only 57% removal efficiency [126]. This is while TiO₂ modification by carbon based materials results in a higher efficiency. For example, nano-TiO₂/Carbon and Magnetic Activated Carbon/TiO₂ possess removal efficiency of 100% and 93%, respectively. The study of iron oxide (ferroxane) semiconductors as catalysts for heterogeneous Fenton reactions for removal of Sulfamethazine showed 80% removal after 2 hour reaction period [127]. While, carbon modified composites such as CQD/C-TiO₂, MgO/ZnO/G, N-CU@TiO₂/CNTs, Fe@Fe₂O₃/3D-GO showed removal efficiency of more than 90% for Sulfamethazine. Gómez-Pacheco et al. studied the effectiveness of technologies based on the simultaneous use of O₃ on the Tetracycline (TC) removal from water and reported that TC removal rate has been increased in presence of activated carbon. This increase is due to the generation of HO• radicals, which have greater oxidizing power over O₃ [128].

*AABs: Activated Alumina Bead

5. Conclusions and future insights

These days, due to the increase in use of pharmaceutical components in veterinary medicines and human life, releasing of these substances into aquatic environments is continuously increasing. Direct toxicity to environmental media, endocrine disorders, antibiotic resistance spread in microorganisms, genetic toxicity, and potential risks for human health are the effects of the contamination of these medicinal substances for the aquatic environment. Therefore, it is essential to remove pharmaceutical components from aquatic environments. Several materials such as polymeric materials, carbonaceous materials, silica-based adsorbents, clay and other materials have been used to achieve this aim. However, carbon-based materials show high removal efficiency and good performance. In this review, Carbon-based composites for removal of pharmaceutical components from water are summarized. Activated carbon, Car-

bon nanotubes, Graphene, Carbon quantum dots and their composites are the most studied materials which have been reviewed thoroughly in this work. Also, we discussed adsorption and photocatalysis as two main removal mechanisms. In addition, few researches have surveyed possible decomposition mechanisms for pharmaceutical components which can be an important topic for other studies in future.

REFERENCES

- [1] J.L. Wilkinson, A.B. Boxall, D.W. Kolpin, K.M. Leung, R.W. Lai, C. Galbán-Malagón, A.D. Adell, J. Mondon, M. Metian, R.A.J.P.o.t.N.A.o.S. Marchant, Pharmaceutical pollution of the world's rivers, 119(8) (2022) e2113947119.
- [2] O.H. Yakubu, Pharmaceutical Wastewater Effluent—Source of Contaminants of Emerging Concern: Phytotoxicity of Metronidazole to Soybean (*Glycine max*), 5(2) (2017) 10.
- [3] D.N. Nguyen, H.M. Bui, H.Q. Nguyen, Chapter 7 - Heterogeneous photocatalysis for the removal of pharmaceutical compounds, in: S. Varjani, A. Pandey, R.D. Tyagi, H.H. Ngo, C. Larroche (Eds.), *Current Developments in Biotechnology and Bioengineering*, Elsevier2020, pp. 161-183.
- [4] B.L. Phoon, C.C. Ong, M.S. Mohamed Saheed, P.-L. Show, J.-S. Chang, T.C. Ling, S.S. Lam, J.C. Juan, Conventional and emerging technologies for removal of antibiotics from wastewater, *Journal of Hazardous Materials* 400 (2020) 122961.
- [5] S. Bugeño-Carrasco, H. Monteil, C. Toledo-Neira, M.Á. Sandoval, A. Thiam, R. Salazar, Elimination of pharmaceutical pollutants by solar photoelectro-Fenton process in a pilot plant, *Environmental Science and Pollution Research* 28(19) (2021) 23753-23766.
- [6] J. Hollman, J. Albino Dominic, L. Jackson, G. Achari, Application-Scale Parametric Evaluation of Ultraviolet Photolysis (UV) and UV/H₂O₂ for the Degradation of Neutral Pharmaceuticals in Municipal Wastewaters, *Journal of Environmental Engineering* 147(12) (2021) 04021061.
- [7] S. Kharel, M. Staaf, U. Miehe, M. Ekblad, M. Cimbritz, P. Falás, J. Nilsson, R. Sehlén, J. Bregendahl, K. Bester, Removal of pharmaceutical metabolites in wastewater ozonation including their fate in different post-treatments, *Science of The Total Environment* 759 (2021) 143989.
- [8] C.Y. Teo, J.S.J. Jong, Y.Q. Chan, Carbon-Based Materials as Effective Adsorbents for the Removal of Pharmaceutical Compounds from Aqueous Solution, *Adsorption Science & Technology* 2022 (2022) 3079663.
- [9] J. Lyu, L. Yang, L. Zhang, B. Ye, L. Wang, Antibiotics in soil and water in China—a systematic review and source analysis, *Environmental Pollution* 266 (2020) 115147.
- [10] C. Daou, S. Rafqah, F. Najjar, H. Anane, A. Piram, A. Hamade, S. Briche, P.J.J.o.P. Wong-Wah-Chung, P.A. Chemistry, TiO₂ and activated carbon of Argania Spinosa tree nutshells composites for the adsorption photocatalysis removal of pharmaceuticals from aqueous solution, 388 (2020) 112183.
- [11] G. Gopal, S.A. Alex, N. Chandrasekaran, A.J.R.a. Mukherjee, A review on tetracycline removal from aqueous systems by advanced treatment techniques, 10(45) (2020) 27081-27095.
- [12] A. Mellah, D.J.J.E.T.T. Harik, Removal pharmaceutical pollutants by adsorption competitive using powdered activated carbon CAP (f400), 8(1) (2020) 336-345.
- [13] W. Yang, M. Zhou, N. Oturan, M. Bechelany, M. Cretin, M.A.J.J.o.h.m. Oturan, Highly efficient and stable FeIIFeIII LDH carbon felt cathode for removal of pharmaceutical ofloxacin at neutral pH, 393 (2020) 122513.
- [14] J. Ma, Z. Jiang, J. Cao, F.J.C. Yu, Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions, 242 (2020) 125188.
- [15] N. Arif, I. Uddin, A. Hayat, W.U. Khan, S. Ullah, M. Hussain, Homogeneous iron-doped carbon-nitride-based organo-catalysts for sensational photocatalytic performance driven by visible light, *Polymer International* 70(9) (2021) 1273-1281.
- [16] S. Dou, X.-X. Ke, Z.-D. Shao, L.-B. Zhong, Q.-B. Zhao, Y.-M.J.C. Zheng, Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin, 287 (2022) 131962.
- [17] H. Liu, G. Xu, G.J.S.o.T.T.E. Li, The characteristics of pharmaceutical sludge-derived biochar and its application for the adsorption of tetracycline, 747 (2020) 141492.
- [18] M.R. Cunha, E.C. Lima, D.R. Lima, R.S. da Silva, P.S. Thue, M.K. Seliem, F. Sher, G.S. dos Reis, S.H.J.J.o.E.C.E. Larsson, Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from *Butia catarinensis*, 8(6) (2020) 104506.
- [19] İ. Demiral, C. Samdan, H.J.S. Demiral, Interfaces, Enrichment of the surface functional groups of activated carbon by modification method, 22 (2021) 100873.

[20] N.T. Nguyen, T.H. Dao, T.T. Truong, T.M.T. Nguyen, T.D.J.J.o.M.L. Pham, Adsorption characteristic of ciprofloxacin antibiotic onto synthesized alpha alumina nanoparticles with surface modification by polyanion, 309 (2020) 113150.

[21] R. Alnaizy, A. Akgerman, Advanced oxidation of phenolic compounds, Advances in Environmental Research 4(3) (2000) 233-244.

[22] T. Oppenländer, Photochemical purification of water and air: advanced oxidation processes (AOPs)-principles, reaction mechanisms, reactor concepts, John Wiley & Sons2007.

[23] O.K. Dalrymple, D.H. Yeh, M.A. Trotz, Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis, 82(2) (2007) 121-134.

[24] D. Kanakaraju, B.D. Glass, M. Oelgemöller, Titanium dioxide photocatalysis for pharmaceutical wastewater treatment, Environmental Chemistry Letters 12(1) (2014) 27-47.

[25] T. Ochiai, A. Fujishima, Photoelectrochemical properties of TiO_2 photocatalyst and its applications for environmental purification, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13(4) (2012) 247-262.

[26] Z. Li, S. Cong, Y. Xu, Brookite vs Anatase TiO_2 in the Photocatalytic Activity for Organic Degradation in Water, ACS Catalysis 4(9) (2014) 3273-3280.

[27] L.S. Rocha, D. Pereira, É. Sousa, M. Otero, V.I. Esteves, V. Calisto, Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: A review, Science of The Total Environment 718 (2020) 137272.

[28] E. Mugunthan, M.B. Saidutta, P.E. Jagadeeshbabu, Photocatalytic degradation of diclofenac using TiO_2 - SnO_2 mixed oxide catalysts, Environmental Technology 40(7) (2019) 929-941.

[29] J. Gomes, J. Lincho, E. Domingues, R.M. Quinta-Ferreira, R.C. Martins, N- TiO_2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal, Water, 2019.

[30] M. Stucchi, G. Cerrato, C.L. Bianchi, Ultrasound to improve both synthesis and pollutants degradation based on metal nanoparticles supported on TiO_2 , Ultrasonics Sonochemistry 51 (2019) 462-468.

[31] A. Ounnar, L. Favier, A. Bouaza, F. Bentahar, M. Trari, Kinetic study of spiramycin removal from aqueous solution using heterogeneous photocatalysis, Kinetics and Catalysis 57(2) (2016) 200-206.

[32] D. Kanakaraju, C.A. Motti, B.D. Glass, M. Oelgemöller, TiO_2 photocatalysis of naproxen: Effect of the water matrix, anions and diclofenac on degradation rates, Chemosphere 139 (2015) 579-588.

[33] Y. Xiang, Z. Xu, Y. Wei, Y. Zhou, X. Yang, Y. Yang, J. Yang, J. Zhang, L. Luo, Z.J.J.o.e.m. Zhou, Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors, 237 (2019) 128-138.

[34] B. Fakić, A. Kumar, M. Alipour, A. Abbas, E. Ahmadi, N. Nikzad, P. Shafiee, Carbon-based materials and their composites as anodes: A review on lithium-ion batteries, Journal of Composites and Compounds 4(11) (2022) 124-139.

[35] M. Ferdosi Heragh, S. Eskandarinezhad, A. Dehghan, Ni-Cu matrix composite reinforced with CNTs: preparation, characterization, wear and corrosion behavior, inhibitory effects, Journal of Composites and Compounds 2(4) (2020) 123-128.

[36] E.L. Thiang, C.W. Lee, H. Takada, K. Seki, A. Takei, S. Suzuki, A. Wang, C.W.J.E.H. Bong, Sustainability, Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: a case study from Malaysia, 7(1) (2021) 1926337.

[37] F. Yu, Y. Li, S. Han, J.J.C. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, 153 (2016) 365-385.

[38] I. Tajzad, E. Ghasali, Production methods of CNT-reinforced Al matrix composites: A review, Journal of Composites and Compounds 2(2) (2020) 1-9.

[39] M. Bartoli, M. Frediani, Carbon-Based Material for Environmental Protection and Remediation, 2020.

[40] J. Feng, K. Qiao, L. Pei, J. Lv, S. Xie, Using activated carbon prepared from *Typha orientalis* Presl to remove phenol from aqueous solutions, Ecological Engineering 84 (2015) 209-217.

[41] A. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B - Condensed Matter and Materials Physics 61(20) (2000) 14095-14107.

[42] N. Ferrera-Lorenzo, E. Fuente, I. Suárez-Ruiz, B. Ruiz, KOH activated carbon from conventional and microwave heating system of a macroalgae waste from the Agar-Agar industry, Fuel Processing Technology 121 (2014) 25-31.

[43] D.L. Cunha, A. Kuznetsov, J.R. Araujo, R.S. Neves, B.S. Archanjo, M.C. Canela, M.J.W. Marques, Air., S. Pollution, Optimization of benzodiazepine drugs removal from water by heterogeneous photocatalysis using TiO_2 /activated carbon composite, 230(7) (2019) 1-17.

[44] M. Ren, J. Wang, Z. Wang, S. Sun, J. Qiu, Y. Shi, Z.-j. Wang, Y. Xie, Activated carbon adsorption coupled with ozonation regeneration for efficient removal of chlorobenzene, Journal of Environmental Chemical Engineering 10(2) (2022) 107319.

[45] K.-W. Jung, J.-H. Kim, J.-W.J.C.P.B.E. Choi, Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride, 187 (2020) 107867.

[46] M. Vakili, P. Amouzgar, G. Cagnetta, B. Wang, X. Guo, A. Mojiri, E. Zeiman, B.J.P. Salamatinia, Ultrasound-Assisted Preparation of Chitosan/Nano-Activated Carbon Composite Beads Aminated with (3-Aminopropyl) Triethoxysilane for Adsorption of Acetaminophen from Aqueous Solutions, 11(10) (2019) 1701.

[47] F. Vargues, M.A. Brion, A.M. Rosa da Costa, J.A. Moreira, M. Ribau Teixeira, Development of a magnetic activated carbon adsorbent for the removal of common pharmaceuticals in wastewater treatment, International Journal of Environmental Science and Technology 18(9) (2021) 2805-2818.

[48] A.C. Fröhlich, E.L. Foletto, G.L. Dotto, Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions, Journal of Cleaner Production 229 (2019) 828-837.

[49] P. Kar, K. Shukla, P. Jain, R.K.J.R.C. Gupta, Engineering, An activated carbon fiber supported Fe_2O_3 @bismuth carbonate heterojunction for enhanced visible light degradation of emerging pharmaceutical pollutants, 6(11) (2021) 2029-2041.

[50] B. Kakavandi, N. Bahari, R.R. Kalantary, E.D.J.U.s. Fard, Enhanced sono-photocatalysis of tetracycline antibiotic using TiO_2 decorated on magnetic activated carbon (MAC@ T) coupled with US and UV: a new hybrid system, 55 (2019) 75-85.

[51] S. Briche, M. Derqaoui, M. Belaiche, E.M. El Mouchtari, P. Wong-Wah-Chung, S. Rafqah, Nanocomposite material from TiO_2 and activated carbon for the removal of pharmaceutical product sulfamethazine by combined adsorption/photocatalysis in aqueous media, Environmental Science and Pollution Research 27(20) (2020) 25523-25534.

[52] P. Jakóbczyk, G. Skowierzak, I. Kaczmarzyk, M. Nadolska, A. Wcisło, K. Lota, R. Bogdanowicz, T. Ossowski, P. Rostkowski, G. Lota, J. Ryl, Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments, Chemosphere 304 (2022) 135381.

[53] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierrez, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids and Surfaces A: Physicochemical and Engineering Aspects 583 (2019) 123966.

[54] G. Wernke, M. Fernandes Silva, E.A.d. Silva, M.R. Fagundes-Klen, P.Y.R. Suzuki, C.C. Triques, R. Bergamasco, Ag and CuO nanoparticles decorated on graphene oxide/activated carbon as a novel adsorbent for the removal of cephalexin from water, Colloids and Surfaces A: Physicochemical and Engineering Aspects 627 (2021) 127203.

[55] M. Abdullah, J. Iqbal, M.S. Ur Rehman, U. Khalid, F. Mateen, S.N. Arshad, A.G. Al-Sehemi, H. Algarni, O.A. Al-Hartomy, T. Fazal, Removal of ceftriaxone sodium antibiotic from pharmaceutical wastewater using an activated carbon based TiO_2 composite: Adsorption and photocatalytic degradation evaluation, Chemosphere 317 (2023) 137834.

[56] N. Nellaippappan, G. Ravi, M. Kumar, Synthesis and Application of Chitosan–Graphene Oxide and Titanium-Dioxide Coated Granular Activated Carbon Composites for Adsorptive and Photocatalytic Removal of Antibiotics, 25(4) (2021) 04021025.

[57] S.O. Sanni, H.G. Brink, E.L. Viljoen, Influence of Synthesis Approach on Controlled Microstructures and Photocatalytic Properties of Ag/AgBr-Activated Carbon Composites on Visible Light Degradation of Tetracycline, 11(11) (2021) 1396.

[58] J. Ahmad, S. Naeem, M. Ahmad, A.R. Usman, M.I.J.J.o.e.m. Al-Wabel, A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes, 246 (2019) 214-228.

[59] M. Bassyouni, A. Mansi, A. Elgabry, B.A. Ibrahim, O.A. Kassem, R.J.A.P.A. Alhebeshy, Utilization of carbon nanotubes in removal of heavy metals from wastewater: A review of the CNTs' potential and current challenges, 126(1) (2020) 1-33.

[60] D. Balarak, Y. Mahdavi, A. Maleki, H. Daraei, S.J.B.J.o.p.r. Sadeghi, Studies on the removal of amoxicillin by single walled carbon nanotubes, 10(4) (2016) 1.

[61] C. Chen, X. Feng, S.J.J.o.C.P. Yao, Ionic liquid-multi walled carbon nanotubes composite tablet for continuous adsorption of tetracyclines and heavy metals, 286 (2021) 124937.

[62] R. Alisani, N. Rakhshani, M. Abolhalla, F. Motevalli, P.G.-s. Abadi, M. Akra-

mi, M. Shahrousvand, F.S. Jazi, M. Irani, Adsorption, and controlled release of doxorubicin from cellulose acetate/polyurethane/multi-walled carbon nanotubes composite nanofibers, *Nanotechnology* 33(15) (2022) 155102.

[63] D. Polak, I. Zielińska, M. Szwast, I. Kogut, A.J.M. Małolepszy, Modification of ceramic membranes with carbon compounds for pharmaceutical substances removal from water in a filtration—Adsorption system, 11(7) (2021) 481.

[64] M.R. Elamin, B.Y. Abdulkhair, A.O. Elzupir, Insight to aspirin sorption behavior on carbon nanotubes from aqueous solution: Thermodynamics, kinetics, influence of functionalization and solution parameters, *Scientific Reports* 9(1) (2019) 12795.

[65] E. Bahmani, B.F. Dizaji, S. Talaei, S. Koushbaghi, H. Yazdani, P.G.-s. Abadi, M. Akrami, M. Shahrousvand, F.S. Jazi, M. Irani, Fabrication of poly(ϵ -caprolactone)/paclitaxel (core)/chitosan/zein/multi-walled carbon nanotubes/doxorubicin (shell) nanofibers against MCF-7 breast cancer, *n/a(n/a)*.

[66] A.A. Isari, F. Hayati, B. Kakavandi, M. Rostami, M. Motevassel, E.J.C.E.J. Dehghanifar, N, Cu co-doped TiO_2 functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: an effective sono-photocatalysis process for pharmaceutical wastewaters treatment, 392 (2020) 123685.

[67] X. Sheng, J. Wang, W. Zhang, Q.J.T. Zuo, The Potential for PE microplastics to affect the removal of carbamazepine medical pollutants from aqueous environments by multiwalled carbon nanotubes, 9(6) (2021) 139.

[68] W. Ren, L. Xiong, G. Nie, H. Zhang, X. Duan, S.J.E.S. Wang, Technology, Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: the role of oxygen functional groups, 54(2) (2019) 1267-1275.

[69] M. Samy, M.G. Ibrahim, M. Fujii, K.E. Diab, M. ElKady, M.G.J.C.E.J. Alalm, CNTs/MOF-808 painted plates for extended treatment of pharmaceutical and agro-chemical wastewaters in a novel photocatalytic reactor, 406 (2021) 127152.

[70] A.A. Isari, M. Mehregan, S. Mehregan, F. Hayati, R.R. Kalantary, B.J.J.o.h.m. Kakavandi, Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO_3 /CNT heterojunction nanocomposite under US and visible light irradiations: a novel hybrid system, 390 (2020) 122050.

[71] B. Czech, W. Buda, Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/ TiO_2 / SiO_2 nanocomposites, *Environmental Research* 137 (2015) 176-184.

[72] Y. Deng, Y.S. Ok, D. Mohan, C.U. Pittman Jr, X.J.E.r. Dou, Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes, 169 (2019) 434-444.

[73] F. Rezaei Ranjbar, F.J.J.o.C.H.R. Khamchin Moghadam, Removal of Pharmaceutical Pollutants of Aspirin and Atrazine from Waste Water Using Carbo Nanotubes, 10(1) (2020) 17-24.

[74] N. Sharifpour, F.M. Moghaddam, G. Mardani, M.J.A.W.S. Malakootian, Evaluation of the activated carbon coated with multiwalled carbon nanotubes in removal of ciprofloxacin from aqueous solutions, 10(6) (2020) 1-17.

[75] D.G. Kim, S.O.J.E.R. Ko, Catalytic degradation of acetaminophen by Fe and N Co-doped multi-walled carbon nanotubes, 201 (2021) 111535.

[76] E. Nabatian, M. Dolatabadi, S.J.A.M.i.E.C.J. Ahmadzadeh, Application of experimental design methodology to optimize acetaminophen removal from aqueous environment by magnetic chitosan@ multi-walled carbon nanotube composite: Isotherm, kinetic, and regeneration studies, 5(01) (2022) 61-74.

[77] A.J.I.J.o.P.R. Als, Removal of pharmaceutical using (CNT) decorated Clay Micro/Nanocomposite as eff Process optimization for ultra adsorption, 11(4) (2019).

[78] A.M. Omer, E.M. Abd El-Monaem, G.M. El-Subrouti, M.M. Abd El-Latif, A.S. Eltaweil, Fabrication of easy separable and reusable MIL-125(Ti)/MIL-53(Fe) binary MOF/CNT/Alginate composite microbeads for tetracycline removal from water bodies, *Scientific Reports* 11(1) (2021) 23818.

[79] I. Lung, M.-L. Soran, A. Stegarescu, O. Opris, S. Gutoiu, C. Leostean, M.D. Lazar, I. Kacso, T.-D. Silipas, A.S. Porav, Evaluation of CNT-COOH/ MnO_2 / Fe_3O_4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions, *Journal of Hazardous Materials* 403 (2021) 123528.

[80] F. Rabaninehr, M. Farhadian, A.R.S. Nazar, A high-performance microreactor integrated with chitosan/ Bi_2WO_6 /CNT/ TiO_2 nanofibers for adsorptive/photocatalytic removal of cephalixin from aqueous solution, *International Journal of Biological Macromolecules* 208 (2022) 260-274.

[81] N.A. Ahammad, M.A. Ahmad, B.H. Hameed, A.T.J.E.S. Mohd Din, P. Research, A mini review of recent progress in the removal of emerging contaminants from pharmaceutical waste using various adsorbents, (2022) 1-15.

[82] Y. Vasseghian, E.-N. Dragoi, F.J.C. Almomani, Graphene-based materials for metronidazole degradation: A comprehensive review, 286 (2022) 131727.

[83] W.-H. Chen, J.-R. Huang, Chapter 3 - Adsorption of organic including pharmaceutical and inorganic contaminants in water toward graphene-based materials, in: A.J. Hernández-Maldonado, L. Blanx (Eds.), *Contaminants of Emerging Contaminants in Water and Wastewater*, Butterworth-Heinemann 2020, pp. 93-113.

[84] A.M.E. Khalil, F.A. Memon, T.A. Tabish, D. Salmon, S. Zhang, D. Butler, Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water, *Chemical Engineering Journal* 398 (2020) 125440.

[85] A.M.E. Khalil, F.A. Memon, T.A. Tabish, B. Fenton, D. Salmon, S. Zhang, D. Butler, Performance Evaluation of Porous Graphene as Filter Media for the Removal of Pharmaceutical/Emerging Contaminants from Water and Wastewater, 11(1) (2021) 79.

[86] E.M. El-Fawal, S.A. Younis, T. Zaki, Designing $AgFeO_2$ -graphene/ $Cu_2(BTC)_3$ MOF heterojunction photocatalysts for enhanced treatment of pharmaceutical wastewater under sunlight, *Journal of Photochemistry and Photobiology A: Chemistry* 401 (2020) 112746.

[87] F.K. Mostafapour, M. Bazi, S.H. Siddiqui, H. Bagheri, D.J.I.J.o.P.I. Balarak, Highly Efficient Adsorption and Removal of Amoxicillin from Aqueous Solution by Magnetic Graphene Oxide Nanocomposite, 11(4) (2021) 384-388.

[88] F.A. Rosli, H. Ahmad, K. Jumbri, A.H. Abdullah, S. Kamaruzaman, N.A. Fathihah Abdullah, Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent, 8(1) (2021) 201076.

[89] Z. Song, Y.-L. Ma, C.-E. Li, The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO_2 /graphene nanocomposite, *Science of The Total Environment* 651 (2019) 580-590.

[90] S.J. Segovia-Sandoval, L.M. Pastrana-Martínez, R. Ocampo-Pérez, S. Morales-Torres, M.S. Berber-Mendoza, F. Carrasco-Marín, Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: Effect of operating parameters, *Separation and Purification Technology* 237 (2020) 116341.

[91] W. Wang, S. Wang, M. Vakili, Y. Wang, C. Sun, H. Yang, G. Xiao, M. Gong, S. Zhou, Intercalating negatively charged pillars into graphene oxide sheets to enhance sulfonamide pharmaceutical removal from water, *Environmental Science and Pollution Research* 29(48) (2022) 72545-72555.

[92] S. Amali, M. Zarei, M. Ebratkhahan, A. Khataee, Preparation of $Fe@Fe_2O_3$ /3D graphene composite cathode for electrochemical removal of sulfasalazine, *Chemosphere* 273 (2021) 128581.

[93] H. Asadzadeh Patehkhor, M. Fattahi, M. Khosravi-Nikou, Synthesis and characterization of ternary chitosan- TiO_2 - ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater, *Scientific Reports* 11(1) (2021) 24177.

[94] S. Moradi, S.A. Sobhgal, F. Hayati, A.A. Isari, B. Kakavandi, P. Bashardoust, B. Anvaripour, Performance and reaction mechanism of MgO/ZnO /Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater, *Separation and Purification Technology* 251 (2020) 117373.

[95] Z. Bonyadi, F. Noghani, A. Dehghan, J.P.v. der Hoek, D.A. Giannakoudakis, S.K. Ghadiri, I. Anastopoulos, M. Sarkhosh, J.C. Colmenares, M. Shams, Biomass-derived porous aminated graphitic nanosheets for removal of the pharmaceutical metronidazole: Optimization of physicochemical features and exploration of process mechanisms, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 611 (2021) 125791.

[96] X. Zhang, H. Chen, S. Liu, B. Zhang, H. Zhu, H. Chen, B. Wen, L. Chen, Preparation of TiO_2 -graphitized carbon composite photocatalyst and their degradation properties for tetracycline antibiotics, *Journal of Molecular Structure* 1270 (2022) 133897.

[97] A. Raja, P. Rajasekaran, K. Selvakumar, M. Arivanandhan, S. Asath Bahadur, M. Swaminathan, Rational fabrication of needle with spherical shape ternary reduced Graphene Oxide-HoVO4- TiO_2 photocatalyst for degradation of ibuprofen under visible light, *Applied Surface Science* 513 (2020) 145803.

[98] C. Gomez-Solis, R. Mendoza, J.F. Rios-Orihuela, G. Robledo-Trujillo, L.A. Diaz-Torres, J. Oliva, V. Rodriguez-Gonzalez, Efficient solar removal of acetaminophen contaminant from water using flexible graphene composites functionalized with $Ni@TiO_2$:W nanoparticles, *Journal of Environmental Management* 290 (2021) 112665.

[99] B. Rabeie, N.M. Mahmoodi, M. Mahkam, Morphological diversity effect of graphene quantum dot/MIL88A(Fe) composites on dye and pharmaceuticals (tetracycline and doxycycline) removal, *Journal of Environmental Chemical Engineering* 10(5) (2022) 108321.

[100] B.B. Chen, M.L. Liu, C.M. Li, C.Z. Huang, Fluorescent carbon dots functionalization, *Advances in Colloid and Interface Science* 270 (2019) 165-190.

[101] W. Liu, Y. Li, F. Liu, W. Jiang, D. Zhang, J. Liang, Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation, *Water Research* 151 (2019) 8-19.

[102] M. Semeniuk, Z. Yi, V. Pourkhababi, J. Tjong, S. Jaffer, Z.-H. Lu, M. Sain,

Future Perspectives and Review on Organic Carbon Dots in Electronic Applications, *ACS Nano* 13(6) (2019) 6224-6255.

[103] R.B. González-González, A. Sharma, R. Parra-Saldivar, R.A. Ramirez-Mendoza, M. Bilal, H.M.N. Iqbal, Decontamination of emerging pharmaceutical pollutants using carbon-dots as robust materials, *Journal of Hazardous Materials* 423 (2022) 127145.

[104] F. Zhao, Y. Rong, J. Wan, Z. Hu, Z. Peng, B. Wang, High photocatalytic performance of carbon quantum dots/TNTs composites for enhanced photogenerated charges separation under visible light, *Catalysis Today* 315 (2018) 162-170.

[105] Z.W. Heng, W.C. Chong, Y.L. Pang, C.H. Koo, An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation, *Journal of Environmental Chemical Engineering* 9(3) (2021) 105199.

[106] K.-Q. Lu, Q. Quan, N. Zhang, Y.-J. Xu, Multifarious roles of carbon quantum dots in heterogeneous photocatalysis, *Journal of Energy Chemistry* 25(6) (2016) 927-935.

[107] W.S. Koe, W.C. Chong, Y.L. Pang, C.H. Koo, M. Ebrahim, A.W. Mohammad, Novel nitrogen and sulphur co-doped carbon quantum dots/titanium oxide photocatalytic membrane for in-situ degradation and removal of pharmaceutical compound, *Journal of Water Process Engineering* 33 (2020) 101068.

[108] X. Yuan, J. Zhang, M. Yan, M. Si, L. Jiang, Y. Li, H. Yu, J. Zhang, G. Zeng, Nitrogen doped carbon quantum dots promoted the construction of Z-scheme system with enhanced molecular oxygen activation ability, *Journal of Colloid and Interface Science* 541 (2019) 123-132.

[109] V. Balakumar, M. Ramalingam, K. Sekar, C. Chuaicham, K. Sasaki, Fabrication and characterization of carbon quantum dots decorated hollow porous graphitic carbon nitride through polyaniline for photocatalysis, *Chemical Engineering Journal* 426 (2021) 131739.

[110] A. Kumar, A. Kumari, G. Sharma, B. Du, M. Naushad, F.J. Stadler, Carbon quantum dots and reduced graphene oxide modified self-assembled S@C₃N₄/B@C₃N₄ metal-free nano-photocatalyst for high performance degradation of chloramphenicol, *Journal of Molecular Liquids* 300 (2020) 112356.

[111] V. Wongso, H.K. Chung, N.S. Sambudi, S. Sufian, B. Abdullah, M.D.H. Wirzal, W.L. Ang, Silica-carbon quantum dots decorated titanium dioxide as sunlight-driven photocatalyst to diminish acetaminophen from aquatic environment, *Journal of Photochemistry and Photobiology A: Chemistry* 394 (2020) 112436.

[112] J. Zhao, X. Guo, Q. He, F. Wu, B. Yao, Construction of N-CQDs/InNbO₄ composites for the removal of ipronidazole: Performance and degradation mechanism, *Journal of Solid State Chemistry* 304 (2021) 122567.

[113] G. Sharma, A. Kumar, P.S. Kumar, A. Alodhayb, Z.A. Alothman, P. Dhiman, F.J. Stadler, Carbon quantum dots embedded trimetallic oxide: Characterization and photocatalytic degradation of Ofloxacin, *Journal of Water Process Engineering* 48 (2022).

[114] R. Noroozi, M. Gholami, M. Farzadkia, R. Rezaei Kalantary, Synthesis of new hybrid composite based on TiO₂ for photo-catalytic degradation of sulfamethoxazole and pharmaceutical wastewater, optimization, performance, and reaction mechanism studies, *Environmental Science and Pollution Research* 29(37) (2022) 56403-56418.

[115] T. Iqbal, M. Ashraf, S. Afsheen, A. Masood, M.T. Qureshi, S.T. Obediat, M.F. Hamed, M.S. Othman, Copper sulfide (CuS) doped with carbon quantum dots (CQD) as an efficient photo catalyst, *Optical Materials* 125 (2022) 112116.

[116] B. Yang, Y. Yu, H. Liu, L. Yang, Z. Hua, Y. Feng, L. Xue, Natural N-Doped Carbon Quantum Dots Derived from Straw and Adhered onto TiO₂ Nanospheres for Enhancing the Removal of Antibiotics and Resistance Genes, *ACS Omega* 8(1) (2023) 718-725.

[117] Q. Si, W. Guo, H. Wang, B. Liu, S. Zheng, Q. Zhao, H. Luo, N. Ren, T. Yu, Difunctional carbon quantum dots/g-C₃N₄ with in-plane electron buffer for intense tetracycline degradation under visible light: Tight adsorption and smooth electron transfer, *Applied Catalysis B: Environmental* 299 (2021) 120694.

[118] M.Y. Alazaiza, A. Albahnasawi, G.A. Ali, M.J. Bashir, D.E. Nassani, T. Al Maskari, S.S.A. Amr, M.S.S.J.W. Abujazar, Application of natural coagulants for pharmaceutical removal from water and wastewater: a review, 14(2) (2022) 140.

[119] S. Wang, J. Wu, X. Lu, W. Xu, Q. Gong, J. Ding, B. Dan, P. Xie, Removal of acetaminophen in the Fe²⁺/persulfate system: Kinetic model and degradation pathways, *Chemical Engineering Journal* 358 (2019) 1091-1100.

[120] H. Zhang, C. Liu, Y. Wang, F. Jia, S. Song, Construction of 3D-sized Mn (II)-doped MoS₂@activated alumina beads as PMS activator for tetracycline degradation under light irradiation, *Chemical Physics Letters* 806 (2022) 139996.

[121] I. Nurhasanah, Kadarisman, V. Gunawan, H. Sutanto, Cerium oxide nanoparticles application for rapid adsorptive removal of tetracycline in water, *Journal of Environmental Chemical Engineering* 8(1) (2020) 103613.

[122] K.S. Varma, R.J. Tayade, K.J. Shah, P.A. Joshi, A.D. Shukla, V.G. Gandhi, Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO₂ nanomaterials: A review, *Water-Energy Nexus* 3 (2020) 46-61.

[123] Y. Wu, Y. Xu, Y. Zhang, J. Feng, Y. Li, J. Lan, X. Cheng, Fabrication of NiCoP decorated TiO₂/polypyrrole nanocomposites for the effective photocatalytic degradation of tetracycline, *Chinese Chemical Letters* 33(5) (2022) 2741-2746.

[124] S. Leong, D. Li, K. Hapgood, X. Zhang, H. Wang, Ni(OH)₂ decorated rutile TiO₂ for efficient removal of tetracycline from wastewater, *Applied Catalysis B: Environmental* 198 (2016) 224-233.

[125] M. Hussain, Ferroxane derived ceramic composite material as catalysts for heterogenous Fenton reactions for dyes and pharmaceutical removal in water, University of Missouri-Columbia, 2016.

[126] C.V. Gómez-Pacheco, M. Sánchez-Polo, J. Rivera-Utrilla, J. López-Péñalver, Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation, *Chemical Engineering Journal* 178 (2011) 115-121.

[127] W. Liu, N.B. Sutton, H.H.M. Rijnaarts, A.A.M. Langenhoff, Anoxic conditions are beneficial for abiotic diclofenac removal from water with manganese oxide (MnO₂), *Environmental Science and Pollution Research* 25(10) (2018) 10141-10147.

[128] A.R.d. Olivera, Biosorption of pharmaceuticals from wastewater using *Moringa oleifera* as biosorbent, 2020.

[129] X. Yang, G. Xu, H. Yu, Z. Zhang, Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal, *Bioresource Technology* 211 (2016) 566-573.

[130] L. Ma, P. Ma, Y. Liu, Z. Pan, B. Yang, Y. Peng, B. Lai, Multiple roles of hydroxylamine for degradation of tetracycline in HA/Fe-Al₂O₃/O₃ process, *Journal of Water Process Engineering* 47 (2022) 102832.

[131] Y. Chen, J. Ruan, B. Zeng, W. Jiang, L. Luo, Q. Shao, Z. Liu, Insights into the sulfite activation by cobalt(II) sulfide for acetaminophen removal: A synergistic catalysis and DFT calculations, *Journal of Environmental Chemical Engineering* 10(3) (2022) 107709.

[132] B. Ramasamy, J. Jeyanthi, P. Chinnaiyan, Fe-TiO₂ and Ag-ZnO mediated visible light photocatalysis for atenolol and acetaminophen removal – A comparative study and modeling, *Environmental Nanotechnology, Monitoring & Management* 19 (2023) 100779.