Journal of Composites and Compounds 4 (2022) 163-168

a6

Jowrnal of
Composites
and
Compounds
LW

. §

Available online at www.jourcc.com

Journal homepage: www.JOURCC.com

@ CrossMark

Journal of Composites and Compounds

Predictive modeling and non-linear optimization techniques for

composite materials design

Wesley A. Hermes“, Ebisa Wollega® , Ebisa Wollega®, Md Rashad Islam“*

“ Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO 81001, USA.

ABSTRACT

ARTICLEINFORMATION

With the rise in the use of composite materials for product design, research has been performed in determining Article history:
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1. Introduction

A common design problem that comes into play in product develop-
ment is selecting the most appropriate material for a given application.
The design begins with a basic list of requi rements by answering basic
questions. Is the part going to be under a load? What is the predicted fail-
ure mode (tensile, compressive, buckling, impact, and other/additional
failure modes)? Is there a weight restriction? Will the product undergo
cycles of loads (tension, compression, heat, or electric)? Luckily after
years of experience, engineers and product developers have become
good at selecting materials. They know how to cost-effectively get a
job done regardless of product longevity, or what is required to make a
product last for generations. One of the biggest helping factors in this is
material property charts. Due to continuous material testing by manufac-
turers, designers, and research institutions charts have been developed to
identify material properties of alloy steels, types of aluminum, different
polymers/elastomers, and other homogeneous materials. This however
is not the same case for composite materials [1].

Composite materials have seen an extremely heavy rise in the last
100 years [2]. From concrete to nylon reinforced rubber products, to
more mainstream uses like resin-reinforced fiberglass and carbon fi-
ber. Composites are usually designed to utilize the material properties
of more than one material [3]. Since composite materials are generally
available on a make-to-purpose basis, it is not exactly easy to prototype
with such materials, based on pre-made availability. Without extensive
trial and error, how does an engineer decide how to design a part with
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composites that are both functional and efficient for cost and material
use?

Traditionally there has been a few approaches to identifying what
design changes affect material properties. The approach taken is often
going to rely on resources and data available by the individuals working
on it. The two main approaches to this are either a full factorial array,
which tests each of the factors assumed to be contributors to the property
or a Taguchi design of experiments (DOE). In many cases, if the ratio
of signal to noise of factors to response is high, then the number of tests
can be severely dropped by a Taguchi method. For example, 4-factor,
3-level arrays can be reduced from 81 tests to 27, while still testing all
factors and levels, just not every factor at every level with every other
factor-level combination. This greatly reduces the cost and time associ-
ated with producing samples and testing each sample.

Given that these methods are highly successful, it is hard to see
where the use of a different method may be useful. Most of these com-
panies already test their material by batch/load and have detailed in-
formation on the production process/ deviation from design specifica-
tions. Especially in a less controlled process, lots of natural variation in
a production process can lead to extreme changes in material property.
This of course is not always a good thing since it can lead to defective
material, but it is extremely valuable for seeing how a material behaves
in different production scenarios. On the other hand, being able to use
all of this existing data in a Taguchi DOE is not always easy. Even with
powerful statistical analysis tools, natural variation with high sample
sizes often leads to there being too many levels in each factor for the
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Taguchi method to make sense.

One of the leading methods to design experiments to develop very
application-specific composite materials is the Taguchi design. Taguchi
robust design is a method developed by Genichi Taguchi, which utiliz-
es a “p-diagram” and “signal to noise” ratios to identify testing factors
when developing a design of experiments (DOE) [1]. The results from
a Taguchi design dictate the array of factorials to be tested, less than a
full factorial array, and utilize either physical or simulated experiments
to see the effects within the DOE. The factors that showed significant
contributions to the main function are defined as “control factors” and
then optimum settings of the “control factors” are determined and test-
ed for validity [4,5]. There are well-known software packages available
to help with the more complicated setup of Taguchi [6]. Since most of
the literature review revolved around testing composite materials, it was
important to validate the research would be repeatable if others wanted
to replicate the process for some of the more obscu re topics. For this,
American Society for Testing and Materials (ASTM) standards were
validated to ensure the testing procedures complied with internationally
known standards [7-11]. A common topic of discussion was the long-
term wear of specific composites in many pieces of research. Works in
Inaguma [12] and Siddhartha et al. [13] focus on corrosion resistance due
to wear on a Titania Epoxy mix which was found to be quite successful
with only ~5% of error in the model. Similarly, a recent work performed
by Savas [14] tests wears on an aluminum-based composite using the
Taguchi method. That research [14] was performed to the same ASTM
standard for the pin-on-disk wear testing. The great thing about utilizing
the same standard is that these pieces of research, [12,13] and [14], can
now be compared and looked at analytically, knowing that the data is
not skewed due to different testing parameters. Keeping things like this
standardized is also important when comparing different research ap-
proaches. This was the case for Salcido [15], who observed the validity
of creating usable byproducts from restraint grease waste by comparing
Taguchi and Response Surface Method (RSM) methodologies. Salcido
was however not as successful with RSM as he had hoped which of
course gives a slight advantage to Taguchi in which he was successful.
Wang’s research [16] however suggests that the issue in a case like this
may be due to the rotatability of the function and its parameters. Then, of
course, is the debate on how to optimize the system once it is assumed to
be accurately modeled. An option is to use linear optimization method-
ology, but it sadly only works for linear models [17]. Another option is
to utilize generational algorithms that will improve a system’s variables
with each attempt. In short, it is a sophisticated trial and error method-
ology, which means it suffers from the same faults. That being occa-
sionally finding what turns out to be local optimums rather than global
[18,19]. Another challenge is of course if a cost function has multiple
objectives. There is a fundamental difference between solving a single
objective problem vs a multi-objective problem, and the requirements
of each. Often a multi-objective problem can be treated as two separate
single objective problems with a weight attached to them for a final goal.
Of course, if the objectives are opposites of one another, finding a true
optimum for both at the same time is very difficult; constraining one of
the two optimums can be explored as well [20,21].

In summary, most of the development in the composite design world
utilizes two main methods. Either DOE uses a full/partial factorial array
or utilizes Taguchi design to develop a smaller factorial array for DOE
based on signal-to-noise ratios in pre-available data. The final steps after
these DOE’s are generally quite unclear. Some researchers will simply
select the best case scenario/trail from the DOE, and others take the op-
timization further by modeling the data from the DOE. The modeling is
then either done with regression or by utilizing the ANOVA responses
from the testing. The models can be used in either single or multiple
objective approaches to achieve what is known by the researcher to be
the best solution based on the design requirements. Overall the biggest

issue is justifying large-scale testing by producing samples to be tested
in a DOE.

The proposed method involves using predictive modeling based on
existing manufacturing data, and the best way to utilize existing data for
such models. The model will be used in conjunction with other variables
as constraints in optimizing a cost function. Ideally, this method should
be performed using simple, readily accessible tools, and not require ex-
tensive knowledge to attempt.

The world of material development moves almost as fast if not faster
than the technology field. Many of the developments in technology are
driven by material development. In industry, however, it takes extensive
resources to develop materials, composite materials especially, at a pace
that is at the demand of design industries. Because of this, engineers
come up with techniques to develop materials with previous manufac-
turing/test data.

To confront the pitfalls of the research discussed above a new meth-
od needs to be assessed. Therefore, we propose an optimization-based
predictive modeling method that heavily utilizes the already available
production/ manufacturing data, and models trends without performing
additionally testing with a DOE. We assume that the natural variation in
the manufacturing process is measurable, accurate, and recorded, to give
insights into creating a model to optimize, especially when seen across
multiple product lines with similar processing. Our optimization model
provides a good idea of data that would be lost between levels in a Tagu-
chi design. The model is expressed as the best matching curve to the
data, rather than simply using linear fits. This will include interactions
between variables like is seen in the Taguchi model, but without all the
additional testing and manufacturing of specific samples.

2. Methodology

In reviewing the works above, it appears as if in most cases a method
was found that turned out to be successful for the research teams. Of
course, two big differences separate these research papers and a large
portion of real-life industry; access to a plethora of retrospective data,
and the access to sufficient resources required to run a DOE rather than
production. This is exactly the case for company “X” based in the United
States that produces a product out of concrete. They have the capabilities
to produce nearly 300 yards of concrete per day and keep relatively good
records of the day-to-day production changes, as well as the test results
from each lot/batch of material. They do not, however, have the resourc-
es available to produce individual-specific samples for a DOE, even if it
was truncated like a Taguchi design.

In this case, the material property of interest is the compressive load
of concrete without rebar that a test sample breaks at, and the air content
of the concrete which helps for damping in cold operating conditions.
The concrete is produced from 5 basic raw materials and with up to 4
additives. There are a few factors that are also identified as potential
factors in the materials’ properties. The following are those materials
and factors.

. Cement: Limestone that is refined, baked in a furnace, then

ground down to a size specified by type. Measured in Ibs.

. Dry rock: An aggregate that is a mix of granite and quartz
stone. Measured in Ibs.

. Dry sand: A natural fine aggregate rather than manufactured
sand, which is specific sand for concrete manufacture. Mea-
sured in Ibs.

. Fly ash: A refined byproduct of coal that when used with ce-
ment aids in bonding the composite together. “Class F” fly ash
is used. Measured in lbs.

. Combination water: This is the combined water added to the
mix, both the water intentionally added, as well as water that
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is added in the form of moisture from the sand and rock. Mea-
sured in Ibs.

. Sika 4100: A concrete additive “high range water reducer” used
to help maintain water to cement ratio. Measured in Oz.

. Sika NC: A concrete additive used to accelerate the cure/setup
of concrete so that it can be released from forms sooner. Mea-
sured in Oz.

. AEA sika air: A concrete additive used to help keep the air con-
tent of the concrete between 5-7% of the volume. Measured
in Oz.

. Sika VF 2020: A concrete additive “medium-range water re-
ducer” used to help maintain water to cement ratio. Measured
in Oz.

. Moisture content: The measured amount of moisture is in ei-
ther the sand or rock. Expressed as a percentage of the total
weight of the aggregate.

. Air temperature: The temperature of the room where the con-
crete is being poured at the time of pouring into the molds.
Measured in Fahrenheit.

. Concrete temperature: The temperature of the concrete at the
time of pour once it is inside of the mold. Can be varied with
heating coils inside of the mold bed. Measured in Fahrenheit.

. Air content: The percentage of volume in the concrete that is
trapped in air bubbles.

. Time before test: This is the amount of time between the pour
of concrete and the compressive break test on the concrete test
cylinders. It is quite well known that concrete gets stronger
over time. Company “X” would like to release the concrete
from their molds as soon as possible, but they require a specific
break pressure before they will begin the process. Measured
in hours.

. Break pressure: The pressure at which a test cylinder fails un-
der compression load. Measured in psi.

The basic operating process requires a mixture of cement, rock, sand,
fly ash, and water. To meet specific requirements, the operators will add
a sika additive to the mix. This is done largely based on the feel of the
mix and is brought to a standard in the first few pours. The molds and
test cylinders are cured for at least 16 hours based on operating hours,
then are tested the next working day which can be up to 3 days later. If
the test cylinder passes its 6,500 psi threshold, then the production lot is
allowed to be released from the molds, and the molds can then be reused
for the next day’s production. If the release pressure is not obtained on
the first test, then additional time is required until the product can be
released.

So, if company “X” is already producing their product reliably, why
would they want to change how they manufacture? The simple answer
is to save money. There might be a more efficient way to produce their
product that still meets their design requirements that is less demanding
on capital resources. By utilizing existing variations in their manufac-
turing process, they can analyze trends that may lead to a more efficient
way of producing their product, either from a time standpoint or from
one purely on material and operation costs.

The manufacturing data provided by company “X” was a dataset that
had 1428 samples of manufacturing and test data to aid in the develop-
ment of a model. The idea is to create a predictive model that simulated
the changes in compressive break pressure and air content of the cyl-
inders based on input factors of manufacturing. In the case of the data
provided by company “X”, Minitab was the final software decided on to
create the model, due to the simplicity of creating a model as quickly as
possible with minimal effort using the stepwise regression tool. The raw
data was loaded into Minitab after being conglomerated inside Excel. In
general, there are assumptions that the stepwise feature of Minitab takes

into account the need for independent variables, and removes any vari-
ables that are perfectly correlated to one another. This setting resulted in
a decent-sized model with sufficient terms that could account for 99.04%
(R?) of the variability in the response of the material property.

The final model for compressive break pressure of the test cylinders

Compressive Break=

2.396 (F)(S)+ 0.2306 (S,)' ~0.000162 (C)’ (F)+ 0.000062(C)(R)(D)
~0.002301(R)(S,)(S;) — 0.000359(R) (W ) (D) —0.001324 (S)(S,)* + 0.000516()(W )(D)-0.02319
(S)(8:)(8)+ 0.02135 (S,)(S:)* + 0.00695 (S,)(S)(T,)

(Eq. 1)

The next factor to be modeled is the air content of the concrete mix.
The same starting factors/predictors are used, with the same method of
utilizing Minitab stepwise regression for this material property. The fi-
nal model to come from the regression modeling had an R-sq. value
of 98.65%, meaning that a good portion of the air content can be de-
termined with the factors/predictors provided. Here is the final model:

Air Content = 41.43-0.3092(F) + 0.0534(S,) — 0.0687(S,)—0.5145(T,) + 0.004518(F)(T,) +
0.00423(S,)(S;)—0.000678(S,)(T, )

(Eq.2)

Now that has been decided as the functions to describe how the com-
pressive break pressure and air content are modeled, the next step is
to optimize the system by minimizing the total manufacturing cost. We
start by defining the terms used in the optimization model followed by
the constraints and objective function to be optimized as shown in Table

1.An optimization can be set up in such a way as to maximize both
profit and break pressure, but weights will have to be assigned to both
the cost/profit function and the break function. The more realistic goal
is to identify the manufacturing scenario that will result in the cheapest
manufacturing cost, but also reliably result in successful/passing com-
pressive break pressures as well as the other goals of the mix like air
content that the composite will be held to. This will be accomplished
using constraints in addition to the objective function, to reliably hold
the required spec values of the concrete while maintaining cost as the
focus. It is important to note that cost in itself is not only a function of
how much of each material is used but also a function of outside factors
like how expensive it is to heat or cool the building and hold temperature
based on the current temperature.

Decision variables:

X: The amount of each raw material utilized in the mix.

T,: The temperature of the air inside which is altered with an air condi-
tioning system.

D: The amount of time between pouring and testing of the break cyl-
inder.

Constraints (subject to) as listed in Table 2.

Now the question is how to minimize the optimization function with
the given constraints. Usually, a quiet way to do optimizations is using
the simplex method, but since the functions are not linear, this is not a
viable option. Instead, Excel’s solver (GRG non-linear) was utilized to
perform the optimization. With the optimization completed, a sensitivity
analysis was performed to see how the air content, break pressure, and
cost was affected by varying each of the variables known to be factors
of the material properties. Additionally how targeting different materi-
al properties affected optimal cost. Luckily, since concrete is already a
well-known material, the sensitivity analysis was confirmed with com-
pany “X” to be valid to their working knowledge. The Figures below are
a good representation of the entirety of the sensitivity analysis. In most
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Fig. 2. Variation of Cost with Air Temp.
cases, 20 points were selected for each factor. Each point was individ-

ually tested to see how changing a factor affected the material property
and the objective. The graphing of all of the 20 points was a good way to

Table 1.
Definitions of terms used in the models.
Terms Definitions
B The pressure at which a concrete test cylinder breaks before releas-

ing the product from its molds, (psi).
P Price per unit of raw material or resource, (USD).

T The air temperature inside the facility where concrete is being
poured, (°F).

The temperature of wet concrete after pouring into molds, (°F).
Outside air temperature at the time of pour,(°F).

Air content: the volume of the concrete taken up by entrapped air,

(%).

D Duration of time from mix/pour to the breaking of the test cylinder,

(hours).
Amount of raw material in each batch, (Ibs or 0z).

C Cement: refined and baked limestone, (Ibs).

S, Dry sand: natural sand which is specific to concrete manufacture,
(Ibs).

R Dry rock: mix of Quartz and Granite stone, (1bs).

Fly ash: a byproduct of coal, utilized as a binding agent, (Ibs).

S Sika 4100: high-range water reducer utilized as a non-required
additive, (0z).

S Sika NC: a catalyst to speed up the curing process, which is a

non-required additive, (0z).

S Sika air: stabilizes the air content to between 5-7%, non-required
additive, (0z).

S Sika 2020 medium range water reducer utilized as a non-required

additive, (0z).

w Combo water: the amount of added water and water in the moisture
of the rock and sand which is added unintentionally, (Ibs).

Test Break vs. Time
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Fig. 3. Variation of Test Break with Time.
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Fig. 4. Variation of Test Break with Sika 2020.

see the general trend of the changes, and to see if the model showed re-
alistic changes to the material properties and functions, based on known
information about the raw materials and other factors.

3. Results and Analysis

In Figure 1, one of the additives was tested to see how it affects the
test break pressure. The Sika 4100 additive is used to reduce the effects
of water on the hardness of the concrete. Concrete with too much water
is generally weak, but by adding this additive, the concrete is supposed
to stay hard even when high amounts of water are used. Of course, as it
is seen in the chart, there is a positive trending curve associated with the
high use of sika 4100, then at around 1050z of use, adding more of the
additive can start negatively affecting the concrete. This chart follows
what has long been known about the additive, and confirms the validity
of the model.

In Figure 2, the function of heating and cooling a building that is
affected by outdoor temperatures are on display. The cost of which is
generally going to be largely dependent on the desired temperature, and
how large the delta between the two temperatures is. In the case of the
graph, 45 °F outdoor temperature is in such a range that changing the de-
sired temperature to lower or higher than that temperature presents two
different functions (heating and cooling.) This follows the sample model
developed for the cost associated with a cost for temperature variation
but could be more accurately represented with real cost data associated
with air conditioning.

In Figure 3, the most easily recognizable piece of concrete knowl-
edge is on display. Concrete gets harder the longer it has to cure. That is
exactly what we can see in the graph between 10 and 56 hours of cure

Figure 4 is similar in concept to Figure 1, as both additives are used
as water reducers, but each for different ranges. The graph shows that
while Sika 2020 does help to increase the break pressure of the test mold,
it only becomes effective when more than 70z of the additive is used.

Figure 5 was created by utilizing the optimizer to find the most
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Fig. 5. Variation of Cost with Test Break.

cost-effective way to make the product when the minimum desired test
break is increased. The function ends up being non-linear, just like most
terms in the test break predictive model/function. As expected, cost in-
creases when targeting stronger concrete, but surprisingly it is not much
more expensive to produce concrete that can withstand nearly 3000psi
more than its cheaper counterparts.

Figure 6, utilizes a similar concept as that of Figure 5, but with a
different material property. This time air content is tested, and interest-
ingly there is a cost-effective optimum for producing concrete with an
air content of ~5.55%. This is quite convenient since most customers
are looking for concrete that is between 5 and 7% air by volume. The
function shows how the cost is affected when desired air content is made
lower or higher than that optimum value.

As seen, both functions are not linear. While the curve on the cost to
break pressure is not very steep, the cost of on-air content varies quite
extensively based on the constraints. There is an optimum air content
achievable for cost, and with these constraints is around 5.55%. For the
cost of test break pressure, in general, the lower desired test break pres-
sure, the cheaper it is to produce the product.

The following discussion summary can be made from the testing,

Table 2.
Description of equations used.

9213
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9212.6

o
=
-
~
S
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=4
=
~

4.2 4.7 5.2 5.7 6.2 6.7 7.2 7.7 8.2
Test Break (psi)

Fig. 6. Variation of cost with air content.

and recommendations for further research on the subject.

1) First thing is that the methodology was quick, efficient, and cheap
as far as the tool being utilized. Regression is readily available through
multiple pieces of software, from Microsoft excel, to free online regres-
sion tools. The methodology to filter data was quite easy, comparing the
data and outliers with someone who understands the data was simple.
Setting up the optimization method, in its simplest form in something
like excel is quite simple. In the case of this material, almost every con-
straint was able to be defined by the raw material range that was tested
already. For example, historical data only used between 171 Ibs and 354
Ibs of water in each batch of mix, so that is how the constraints were
defined. The only other constraints were set to business requirements or
customer-demanded material properties which were all calculated based
on the regression models. Overall, this is simple and could be completed
by nearly any “layperson” who understood the business and material
requirements, and the meaning of the raw manufacturing data.

2) This method was also cost efficient in the way of time and mon-
ey, as additional testing, by creating specific testing material, is not re-
quired. For the model that was created, if only 3 levels (which is low)
would be utilized for all 9 factors in the model, a full factorial would re-

Equation Description

Eq. 1 Compressive Break estimation regression model. This will be used as input to in Eq. 4

Eq. 2 As listed in the body (Air Content formula)

Eq. 3 (this states that the total amount of raw material put into each of batch, is greater than or equal to the required weight of concrete known to fill a mold. If a
mold can’t be fully filled the entire batch is wasted.

Eq. 4
Predictive Break P.Model output > B, (customer specification required to release)

Eq. 5 A, = Predictive Air Con. Model Output > A (long-term product quality req.)

Eq. 6 T > 16 (operation single shift requirement)

Eq. 7 120 > F > 110 (highest and lowest ever used)

Eq. 8 675> C > 620 (highest and lowest ever used)

Eq. 9 354 >W > 171 (highest and lowest ever used))

Eq. 10 1080 > S, > 900 (highest and lowest ever used))

Eq. 11 2005 > R > 1750 (highest and lowest ever used)

Eq. 12 85>T, > 32 (water freezes below 32, and workers are uncomfortable over 85)

Eq. 13 Predictive Break Pressure Model Output = b, (F)S,) +b, (S, 3) b, (C,)(F) + b, (C)(R)(D) — b, (D)(S,)( S,) —b, (R)Y(W)(D) —b, (S,)(S,) + b, (SYW)(D) —
by (S,)(S, (S)) +b,,(S)(S,) + b, (SH(S)(T,)

Eq. 14 Predictive Air Content Model Output =b; — b, (F) +b, (S,) b, (S,) b, (T,) + b, (F)(T,) +b, (S,)(S;) - b, (S,)(T,)

Eq. 15 Temperature Cost Model Output = D(b, (T~ T, )T, ) + b, (T,~T )T .,.)

Eq. 16 The objective function is to minimize the total cost to produce a single unit/batch of concrete., which is given as follows.

Minimize:

P = D Do+ e Do D Do Doy D D, D, (XN(P)

The right-hand side of the Eq. contains all of the controllable costs, not related to things like staff salaries.)
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quire 379 or 19683 samples. A Taguchi method usually removes around
one to two factors worth of tests from the number of test samples, largely
depending on signal-to-noise ratios. In this case, reducing from to or
tests, which is a nearly 80% reduction of tests to around 3787.995 tests.
Even with only 3,800 tests, the amount of time and resources that it
would take to perform such a test would take over a year of company
“X’s” full workforce, meaning they would make no money producing
products during this time. The method of using only the natural varia-
tion of manufacturing the product and utilizing the historical data takes
no product out of production and costs no additional money or time to
create and evaluate specific test samples. This is a bit of a no-brainer if a
company has no R&D department like this one.

3) Possibly the biggest issue with this methodology is that it lacks a
validation run. Normally the easiest way to tell if a calculation is correct
with this sort of method is to create material using what is called the
optimal method and test to see if the calculated values are true. In this
paper there were two reasons why the validation run cannot be creat-
ed. The first reason is the timing of the paper coincided with the 2020
COVID-19 pandemic, which put strains on lots of businesses including
company “X” and its operating conditions. Aside from the strains from
the pandemic were also the issues of being able to control their operating
process better. Most of the raw materials being added are done by hand
and the ability to get the work done fast rather than extremely accu-
rately does result in targeted numbers not always being achieved. For
example, if 2000 pounds of dry rock is being targeted, an accuracy of
+201bs might be achieved. While they could be more precise with adding
the material, it would take additional operator time and care, especially
while calculating the dry characteristics from the tested moisture content
of the aggregate. Based on business demands, they could come up with
better ways to ensure the raw material was added more accurately with
automation or other measurement techniques. Needless to say, this style
of research could give a company an idea of where to focus or minimize
random/natural variation in their manufacturing process, which when
completed can help to optimize a system. The natural variation at this
stage is helpful in the modeling of a larger level range for each variable.
Doing a validation run could have solidified many of the claims made in
the paper as true, so it is a recommendation if future research is pursued.

Since that could not be done, the next best thing is to compare known
material behavior with the sensitivity analysis of the models. Important-
ly as more of each material was added the cost increased, which makes
sense to the objective function, but the other two functions that come
from regression were overall more likely to have issues from an accura-
cy standpoint. Luckily as far as can be seen, all of the sensitivity analysis
looks correct, even though it is all just first order changes, where most
functions involved the interaction between variables. As an example,
time should positively affect break psi, but not affect air content at all,
and in the sensitivity analysis, this was the case. The same goes for the
Sika add-ins. Sika Air for example should not affect break psi but does
affect air content, which is the case in the sensitivity analysis. If multi-
ple or any of the sensitivity analysis runs look incorrect, the models are
likely incorrect in some way, or the historical assumption of something

may be incorrect.

4. Conclusions

Based on the study, it can be said that the Taguchi method and SRM
are not handy techniques to use in material process development for
specific manufacturing scenarios such as for the company “X” described
in this paper. Therefore, an alternative method was proposed to deal with
producing a concrete product in large batches with many potential fac-
tors of variation. The method involved analyzing manufacturing data
of a process that is not highly controlled. The data were used to create

predictive models of material properties that affect product lifetime and
performance via regression. The non-linear material property models
were then used to optimize the system for cost, while also holding the
material properties to high standards. Sensitivity analyses were utilized
to give insight into the validity of the model’s effectiveness in accurately
representing the system changing with the input factors.
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