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1. Introduction

A common design problem that comes into play in product develop-
ment is selecting the most appropriate material for a given application. 
The design begins with a basic list of requi   rements by answering basic 
questions. Is the part going to be under a load? What is the predicted fail-
ure mode (tensile, compressive, buckling, impact, and other/additional 
failure modes)? Is there a weight restriction? Will the product undergo 
cycles of loads (tension, compression, heat, or electric)? Luckily after 
years of experience, engineers and product developers have become 
good at selecting materials. They know how to cost-effectively get a 
job done regardless of product longevity, or what is required to make a 
product last for generations. One of the biggest helping factors in this is 
material property charts. Due to continuous material testing by manufac-
turers, designers, and research institutions charts have been developed to 
identify material properties of alloy steels, types of aluminum, different 
polymers/elastomers, and other homogeneous materials. This however 
is not the same case for composite materials [1].

Composite materials have seen an extremely heavy rise in the last 
100 years [2]. From concrete to nylon reinforced rubber products, to 
more mainstream uses like resin-reinforced fiberglass and carbon fi-
ber. Composites are usually designed to utilize the material properties 
of more than one material [3]. Since composite materials are generally 
available on a make-to-purpose basis, it is not exactly easy to prototype 
with such materials, based on pre-made availability. Without extensive 
trial and error, how does an engineer decide how to design a part with 

composites that are both functional and efficient for cost and material 
use? 

Traditionally there has been a few approaches to identifying what 
design changes affect material properties. The approach taken is often 
going to rely on resources and data available by the individuals working 
on it. The two main approaches to this are either a full factorial array, 
which tests each of the factors assumed to be contributors to the property 
or a Taguchi design of experiments (DOE). In many cases, if the ratio 
of signal to noise of factors to response is high, then the number of tests 
can be severely dropped by a Taguchi method. For example, 4-factor, 
3-level arrays can be reduced from 81 tests to 27, while still testing all 
factors and levels, just not every factor at every level with every other 
factor-level combination.  This greatly reduces the cost and time associ-
ated with producing samples and testing each sample. 

Given that these methods are highly successful, it is hard to see 
where the use of a different method may be useful. Most of these com-
panies already test their material by batch/load and have detailed in-
formation on the production process/ deviation from design specifica-
tions. Especially in a less controlled process, lots of natural variation in 
a production process can lead to extreme changes in material property. 
This of course is not always a good thing since it can lead to defective 
material, but it is extremely valuable for seeing how a material behaves 
in different production scenarios. On the other hand, being able to use 
all of this existing data in a Taguchi DOE is not always easy. Even with 
powerful statistical analysis tools, natural variation with high sample 
sizes often leads to there being too many levels in each factor for the 
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Taguchi method to make sense. 
One of the leading methods to design experiments to develop very 

application-specific composite materials is the Taguchi design. Taguchi 
robust design is a method developed by Genichi Taguchi, which utiliz-
es a “p-diagram” and “signal to noise” ratios to identify testing factors 
when developing a design of experiments (DOE) [1]. The results from 
a Taguchi design dictate the array of factorials to be tested, less than a 
full factorial array, and utilize either physical or simulated experiments 
to see the effects within the DOE. The factors that showed significant 
contributions to the main function are defined as “control factors” and 
then optimum settings of the “control factors” are determined and test-
ed for validity [4,5]. There are well-known software packages available 
to help with the more complicated setup of Taguchi [6]. Since most of 
the literature review revolved around testing composite materials, it was 
important to validate the research would be repeatable if others wanted 
to replicate the process for some of the more obscu re topics. For this, 
American Society for Testing and Materials (ASTM) standards were 
validated to ensure the testing procedures  complied with internationally 
known standards [7-11]. A common topic of discussion was the long-
term wear of specific composites in many pieces of research. Works in 
Inaguma [12] and Siddhartha et al. [13] focus on corrosion resistance due 
to wear on a Titania Epoxy mix which was found to be quite successful 
with only ~5% of error in the model. Similarly, a recent work performed 
by Savas [14] tests wears on an aluminum-based composite using the 
Taguchi method. That research [14] was performed to the same ASTM 
standard for the pin-on-disk wear testing. The great thing about utilizing 
the same standard is that these pieces of research, [12,13] and [14], can 
now be compared and looked at analytically, knowing that the data is 
not skewed due to different testing parameters. Keeping things like this 
standardized is also important when comparing different research ap-
proaches. This was the case for Salcido [15], who observed the validity 
of creating usable byproducts from restraint grease waste by comparing 
Taguchi and Response Surface Method (RSM) methodologies. Salcido 
was however not as successful with RSM as he had hoped which of 
course gives a slight advantage to Taguchi in which he was successful. 
Wang’s research [16] however suggests that the issue in a case like this 
may be due to the rotatability of the function and its parameters. Then, of 
course, is the debate on how to optimize the system once it is assumed to 
be accurately modeled. An option is to use linear optimization method-
ology, but it sadly only works for linear models [17]. Another option is 
to utilize generational algorithms that will improve a system’s variables 
with each attempt. In short, it is a sophisticated trial and error method-
ology, which means it suffers from the same faults. That being occa-
sionally finding what turns out to be local optimums rather than global 
[18,19].  Another challenge is of course if a cost function has multiple 
objectives.  There is a fundamental difference between solving a single 
objective problem vs a multi-objective problem, and the requirements 
of each. Often a multi-objective problem can be treated as two separate 
single objective problems with a weight attached to them for a final goal. 
Of course, if the objectives are opposites of one another, finding a true 
optimum for both at the same time is very difficult; constraining one of 
the two optimums can be explored as well [20,21].

In summary, most of the development in the composite design world 
utilizes two main methods. Either DOE uses a full/partial factorial array 
or utilizes Taguchi design to develop a smaller factorial array for DOE 
based on signal-to-noise ratios in pre-available data. The final steps after 
these DOE’s are generally quite unclear. Some researchers will simply 
select the best case scenario/trail from the DOE, and others take the op-
timization further by modeling the data from the DOE. The modeling is 
then either done with regression or by utilizing the ANOVA responses 
from the testing. The models can be used in either single or multiple 
objective approaches to achieve what is known by the researcher to be 
the best solution based on the design requirements.  Overall the biggest 

issue is justifying large-scale testing by producing samples to be tested 
in a DOE.

The proposed method involves using predictive modeling based on 
existing manufacturing data, and the best way to utilize existing data for 
such models. The model will be used in conjunction with other variables 
as constraints in optimizing a cost function. Ideally, this method should 
be performed using simple, readily accessible tools, and not require ex-
tensive knowledge to attempt.

The world of material development moves almost as fast if not faster 
than the technology field. Many of the developments in technology are 
driven by material development. In industry, however, it takes extensive 
resources to develop materials, composite materials especially, at a pace 
that is at the demand of design industries. Because of this, engineers 
come up with techniques to develop materials with previous manufac-
turing/test data. 

To confront the pitfalls of the research discussed above a new meth-
od needs to be assessed. Therefore, we propose an optimization-based 
predictive modeling method that heavily utilizes the already available 
production/ manufacturing data, and models trends without performing 
additionally testing with a DOE. We assume that the natural variation in 
the manufacturing process is measurable, accurate, and recorded, to give 
insights into creating a model to optimize, especially when seen across 
multiple product lines with similar processing. Our optimization model 
provides a good idea of data that would be lost between levels in a Tagu-
chi design. The model is expressed as the best matching curve to the 
data, rather than simply using linear fits. This will include interactions 
between variables like is seen in the Taguchi model, but without all the 
additional testing and manufacturing of specific samples. 

2. Methodology

In reviewing the works above, it appears as if in most cases a method 
was found that turned out to be successful for the research teams. Of 
course,  two big differences separate these research papers and a large 
portion of real-life industry; access to a plethora of retrospective data, 
and the access to sufficient resources required to run a DOE rather than 
production. This is exactly the case for company “X” based in the United 
States that produces a product out of concrete. They have the capabilities 
to produce nearly 300 yards of concrete per day and keep relatively good 
records of the day-to-day production changes, as well as the test results 
from each lot/batch of material. They do not, however, have the resourc-
es available to produce individual-specific samples for a DOE, even if it 
was truncated like a Taguchi design.

In this case, the material property of interest is the compressive load 
of concrete without rebar that a test sample breaks at, and the air content 
of the concrete which helps for damping in cold operating conditions. 
The concrete is produced from 5 basic raw materials and with up to 4 
additives. There are a few factors that are also identified as potential 
factors in the materials’ properties. The following are those materials 
and factors.

•	 Cement: Limestone that is refined, baked in a furnace, then 
ground down to a size specified by type. Measured in lbs.

•	 Dry rock: An aggregate that is a mix of granite and quartz 
stone. Measured in lbs.

•	 Dry sand: A natural fine aggregate rather than manufactured 
sand, which is specific sand for concrete manufacture. Mea-
sured in lbs.

•	 Fly ash: A refined byproduct of coal that when used with ce-
ment aids in bonding the composite together. “Class F” fly ash 
is used. Measured in lbs.

•	 Combination water: This is the combined water added to the 
mix, both the water intentionally added, as well as water that 
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is added in the form of moisture from the sand and rock. Mea-
sured in lbs.

•	 Sika 4100: A concrete additive “high range water reducer” used 
to help maintain water to cement ratio. Measured in Oz.

•	 Sika NC: A concrete additive used to accelerate the cure/setup 
of concrete so that it can be released from forms sooner. Mea-
sured in Oz.

•	 AEA sika air: A concrete additive used to help keep the air con-
tent of the concrete between 5-7% of the volume. Measured 
in Oz.

•	 Sika VF 2020: A concrete additive “medium-range water re-
ducer” used to help maintain water to cement ratio. Measured 
in Oz.

•	 Moisture content: The measured amount of moisture is in ei-
ther the sand or rock. Expressed as a percentage of the total 
weight of the aggregate.

•	 Air temperature: The temperature of the room where the con-
crete is being poured at the time of pouring into the molds. 
Measured in Fahrenheit.

•	 Concrete temperature: The temperature of the concrete at the 
time of pour once it is inside of the mold. Can be varied with 
heating coils inside of the mold bed. Measured in Fahrenheit.

•	 Air content: The percentage of volume in the concrete that is 
trapped in air bubbles. 

•	 Time before test: This is the amount of time between the pour 
of concrete and the compressive break test on the concrete test 
cylinders. It is quite well known that concrete gets stronger 
over time. Company “X” would like to release the concrete 
from their molds as soon as possible, but they require a specific 
break pressure before they will begin the process. Measured 
in hours.

•	 Break pressure: The pressure at which a test cylinder fails un-
der compression load. Measured in psi.

The basic operating process requires a mixture of cement, rock, sand, 
fly ash, and water. To meet specific requirements, the operators will add 
a sika additive to the mix. This is done largely based on the feel of the 
mix and is brought to a standard in the first few pours. The molds and 
test cylinders are cured for at least 16 hours based on operating hours, 
then are tested the next working day which can be up to 3 days later. If 
the test cylinder passes its 6,500 psi threshold, then the production lot is 
allowed to be released from the molds, and the molds can then be reused 
for the next day’s production. If the release pressure is not obtained on 
the first test, then additional time is required until the product can be 
released. 

So, if company “X” is already producing their product reliably, why 
would they want to change how they manufacture? The simple answer 
is to save money. There might be a more efficient way to produce their 
product that still meets their design requirements that is less demanding 
on capital resources. By utilizing existing variations in their manufac-
turing process, they can analyze trends that may lead to a more efficient 
way of producing their product, either from a time standpoint or from 
one purely on material and operation costs. 

The manufacturing data provided by company “X” was a dataset that 
had 1428 samples of manufacturing and test data to aid in the develop-
ment of a model. The idea is to create a predictive model that simulated 
the changes in compressive break pressure and air content of the cyl-
inders based on input factors of manufacturing. In the case of the data 
provided by company “X”, Minitab was the final software decided on to 
create the model, due to the simplicity of creating a model as quickly as 
possible with minimal effort using the stepwise regression tool. The raw 
data was loaded into Minitab after being conglomerated inside Excel. In 
general, there are assumptions that the stepwise feature of Minitab takes 

into account the need for independent variables, and removes any vari-
ables that are perfectly correlated to one another. This setting resulted in 
a decent-sized model with sufficient terms that could account for 99.04% 
(R2) of the variability in the response of the material property.

The final model for compressive break pressure of the test cylinders 
is:

Compressive Break= 

    

(Eq. 1)

The next factor to be modeled is the air content of the concrete mix. 
The same starting factors/predictors are used, with the same method of 
utilizing Minitab stepwise regression for this material property. The fi-
nal model to come from the regression modeling had an R-sq. value 
of 98.65%, meaning that a good portion of the air content can be de-
termined with the factors/predictors provided.  Here is the final model:
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(Eq. 2)

Now that has been decided as the functions to describe how the com-
pressive break pressure and air content are modeled, the next step is 
to optimize the system by minimizing the total manufacturing cost. We 
start by defining the terms used in the optimization model followed by 
the constraints and objective function to be optimized as shown in Table 

1.An optimization can be set up in such a way as to maximize both 
profit and break pressure, but weights will have to be assigned to both 
the cost/profit function and the break function. The more realistic goal 
is to identify the manufacturing scenario that will result in the cheapest 
manufacturing cost, but also reliably result in successful/passing com-
pressive break pressures as well as the other goals of the mix like air 
content that the composite will be held to.  This will be accomplished 
using constraints in addition to the objective function, to reliably hold 
the required spec values of the concrete while maintaining cost as the 
focus. It is important to note that cost in itself is not only a function of 
how much of each material is used but also a function of outside factors 
like how expensive it is to heat or cool the building and hold temperature 
based on the current temperature. 

Decision variables:
X:  The amount of each raw material utilized in the mix.
TA: The temperature of the air inside which is altered with an air condi-
tioning system.
D: The amount of time between pouring and testing of the break cyl-
inder.

Constraints (subject to) as listed in Table 2.
Now the question is how to minimize the optimization function with 

the given constraints. Usually, a quiet way to do optimizations is using 
the simplex method, but since the functions are not linear, this is not a 
viable option. Instead, Excel’s solver (GRG non-linear) was utilized to 
perform the optimization. With the optimization completed, a sensitivity 
analysis was performed to see how the air content, break pressure, and 
cost was affected by varying each of the variables known to be factors 
of the material properties. Additionally how targeting different materi-
al properties affected optimal cost. Luckily, since concrete is already a 
well-known material, the sensitivity analysis was confirmed with com-
pany “X” to be valid to their working knowledge. The Figures below are 
a good representation of the entirety of the sensitivity analysis. In most 
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cases, 20 points were selected for each factor. Each point was individ-
ually tested to see how changing a factor affected the material property 
and the objective. The graphing of all of the 20 points was a good way to 

see the general trend of the changes, and to see if the model showed re-
alistic changes to the material properties and functions, based on known 
information about the raw materials and other factors. 

3. Results and Analysis 

In Figure 1, one of the additives was tested to see how it affects the 
test break pressure. The Sika 4100 additive is used to reduce the effects 
of water on the hardness of the concrete. Concrete with too much water 
is generally weak, but by adding this additive, the concrete is supposed 
to stay hard even when high amounts of water are used. Of course, as it 
is seen in the chart, there is a positive trending curve associated with the 
high use of sika 4100, then at around 105oz of use, adding more of the 
additive can start negatively affecting the concrete. This chart follows 
what has long been known about the additive, and confirms the validity 
of the model. 

In Figure 2, the function of heating and cooling a building that is 
affected by outdoor temperatures are on display. The cost of which is 
generally going to be largely dependent on the desired temperature, and 
how large the delta between the two temperatures is. In the case of the 
graph, 45 °F outdoor temperature is in such a range that changing the de-
sired temperature to lower or higher than that temperature presents two 
different functions (heating and cooling.) This follows the sample model 
developed for the cost associated with a cost for temperature variation 
but could be more accurately represented with real cost data associated 
with air conditioning.

In Figure 3, the most easily recognizable piece of concrete knowl-
edge is on display. Concrete gets harder the longer it has to cure. That is 
exactly what we can see in the graph between 10 and 56 hours of cure

Figure 4 is similar in concept to Figure 1, as both additives are used 
as water reducers, but each for different ranges. The graph shows that 
while Sika 2020 does help to increase the break pressure of the test mold, 
it only becomes effective when more than 7oz of the additive is used. 

Figure 5 was created by utilizing the optimizer to find the most 

Fig. 1. Variation of Test Break with Sika 4100. Fig. 3. Variation of Test Break with Time.

Fig. 2. Variation of Cost with Air Temp. Fig. 4. Variation of Test Break with Sika 2020.

Table 1.
Definitions of terms used in the models.

Terms Definitions

B The pressure at which a concrete test cylinder breaks before releas-
ing the product from its molds, (psi).

P Price per unit of raw material or resource, (USD).

TA The air temperature inside the facility where concrete is being 
poured, (°F).

TC The temperature of wet concrete after pouring into molds, (°F).

TO Outside air temperature at the time of pour,(°F).

A Air content: the volume of the concrete taken up by entrapped air, 
(%).

D Duration of time from mix/pour to the breaking of the test cylinder, 
(hours).

X Amount of raw material in each batch, (lbs or oz).

C Cement: refined and baked limestone, (lbs).

S1 Dry sand: natural sand which is specific to concrete manufacture, 
(lbs).

R Dry rock: mix of Quartz and Granite stone, (lbs).

F Fly ash: a byproduct of coal, utilized as a binding agent, (lbs).

S2 Sika 4100: high-range water reducer utilized as a non-required 
additive, (oz).

S3 Sika NC: a catalyst to speed up the curing process, which is a 
non-required additive, (oz).

S4 Sika air: stabilizes the air content to between 5-7%, non-required 
additive, (oz).

S5 Sika 2020 medium range water reducer utilized as a non-required 
additive, (oz).

W Combo water: the amount of added water and water in the moisture 
of the rock and sand which is added unintentionally, (lbs).
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cost-effective way to make the product when the minimum desired test 
break is increased. The function ends up being non-linear, just like most 
terms in the test break predictive model/function. As expected, cost in-
creases when targeting stronger concrete, but surprisingly it is not much 
more expensive to produce concrete that can withstand nearly 3000psi 
more than its cheaper counterparts.

Figure 6, utilizes a similar concept as that of Figure 5, but with a 
different material property. This time air content is tested, and interest-
ingly there is a cost-effective optimum for producing concrete with an 
air content of ~5.55%. This is quite convenient since most customers 
are looking for concrete that is between 5 and 7% air by volume. The 
function shows how the cost is affected when desired air content is made 
lower or higher than that optimum value.

As seen, both functions are not linear. While the curve on the cost to 
break pressure is not very steep, the cost of on-air content varies quite 
extensively based on the constraints. There is an optimum air content 
achievable for cost, and with these constraints is around 5.55%. For the 
cost of test break pressure, in general, the lower desired test break pres-
sure, the cheaper it is to produce the product.

The following discussion summary can be made from the testing, 

and recommendations for further research on the subject.
1) First thing is that the methodology was quick, efficient, and cheap 

as far as the tool being utilized. Regression is readily available through 
multiple pieces of software, from Microsoft excel, to free online regres-
sion tools. The methodology to filter data was quite easy, comparing the 
data and outliers with someone who understands the data was simple. 
Setting up the optimization method, in its simplest form in something 
like excel is quite simple. In the case of this material, almost every con-
straint was able to be defined by the raw material range that was tested 
already. For example, historical data only used between 171 lbs and 354 
lbs of water in each batch of mix, so that is how the constraints were 
defined. The only other constraints were set to business requirements or 
customer-demanded material properties which were all calculated based 
on the regression models. Overall, this is simple and could be completed 
by nearly any “layperson” who understood the business and material 
requirements, and the meaning of the raw manufacturing data.

2) This method was also cost efficient in the way of time and mon-
ey, as additional testing, by creating specific testing material, is not re-
quired. For the model that was created, if only 3 levels (which is low) 
would be utilized for all 9 factors in the model, a full factorial would re-

Fig. 6. Variation of cost with air content.Fig. 5. Variation of Cost with Test Break.

Table 2.
Description of equations used.

Equation Description

Eq.  1 Compressive Break estimation regression model. This will be used as input to in Eq.  4 

Eq.  2 As listed in the body (Air Content formula)

Eq.  3 (this states that the total amount of raw material put into each of batch, is greater than or equal to the required weight of concrete known to fill a mold. If a 
mold can’t be fully filled the entire batch is wasted.

Eq.  4
totalPredictive Break P.Modeloutput B≥ (customer specification required to release)

Eq.  5 Atotal ≥ Predictive Air Con.  Model Output ≥ Atotal (long-term product quality req.) 

Eq.  6 T ≥ 16 (operation single shift requirement)

Eq.  7 120 ≥ F ≥ 110 (highest and lowest ever used)

Eq.  8 675 ≥ C  ≥ 620 (highest and lowest ever used)

Eq.  9 354 ≥ W ≥ 171 (highest and lowest ever used))

Eq.  10 1080 ≥ S1 ≥ 900 (highest and lowest ever used))

Eq.  11 2005 ≥ R ≥ 1750 (highest and lowest ever used)

Eq.  12 85 ≥ TA  ≥ 32 (water freezes below 32, and workers are uncomfortable over 85)

Eq.  13 Predictive Break Pressure Model Output = b1 (F)S4) + b2 (S5 3) – b3 (C2)(F) + b4 (C)(R)(D) – b5 (D)(S4)( S5) – b6 (R)(W)(D) – b7 (S1)(S2) + b8 (S)(W)(D) – 
b9 (S4)(S2 (S3) + b10 (S4)(S3) + b11 (S4)( S3)(TA)

Eq.  14 Predictive Air Content Model Output = b0  –  b1 (F) + b2 (S4) – b3 (S5) – b4 (TA) + b5 (F)(TA) +b6 (S4)( S5) – b7 (S4)(TA)

Eq.  15 Temperature Cost Model Output = D(b1 (To– TA)(TOHot) + b2 (TA–To)(ToCold))

Eq.  16 The objective function is to minimize the total cost to produce a single unit/batch of concrete., which is given as follows.
Minimize:

1 4 3 2
totalP ( )( )

A

q s i j k l l m n o

D T C R S F W S S S
X P= +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

The right-hand side of the Eq.  contains all of the controllable costs, not related to things like staff salaries.)
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quire 3^9 or 19683 samples. A Taguchi method usually removes around 
one to two factors worth of tests from the number of test samples, largely 
depending on signal-to-noise ratios. In this case, reducing from to or 
tests, which is a nearly 80% reduction of tests to around 3787.995 tests. 
Even with only 3,800 tests, the amount of time and resources that it 
would take to perform such a test would take over a year of company 
“X’s” full workforce, meaning they would make no money producing 
products during this time. The method of using only the natural varia-
tion of manufacturing the product and utilizing the historical data takes 
no product out of production and costs no additional money or time to 
create and evaluate specific test samples. This is a bit of a no-brainer if a 
company has no R&D department like this one. 

3) Possibly the biggest issue with this methodology is that it lacks a 
validation run. Normally the easiest way to tell if a calculation is correct 
with this sort of method is to create material using what is called the 
optimal method and test to see if the calculated values are true. In this 
paper there were two reasons why the validation run cannot be creat-
ed. The first reason is the timing of the paper coincided with the 2020 
COVID-19 pandemic, which put strains on lots of businesses including 
company “X” and its operating conditions. Aside from the strains from 
the pandemic were also the issues of being able to control their operating 
process better. Most of the raw materials being added are done by hand 
and the ability to get the work done fast rather than extremely accu-
rately does result in targeted numbers not always being achieved. For 
example, if 2000 pounds of dry rock is being targeted, an accuracy of 
±20lbs might be achieved. While they could be more precise with adding 
the material, it would take additional operator time and care, especially 
while calculating the dry characteristics from the tested moisture content 
of the aggregate. Based on business demands, they could come up with 
better ways to ensure the raw material was added more accurately with 
automation or other measurement techniques. Needless to say, this style 
of research could give a company an idea of where to focus or minimize 
random/natural variation in their manufacturing process, which when 
completed can help to optimize a system. The natural variation at this 
stage is helpful in the modeling of a larger level range for each variable. 
Doing a validation run could have solidified many of the claims made in 
the paper as true, so it is a recommendation if future research is pursued.

Since that could not be done, the next best thing is to compare known 
material behavior with the sensitivity analysis of the models. Important-
ly as more of each material was added the cost increased, which makes 
sense to the objective function, but the other two functions that come 
from regression were overall more likely to have issues from an accura-
cy standpoint. Luckily as far as can be seen, all of the sensitivity analysis 
looks correct, even though it is all just first order changes, where most 
functions involved the interaction between variables.  As an example, 
time should positively affect break psi,  but not affect air content at all, 
and in the sensitivity analysis, this was the case. The same goes for the 
Sika add-ins. Sika Air for example should not affect break psi but does 
affect air content, which is the case in the sensitivity analysis. If multi-
ple or any of the sensitivity analysis runs look incorrect, the models are 
likely incorrect in some way, or  the historical assumption of something 
may be incorrect.

4. Conclusions  

Based on the study, it can be said that the Taguchi method and SRM 
are not handy techniques to use in material process development for 
specific manufacturing scenarios such as for the company “X” described 
in this paper. Therefore, an alternative method was proposed to deal with 
producing a concrete product in large batches with many potential fac-
tors of variation. The method involved analyzing manufacturing data 
of a process that is not highly controlled. The data were used to create 

predictive models of material properties that affect product lifetime and 
performance via regression. The non-linear material property models 
were then used to optimize the system for cost, while also holding the 
material properties to high standards. Sensitivity analyses were utilized 
to give insight into the validity of the model’s effectiveness in accurately 
representing the system changing with the input factors.
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