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ABSTRACT ARTICLEINFORMATION

Hydrogels made from a variety of materials may be used as a novel technology in regenerative medicine in the Article history:

biomedical field. Hydrogels may be made using both chemical and physical processes, depending on the source Received 2 February 2022

material. Size, elastic modulus, swelling, and degradation rate are only a few of the many physical parameters Received in revised form 19 May 2022
that may be used to define hydrogels in experiments. Hydrogels made from natural polymers have been the focus Accepted 1 June 2022

of our review. Due to their remarkable biocompatibility and nontoxicity, simple gelation, and functionalization,

hydrogels derived from natural polymers have received extensive attention in recent decades. As a result, natural - eywords:

polymer hydrogels are considered excellent biomaterials that have great potential in the biomedical field. Because . (ra1 hydrogels

carriers play such a large role in determining how far and how fast drugs reach their intended recipients, the need Crosslinking

for intelligent drug delivery systems (DDSs) is on the rise. An outstanding goal of this study is to examine the Drug delivery mechanisms
impact that various crosslinking process parameters have on the drug delivery mechanism.
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1. Introduction

To induce a therapeutic effect, traditional drug administration some-
times requires repeated administration or large doses; this may reduce
patient compliance and overall effectiveness, as well as cause significant
toxicity and adverse effects [1-4]. Short circulation durations (less than
12 hours) and poor targeting and restrict oral administration, which is
the most popular method for administration of drugs [5]. During the last
several decades, researchers have focused on the development of drug
carriers such as liposomes, nanoparticles, membranes, and hydrogels to
address these difficulties [6, 7]. These drug delivery systems (DDSs)
have the ability to regulate how drugs are delivered to tissues and cells
throughout space and time. They may, in theory, increase the effective-
ness of treatments while lowering their toxicity and dose requirements
[7]. Various types of materials have been investigated in depth to de-
termine their possible uses, with an emphasis on synthetic and natural
materials [8-11]. Natural materials are preferable to artificial materials
in terms of biocompatibility, accessibility, and ease of modification.
Furthermore, different functional groups might be incorporated into the
newly produced materials because of the reactive groups on the original
natural materials, the freshly acquired materials are endowed with re-
markable functions or their physical and chemical properties are altered
[12, 13]. Furthermore, the natural materials might be combined with
natural or other manufactured components to create hybrid materials
[14-19].

There are several kinds of natural polymers, such as peptides, pro-
teins, polysaccharides, etc., as often recognized. In terms of their process
ability and biocompatibility, the first two classes of native polymers have
been extensively studied in DDSs. Proteins and polysaccharide-based
materials have more resemblance to the extracellular matrix, to provide
less intrusive features for natural polymer-based DDSs [20, 21]. In ad-
dition, the backbones of polymers include several readily modifiable
groups, including hydroxyl, carboxyl, and amino groups [22, 23]. More
precise interactions between natural polymers and cells or organs have
been discovered as a result of advances in life science research. Cel-
lular activities, such as adhesion, migration, and proliferation, may be
improved by using natural polymers with increased affinity for cell re-
ceptors. This presents a tremendous opportunity to design more targeted
applications [23, 24].

Crosslinked water-soluble polymers are called hydrogels that are 3D
networks. Hydrogels may be produced from almost any water-soluble
polymer, including various chemical compositions and bulk physical
properties [25]. Most hydrogels are composed of natural and synthet-
ic polymers. Synthetic hydrogels are widely used nowadays because of
their wide range of basic chemical resources, high water absorption, ex-
tended service life, and excellent process ability, synthetic hydrogels are
extensively employed nowadays [26]. Nonetheless, excessive usage of
synthetic hydrogels will impose enormous environmental and economic
costs on civilization. In addition, it is difficult to ensure the toxicity and
biocompatibility of synthetic hydrogels. Natural hydrogels are created
from hydrophilic polymers obtained from nature, such as gelatin [27],
alginate [28], starch [29], chitin [30], and cellulose [31]. These macro-
molecules are often derived from the biota of the earth. Consequently,
judicious use of these resources may not only alleviate the issue of re-
source waste but also lessen the environmental damage and economic
burden. Moreover, owing to their nontoxicity, biodegradability, biocom-
patibility, and sustainability, natural polymers are more appropriate for
biomedical applications [32, 33].

As drug delivery vehicles, natural polymer hydrogels have gained
significant interest [34-37]. Despite their effectiveness as drug carri-

ers, existing hydrogel-based DDSs have drawbacks. The majority of
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Fig. 1. Hydrogels classification according to crosslinking methods.

pharmaceuticals, for instance, are released from porous hydrogels by
passive processes such as molecular diffusion and hydrogel breakdown
[38]. To increase the safety and efficacy of medication administration,
controlled delivery hydrogels are in great demand [39]. In general, the
bulk of these polymeric materials robs the matrix of its intended me-
chanical and degrading characteristics. Crosslinkers or crosslinking
agents are the chemicals necessary to increase these qualities. Cross-
linking is a straightforward way of modifying the degrading, biological,
and mechanical characteristics of polymeric materials [40]. Physical or
chemical linkages are formed between polymer chains. According to
Martinez et al. [41], the selection of processing method and crosslinking
approach has a substantial impact on every feature of protein-polymer
films. The use of restricted, constant volume, and vapor phase cross-
linking approaches decreased the equilibrium water content of protein
polymers significantly. In particular, both restricted, vapor phase, and
fixed volume methods affected drug delivery rates, with lower release
rates and initial drug burst compared to crosslinking in the solution
phase. Modifying the mechanical, physical, and drug release features
of protein polymers is significantly facilitated by custom crosslinking
techniques. In the study of Zhai et al. [42], three types of diselenide-rich
polymers with unique hydrophobic side chains were manufactured. Dual
drug-loaded crosslinked micelles were stable in healthy settings with
low drug leakage and prolonged blood circulation, however, dual drug
release was markedly increased in tumor redox microenvironments.

In DDSs, the amount and rate at which drugs reach their targets are
strongly dependent on the carrier; hence, the need for intelligent DDSs
is rising. However, there are some issues and challenges with how DDS
can be performed and which variables need to be controlled more. The
crosslinking of hydrogels is one of the major influential ways. The fun-
damental objective of this research is to examine the various kinds of
crosslinked hydrogels as well as the influence of crosslinking process
parameters on the drug delivery mechanism.

2. Crosslinking methods of natural hydrogels

Natural biopolymers such as alginate, chitosan, carrageenan, hy-
aluronan, and carboxymethyl cellulose (CMC) have been observed to
form crosslinked networks [43, 44]. The different preparation process-
es employed include physical crosslinking [45], chemical crosslinking
[46], grafting polymerization [47], and radiation crosslinking [48].
These adjustments may enhance the mechanical characteristics and vis-
coelasticity of materials used in pharmaceutical and biomedical applica-
tions [49]. The main procedures for creating chemical and physical gels
(Fig. 1) are detailed here:
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2.1. Chemically-crosslinked natural hydrogels

Hydrogels that have been chemically crosslinked facilitate the ab-
sorption of bioactive substances and/or water without dissolving and the
diffusional release of drugs [50]. The chemical crosslinking technique
utilizes covalent bonds between polymer chains to make persistent hy-
drogel [51]. The production of crosslinks was accomplished by the en-
zyme-catalyzed reaction, photosensitive agents, polymer-polymer con-
jugation, or the addition of small crosslinker molecules. The existence
of functional groups (primarily OH, COOH, and NH,), which may be
employed to make hydrogels, is what gives water-soluble polymers their
solubility. Covalent bonds between polymer chains may be produced by
reacting functional groups with complementary reactivity, such as the
isocyanate-OH/NH, reaction or the amine-carboxylic acid reaction, or
by producing Schiff bases [45, 52].

2.1.1. Enzyme-catalyzed crosslinking

An enzyme-catalyzed crosslinking process between polymer chains
is being used to generate in situ hydrogels. For this purpose, phospha-
tases, plasma amine oxidase, lysyl oxidase, phosphopantetheinyl trans-
ferase [53], tyrosinase [54], peroxidases [55], transglutaminases (TG)
[56] are enzymes that were reported and investigated.

TG enzymes catalyze the production of very stable covalent connec-
tions between a protein’s peptide-bound lysine or free amine group and
its peptide-bound glutamine or g-carboxamide group [53]. Yung et al.
[57] have created biocompatible and thermally stable gelatin hydrogels
that are crosslinked by microbial TG (mTG) and can control the distribu-
tion of encapsulated regeneration cells (HEK293). Recombinant human
TG (hTG) enzymes and animal-derived tissue TG (tTG) were utilized to
crosslink two groups of protein polymers containing either glutamine or
lysine completed crosslinking quicker than hTG (within 2 minutes) [56].

Soybean peroxidase and HRP are the commonly utilized peroxidase
enzymes in the production of hydrogels. They enhance aniline conju-
gation and phenol derivatives in the H,O, presence. In this process,
HRP binds rapidly with H,O, to produce a complex that may oxidize
hydroxyphenyl groups in substances like tyramine and tyrosine [53].
Kim et al. [55] recently developed two-step HRP-catalyzed injectable
tyramine-modified hyaluronic acid (HA-Tyr) hydrogels. In the first step,
a bond of amide was formed among the carboxyl groups of HA and the
amine groups of tyramine to form HA-Tyr conjugate. In the second step,
HA-Tyr hydrogels were produced using a radical crosslinking process
involving H,0, and HRP. This hydrogel was utilized to provide intra-ar-
ticular dexamethasone for rheumatoid arthritis therapy. By Jin et al. [58],
the enzymatically crosslinked hydrogel was made from phloretic acid,
chitosan-glycolic acid, and chitosan derivatives by utilizing HRP and
H,0, as crosslinking agents. This hydrogel has the potential for carti-
lage tissue engineering and can be created (gelation time) between 10
seconds and 4 minutes when the polymer concentration is between 3%
and 1%.

The monophenol monooxygenase enzyme family includes tyrosi-
nase, which is established in both plant and animal tissues. It has been
utilized to crosslink gelatin and chitosan in situ to generate a hydrogel.
The enzyme selectively oxidizes the tyrosyl residues of gelatin, creating
reactive quinone residues, and the electron-rich amino groups of chi-
tosan are covalently attached to the electron-poor quinone moiety, there-
fore forming intermolecular crosslinkages.

2.1.2. Photo crosslinking

The development of photo-crosslinked hydrogels is reliant based on
photosensitive functional groups being present. When a photosensitive
functional group is bonded to a polymer, it may create crosslinks when
exposed to light, such as UV radiation [59]. Chitosan is one of these

polymers that has been investigated more than others. A photo-cross-
linkable chitosan hydrogel was produced by adding azide groups (-N,)
into the polymeric chain of chitosan. When exposed to UV light, the
azide group is changed to the nitrene group (R-N:), which binds to the
free amino groups of chitosan, resulting in the production of hydrogel
in situ within one minute [60]. Between polymers, the photo-crosslinked
hydrogel may also be created. UV irradiation was used to functionalize
both polymers with photosensitive acrylate groups (CH,=CHCOO) re-
sulting in the thermosensitive chitosan-pluronic hydrogel. It was shown
that the crosslinked polymer may release encapsulated human growth
hormone (hGH) over an extended period when heated above the lower
critical solution temperature (LCST) [61]. This combination was also
used to transport plasmid DNA [62]. By altering chitosan with PEG and
photoreactive azidobenzoic acid with argininylglycylaspartic acid pep-
tide, a second chitosan-PEG hydrogel was created. Upon UV irradiation,
a free-radical photo-initiated polymerization occurred, leading to the in
situ synthesis of the hydrogel. The hydrogel resulted in improved dis-
tribution of cells and growth factors to the damaged myocardium [63].

This method has the benefit of facilitating the rapid and simple syn-
thesis of the hydrogel. In contrast to chemical procedures, which often
involve the inclusion of various reactive species, initiators, or catalysts,
its manufacture is safe and inexpensive. This procedure, however, needs
a photosensitizer and extended irradiation, which can also cause a local
increase in temperature, so causing damage to nearby cells and tissue
[64].

2.1.3. Hybrid polymer networks (HPN) or polymer-polymer crosslink-
ing

Crosslinking take place among a polymeric chain’s structural unit
and another polymeric chain’s structural unit in this hydrogel [65]. Thus,
reactive functional groups must be pre-functionalized into polymers.
Relying on the biodegradability of the resultant conjugates, choice of
reactive functional groups, and required rate of crosslinking, many kinds
of covalent bonds may be formed [66].

A well-studied in situ crosslinking process is the Michael addition
between a nucleophile (such as a thiol or amine) and a vinyl group.
Crosslinking of vinyl sulfone-functionalized dextrans with thiolated
PEG is one example. The sort of strategy allows for the development
of many types of quick production, biological inertness, and linkages of
hydrogel [67]. The creation of a hydrazone bond between a hydrazide

and an aldehyde enables the quick crosslinking of gel precursors [68].

2.1.4. Small-molecule crosslinking

Minimum requirements for the preparation of small-molecule cross-
linking hydrogels are a small molecule crosslinker and one polymer
in an acceptable solvent. In order to connect polymeric chains, cross-
linkers, which have at least two reactive functional groups, are used
[69]. There are two sorts of small crosslinkers: pharmacological mol-
ecules and bifunctional compounds. In the first scenario, the polymer
and bi-functional molecule combine to entrap the drug molecule inside
the hydrogel. In addition, drug molecules with two functional groups are
covalently attached to polymeric chains to generate hydrogel without
the need for crosslinkers. This method is only applicable to drugs with
two reactive functional groups. Primaquine, a diamino drug, was recent-
ly used to crosslink periodate-oxidized gum arabic into a hydrogel by
rapidly forming Schiff bases between the polymer’s aldehyde and amine
groups and the drug’s amine groups [70].

Schiff base is the simple kind of crosslinking, occurring among ami-
no and aldehyde groups. Using the Schiff reaction, dialdehydes such
as glutaraldehyde and glyoxal [71] create covalent imine connections
with the chitosan amino groups [72]. In other instances, HA-tyramine

[73] and dextran-tyramine [71] were covalently bonded using hydrogen
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peroxide (H,0,) and horseradish peroxidase (HRP) as crosslinkers to
produce controllable gelation times hydrogels ranging from 5 seconds
to nine minutes, depending on the reactant concentrations used. All of
these small-molecule crosslinking techniques share the concern of the
possible toxicity of unreacted crosslinker chemicals remaining in vivo.
Glyoxal and Glutaraldehyde are known to be mutagenic and neurotoxic,
respectively [72].

Genipin, a naturally occurring compound extracted from the fruit
of the gardenia, is often used as a crosslinking agent in place of dial-
dehydes [58]. It has also been proven that genipin links polymers like
gelatin and chitosan to biological tissues covalent. [74]. In addition,
polymers containing amino-terminated groups, such as BSA [75], N,
O-carboxymethyl chitosan, and PEG [76], crosslinked with genipin to
produce hydrogels with varied dissolution rates ranging from 3 minutes
to more than 100 days. Despite genipin’s great biocompatibility, it is
sensitive to interact with encapsulated drugs negatively, which is a dis-
advantageous related to gelation in the presence of treatment [66]. The
current method was used to construct transdermal drug delivery for the
controlled release of indomethacin, 5-fluorouracil, propranolol HCI, and
oxprenolol HCI from gel beads [77].

2.1.5. Interpenetrating networks (IPNs)

A substance having two or more polymers in net-
work form, where one polymer is crosslinked in the presence of anoth-
er polymer is considered an IPN [78]. IPNs are called “alloys” of
crosslinked polymers created without covalent connections between
them [79]. Unless chemical links are disrupted, these networks cannot
be separated [80]. At least one polymer must be crosslinked and/or gen-
erated in the presence of the other, both polymers must have comparable
kinetics, and there must be no considerable phase separation among or
between polymers [81]. An IPN is unique from other polymer combi-
nations since it lacks viscoelasticity, swells but does not dissolve in any
solvent, and lacks viscoelasticity [82]. IPN hydrogels are made from
natural polymers and their derivatives, such as proteins and polysaccha-
rides, as well as synthetic polymers with hydrophilic functional groups
(e.g. -COOH, -OH, -CONH,, SO,H, amines, etc) [83].

Three polymers, such as poly (vinyl pyrrolidone) (PVP), PAA, and
chitosan, and two crosslinking agents (such as N, N’-methylene-bi-
sacrylamide, and glutaraldehyde) were used to create clarithromycin
IPN hydrogels. The hydrogels produced by IPN have excellent muco-
adhesion, allowing them to remain in the stomach’s gastrointestinal en-
vironment for extended periods. Therefore, IPN hydrogel is utilized as a
means of drug delivery for peptic ulcer treatment and H. pylori infection
[84]. Semi-IPN hydrogels were produced by crosslinking a PVP and
chitosan mixture with glutaraldehyde. The resulting semi-IPN gels were
able to distribute clarithromycin in the stomach medium [85]. Kulkarni
et al. [86] developed prazosin hydrochloride IPN hydrogel membranes
for transdermal delivery using polyvinyl alcohol (PVA) and sodium al-
ginate (SA) as polymers. The inclusion of crosslinker glutaraldehyde
increased the film’s rigidity, and the amount of glutaraldehyde in mem-
branes determines the film’s rigidity and in vitro drug release capabili-
ties. IPN membranes extended the release of prazosin hydrochloride for
up to 24 hours, while PVA and SA membranes alone resulted in fast drug
release. The encapsulation efficiency reached 82 percent, and the drug
release was sustained for up to 12 hours [87].

In comparison to single-network hydrogels, the swelling/deswelling
response of multicomponent networks and mechanical strength, such as
IPNs, are superior [88]. In addition, gel stiffness, hydrogel porosity, and
crosslinking density may be tailored to the intended use in IPN-based
hydrogels. Two major drawbacks are: (1) it is difficult to contain many
different therapeutic agents, especially IPN and sensitive bimolecular
agents, and (2) its preparation requires toxic agents such as crosslinkers,

activators, and initiators to catalyze or initiate the polymerization and/
or to catalyze or initiate the crosslinking or polymerization, respectively
[89].

2.2. Physically-crosslinked natural hydrogels

Physical crosslinking may be accomplished by hydrogen bonds,
chain complexion, polymer stereocomplexation, crystallization, chain
aggregation, and hydrophobic association [90]. Due to the lack of harm-
ful crosslinking agents, these hydrogels offer a wide variety of biologi-
cal pharmacological applications. Due to the absence of a crosslinking
agent, it is difficult to regulate the physical hydrogel’s material charac-
teristics, such as degradation time, chemical functionalization, network
pore size, and gelation duration. In addition, this hinders the enhance-
ment of mechanical properties [91, 92].

There are numerous methods for creating physically crosslinked hy-
drogels without the production of new covalent bonds, such as hydro-
phobic, ionic, electrostatic, and hydrogen bonding interactions between
the building units [93]. Watanabe et al. [94] In the presence of potassium
ions, they used the non-ionic polysaccharide dextran to make hydrogels.
The researchers thought that the ionic radius of the potassium ion would
fit into the cage made by the six oxygen atoms of the glucose units.
However, the hydrogel they made was unstable in water. Reis et al. [95],
for example, reported pH-responsive hydrogels based on modified gum
arabic. 15 minutes of stirring an aqueous solution containing modified
gum arabic with 0.1 mmol sodium persulfate, followed by 30 minutes of
heating at 70 °C, produced a hydrogel. The hydrogel exhibited a signifi-
cant pH dependence. For ionic interaction-induced hydrogel formation,
the ionic groups presence on the polymer is not always necessary. Fol-

lowing is a list of the many ways documented for physical crosslinking:

2.2.1. Ionic bonding

Ionic bonding with polymers do not need the presence of ionic
groups and may be crosslinked at ambient temperature and physio-
logical pH. Alginate, which contains glucuronic and mannuronic acid
residues and may be crosslinked with ions of calcium, is a notewor-
thy example. These gels are used as a matrix for the encapsulation and
release of proteins from live cells. In a similar fashion, hydrogels are
created by crosslinking chitosan with glycerol-phosphate disodium salt.
Chitosan solutions containing this salt stay liquid at room temperature
but rapidly convert into a gel upon heating. These gels may facilitate
the active protein-induced production of cartilage and bone. Carra-
geenan, a polysaccharide composed of 1,4-linked—D-galactose and
1,3-linked—D-galactose with an uneven proportion of sulfate groups,
gels with potassium ions, or in the absence of salt. In the metallic ions
presence, it is possible to build stronger hydrogels [96-99]. In the potas-
sium ions’ presence, dextran is another natural polymer that produces
hydrogels. Due to the gel’s inability to withstand water, it is less suitable
for administering drugs [45].

2.2.2. Stereocomplex formation

This approach produces physically crosslinked hydrogels for DDSs
by forming stereocomplexes between polymers with opposing chiral-
ity. The creation of these hydrogels is facilitated by each component
dissolving in water and combining the resulting solution. However,
only a few polymer compositions are used for such structures. Dextran
hydrogels physically crosslinked via the stereocomplex production of
lactic acid oligomers are examples of such systems. However, 11 lactic
acid units were needed for hydrogel formation in the grafts [100]. The
protein was suspended in dextran-g-oligolactate solutions prior to the
mixing stage. Under physiological conditions, the gels were found to be
completely degraded. The period of degradation was determined by the
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hydrogel’s composition, specifically the number of initial water content,
lactate grafts, and the length and polydispersity of those grafts [101].

2.2.3. Crystallization

Crystallization, which includes repeated freezing and thawing, may
produce a gel that is both robust and very elastic. Such a development
was initially observed in synthetic hydrogel poly (vinyl alcohol) (PVA)
hydrogels. These are now widely used in biotechnology sectors, particu-
larly in the production of peptides and proteins. There are uses for PVA/
gelatin, PVA/starch, and PVA/chitosan hydrogels made by freeze-thaw-
ing in tissue engineering [96]. Crystallization may also be used to make
dextran microspheres and hydrogels. An increase in the concentration of
low molecular weight dextran was observed after the addition of salts
and stirring. Precipitates dissolve rapidly in dimethyl sulfoxide or boil-
ing water while being insoluble in water at a normal temperature [102].

Crystallization was used by Stenekes et al. [103] to produce dextran
hydrogel microspheres. Dextran 6000 of low molecular weight was pre-
cipitated from a concentrated aqueous solution. The rate of precipitation
accelerated with increasing dextran solution concentration. The pre-
cipitation process was increased by the presence of salts and agitation.
Differential scanning calorimetry confirmed the crystalline nature of the
precipitates. Researchers hypothesized that hydrogen bonds between
polymer chains and water in highly concentrated dextran solutions in-
duced crystallization.

2.2.4. Hydrophobized polysaccharides

By hydrophobic modification, polysaccharides such as car-
boxymethyl curdlan, pullulan, dextran, and chitosan may be physically
crosslinked. Such hydrogels with crosslinking have potential in DDSs.
The palmitoyl-substituted hydrophobized water-soluble glycol chitosan
is hemocompatible, biocompatible, and capable of entrapping water-sol-
uble pharmaceuticals [104].

In the Mihajlovic et al. [105] study, the composition of the hydrogel
was hydrophilic PEG and hydrophobic dimer fatty acid. Self-assembly
of fatty acids in a micellar microstructure led to the formation of the
hydrogel network. At equilibrium swelling, the resulting hydrogels com-
prised between 75% and 92% by weight of water and exhibited good
mechanical characteristics. An anisotropic lamellar hydrogel was made
by Haque et al. [106] by stacking a bilayered structure of polymerizable
surfactant (dodecyl glyceryl itaconate) that was hydrophobically associ-
ated within a polyacrylamide matrix that was hydrophilic.

2.2.5. Electrostatic

Hydrogel formation may also originate from electrostatic interac-
tions between polyelectrolytes. Charged groups on biopolymers may en-
gage in electrostatic interactions with one another or with other charged
species in solution [107]. Gotoh et al. [108] produced chitosan-alginate
hybrid gel beads for Cd(II), Co(II), and Cu(II) adsorption from a waste-
water stream based on electrostatic interaction between amino groups
on chitosan and carboxyl groups on alginic acid. On the hydrogel based
on electrostatic forces, adsorption was reported to be dramatically accel-
erated. This finding demonstrated the capability of the beads to absorb
heavy metal ions from wastewater. pH-sensitive hydrogels have been
created by Huang et al. [109] using the strong electrostatic interaction
between anionic groups in polyacrylic acid (PAA) and cationic guar gum
(CG). The researchers studied the hydrogel matrix’s ability to release
ketoprofen. At pH 7.4, there was no diffusion of ketoprofen, but at more
basic pH values, the drug was observed to be transported.

2.2.6. Hydrogen bonding

An electron-deficient hydrogen atom may be linked to a functional

group with high electron density through a hydrogen bond to help in
the formation of hydrogels in gelatin-based hydrogels. The temperature
of the solution, the kind of solvent, the concentration of the polymer,
and the molar ratio of each polymer are only a few of the aspects that
must be addressed in this sort of physical crosslinking [45]. Crosslinked
injectable hydrogel structures can be made with natural polymers like
gelatin-agar, starch-carboxymethyl cellulose, and HA-MC [110].

The types of crosslinked natural hydrogels, their polymer systems,
and the drugs they contain are listed in Table 1.

3. Drug delivery potentials

In recent decades, several studies have been performed on biomateri-
als composed of polysaccharides and proteins. The biological polymers
derived from diverse plant and animal sources include gallan, dextran,
starch, and chitosan. In recent years, these biopolymers have gained
a variety of benefits, as researchers continue to develop and examine
these biomaterials to meet the demanding requirements of biomedical
applications in drug administration. Numerous polysaccharide and pro-
tein-based polymeric networks, such as guar gum, konjac glucomannan,
and dextran containing acrylic acid, have been fabricated [147]. Meth-
ods of crosslinking synthesis enable the functionalization of medicines
and other therapeutic agents for the development of novel DDSs [148].
The hydrogel design discusses meshes and crosslinked polymers that
permit the loading and diffusion of complex solutions. When functional-
izing, care must be given to the mesh size [149]. At the beginning of the
hydrogel synthesis, this approach may be used with the drug in combina-
tion with the other reagents, or it can be used at the end after the hydro-
gel has been formed [150]. In situ loading is appropriate for hydrophilic
medicines and consists of dissolving the drug and polymer powder in
water. The alternative procedure, known as post-loading, involves the
prolonged immersion of dried hydrogel sheets in a drug solution. Af-
ter drug inclusion, the hydrogel has a dry state and provides protection
in both instances. In addition, crosslinkers are crucial for the regulated
release of medicinal drugs with a low or high molecular weight, and
degradable crosslinkers are preferable [151]. Table 2 discusses several
natural polymers utilized for DDSs and their characteristics.

Natural polysaccharides may be used to create remarkable localized
hydrogel release systems by modifying the physical-chemical charac-
teristics and manufacturing process described in the preceding sections.
Natural polysaccharides share similarities with the extracellular matrix
(ECM), possess optimal bio properties, and have great cellular connec-
tions [155]. These properties allow the use of natural polysaccharides
at targeted target areas as porous 3D matrices, in situ hydrogels, and/
or microspheres. Consequently, the localized administration of polysac-
charide drug systems is a crucial aspect of many medical procedures
and processes, including transdermal applications, GI tract abnormal-
ities, tissue healing, cancer treatment, and others. The polysaccharide
may contain growth factors and entire cells for improved disease therapy
and wound healing, in addition to incorporating diverse medicinal com-
pounds into hydrogel DDSs.

3.1. Drug—hydrogel interactions

Before injection into the body, hydrogels used for DDSs are typi-
cally manufactured outside of the body and infused with pharmaceuti-
cals. There are a variety of crosslinking processes available, including
chemical and UV photo-polymerization crosslinking procedures. These
crosslinking methods are only useful if all harmful chemicals can be
removed before the hydrogel is implanted, which may be challenging
without also leaking drug-loaded hydrogel. Since bulk hydrogels have
a defined dimensionality and often a high elasticity, it is generally not
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practical to extrude them using a needle. Occasionally, this issue may be
overcome by transforming the prepared gel into nano- or microparticles.
Hydrogels may be produced in situ (i.e. in vivo) for certain purposes,
however, the risks of UV irradiation (and the need for additional equip-
ment) or crosslinking chemicals must be taken into account [50].

On the other hand, the DDS could be a linear polymer that is not
crosslinked. The viscosity of a linear polymer matrix is often related to
the rate at which a drug is released from it [156]. Nonetheless, it may
be challenging or impossible to dissolve the polymer(s) of interest in
sufficient concentration to provide the desired degree of control over the
rate of drug release. Even if this were possible, the yield stress of the re-
sulting material might be so high that it can’t be injected, or its viscosity
might be so high that it can’t flow through a long and/or narrow extrusion

device (needle, laparoscope), as Poiseuille’s equation says. Another rea-
son why crosslinking is so important is because water-soluble polymer
chains that aren’t crosslinked disintegrate and expand within hours after
entering the body’s water. For these reasons, formulations that have the
characteristics of linear polymer solutions outside the body (allowing
for simple injection) but gel in situ inside the body (thereby allowing for
extended drug release profiles) have attracted a large amount of attention
and funding. Several chemical and physical crosslinking methods have
been used to bring about in situ gelation. [50].

3.2. Gel network engineering

In order to control the drugs diffusion from hydrogel matrices, a

Table 1.
Composition and drug incorporation of various natural hydrogel forms.

Drug Type Crosslinking method Sort of polymers References
Clarithromycin PVP, PAA and Chitosan [111]
Clarithromycin PVP and Chitosan [112]

Prazosin HC1 . PVA and sodium alginate [87]
Interpenetrating networks
Theophylline methylcellulose and chitosan [113]
S-fluorouracil PX and chitosan [114]
Regenerative cells (HEK293) Gelatin crosslinked by mTG [115]
Interleukin-2 Enzymatic crosslinking Gelatin crosslinked by mTG [116]
Dexamethasone Tyramine modified HA by HRP [117]
Cells and growth factors Modified PEG-chitosan [118]
Human growth hormone . .
L Pluronic-chitosan [119]
(hGH) Photo crosslinking
Plasmid DNA Modified PEG-chitosan [120]
Bone morphogenetic protein-2 HA with aldehyde or amino functionality [121]
Budesonide and tissue plas- X
. . . Crosslinked HA [122]
minogen activator Polymer-polymer crosslinking
Growth facts d b
rowth factor and bone Adipic acid dihydrazide and poly(aldehyde guluronate) [123]
precursor cells

Primaquine Oxidized gum arabic [124]

Oxprenolol HCI Genipin [125]
BSA Genipin [126]
5-Fluorouracil Small-molecule Chitosan [127]
Propanolol HCI Chitosan [128]
Indomethacin Alginate—chitosan [77]
- Supramolecular chemistry PPO-grafted dextran & B-cyclodextrin [129]
- Stereocomplexation D-lactide oligomers and Dextran precursors grafted L-lactide [130]
Metronidazole PVA and Carboxymethyl tamarind kernel polysaccharide [131]
Gent i d Mi li PVA and chit 132,133
entamycin and Minocycline Physical mixtures and H-bonding and chitosan [132, ]
Metoprolol tartrate PVA and Carboxymethyl tamarind kernel polysaccharide [134]
- PAA and quaternized chitosan [135]
Polyanionic N-carboxymethyl chitosan and polycationic N-trimethyl
Dexamethasone . [136]
chitosan
Osteoblasts Chitosan and phosphorylated chitosan (a polycation) [137]
- Chitosan and alginate [138]
---- Polyelectrolyte complexes Poly-(y-glutamic acid) (y-PGA) and chitosan [139]
- Chitosan and gelatin [140]
k-carrageenan, carboxymethyl cellulose sodium, and chitosan with
Metoprolol tartrate . . [141]
sodium alginate
BSA Alginate solution [142]
BSA Chitosan grafted with PEG 40 [143]
Hydrophobic interactions
S-fluorouracil and Riboflavin PNIPAM grafted with HA and chitosan [144]
Meloxicam PX 407, Chitosan and Carbopol-934 [145]
Doxorubicin HCI Charge interactions HTCC and GP [146]
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Fig. 2. Full- and semi-IPN structure and formation.

variety of methods have been tested, including altering the microstruc-
ture of the hydrogel network or the hydrogel surface [157]. It has also
been shown that permanent covalent networks are established owing
to polymer crosslinking, resulting in higher mechanical strength of the
polymers which may be attributed to the free flow of water/bioactive
molecules. The principal uses of covalently crosslinked chitosan are in
site-specific sustained drug administration by diffusion, and as perma-
nent networks utilized in tissue engineering [158]. Increasing the pro-
portion of crosslinking monomer added into the gel is a straightforward
approach for achieving these alterations. Nevertheless, heavily cross-
linked gels display relatively sluggish reactions to environmental stimuli
and may possess poor mechanical characteristics. Consequently, it may
be necessary to use more advanced tactics.

The surface morphology and bulk stability are enhanced by the
interlocking structure of crosslinked IPN components. By using IPN
creation, comparatively dense hydrogel matrices with more robust me-
chanical characteristics and stiffer may be manufactured. IPN hydrogels
are more effective for drug delivery than ordinary hydrogels [159]. A
complete IPN may be produced using a crosslinker, as shown in Fig. 2,
or a network of embedded linear polymers entrapped inside the original
hydrogel can be created without a crosslinker, as shown in Fig. 2. (semi-
IPN). IPNs may be used to create thick hydrogel matrices with more
strong mechanical features and stiffer, more widely regulated physical
attributes, and (typically) more efficient drug loading. Polymerization of
the interpenetrating hydrogel phase and drug loading often occur con-
currently [160].

IPN surface chemistries and pore sizes can also be modified to cus-
tomize drug release kinetics, hydrogel-tissue interactions, and mechan-
ical gel properties [161]. Swelling responses to physiological situations
can be controlled by using interpenetrating phases with various degra-
dation profiles or varied swelling responses to physiological conditions
[162]. IPNs can limit how environmental changes affect hydrogel re-
sponses and burst drug release by controlling the equilibrium swelling

of one or both interpenetrating phases based on the elasticity (crosslink-
ing density) of one or both gel phases. Such a network, which includes
both a pH-sensitive hydrogel and a hydrolyzable hydrogel, inhibits a
pH-swelling hydrogel’s generally fast swelling reaction to allow for lin-
ear swelling profiles after a sudden drop in pH from 7.4 to 2 [163]. For
oral DDS, this responsiveness is perfect for reducing burst drug release.
Chitosan—PNIPAM interpenetrating networks considerably enhanced
the loading capacity of diclofenac compared to PNIPAM hydrogels with
no crosslinking [164], while maintaining the considerable thermosensi-
tivity of the PNIPAM phase to regulate the release kinetics.

Semi-IPNs may be better able to maintain quick kinetic reaction
rates to temperature or pH because of the lack of a restricted interpene-
trating elastic network, while still providing the majority of the advan-
tages of IPNs in DDS (e.g. slowing drug release, pore size modification,
etc.). Reversible pH switching of theophylline release is achieved by
embedding theophylline-binding polyallylammonium chloride in hydro-
gels made from acrylamide/acrylic acid copolymers [165].

3.3. Biorthogonal methods

In biomedical applications, in situ-forming hydrogels are preferred
over premade hydrogels due to the fact that gelation may occur under
physiological conditions upon injection, reducing the need for surgical
operations. The precursor polymer solution’s initial fluidity promotes
optimal shape adaption, and biological components may be included
into the hydrogel by simply mixing the precursor polymer solution with
the biological components [166, 167]. Physical crosslinks, such as hy-
drophobic or ionic contacts, may occur in situ under moderate circum-
stances, although the resultant hydrogels often dissolve or deteriorate
quickly. By photo-curing polymers functionalized with vinylic groups,
injectable hydrogels with chemical crosslinking have been produced
regularly [146]. Although the presence of photo-initiators and polymer-
ization radicals has been associated to cytotoxicity, cells encapsulated in
this kind of hydrogel are often compatible with cells [168, 169]. Howev-
er, significant disadvantages of photo-crosslinkable devices include UV
radiation’s limited penetrability and its potentially harmful effects on
live tissue. In situ production of hydrogels through covalent crosslinking
of polymers with complementary functional groups has garnered sig-
nificant attention during the last two decades. The production of Schiff
bases between amines and aldehydes [170] and the Ugi and Passerini
condensation are early examples of chemical crosslinking reactions that
generate hydrogels [171]. Because of this, hydrogels cannot be used as
in situ-forming DDSs because they may react with biomolecule func-
tional groups such as proteins [172].

Bioorthogonal, chemoselective crosslinking approaches that do not
interfere with biological processes or biomolecules are very desired in
this setting. Click chemistry, commonly known as the Cu(I)-catalyzed
Huisgen 1,3-dipolar cycloaddition of terminal alkynes and azides, is the
most extensively researched chemoselective crosslinking method for
hydrogels. Sharpless et al. [172] used this term to characterize an assort-
ment of new regiospecific linking reactions with high yields and often
minimal purification needs. The Hilborn group reported the first PVA-

Table 2.
Natural hydrogels as DDSs.
Hydrogels DDS potential References
Xylan Antioxidant and anticancer qualities suppress cell mutation, difficult to digest in the humans intestines and stomach. [152]
Chitosan Enhances medication paracellular transport, pain relief, stimulates intestinal adsorption, antimicrobial characteristics, [153]
antihypertension, promotion of hemostasis, antiulcer, epidermal cell development, cholesterol reduction
Cellulose Diabetic foot ulcer treatment using a topical gel, Controlled drug release (for colon-specific and oral DDS) [154]
Guar gum Controlled drug release (for colon-specific and oral DDS) [153]
Dextran Drug delivery in the colon [153]

Collagen For spinal fusion, bone fracture repair, and oral maxillofacial reconstruction [154]
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based, click-chemistry-crosslinked hydrogel [173]. In addition to tissue
engineering, this hydrogel class has been used to regulate the release of
drugs and other biomolecules, such as pPDNA [174], bovine serum albu-
min (BSA) [175], and doxorubicin [176]. Due to the necessity for a cop-
per catalyst in “traditional” alkyne—azide cyclosynthesis, strain-promot-
ed azide-alkyne cycloadditions (SPAAC) are becoming more popular.
Cyclooctyne groups’ intrinsic ring strain facilitates rapid and effective
crosslinking without the need for catalysts or external stimuli such as
UV light in this reaction For the treatment of excessive post-operative
bone growth, Hermann et al. [177] showed the injection of bone mor-
phogenetic protein (BMP) inhibitors using PEG hydrogels in children
who had surgery to repair early fusion of the sutures (craniosynostosis).
Poly [(tetracthylene glycol methacrylate)-co-(azidotetracthylene glycol
methacrylate)] and a 4-dibenzocyclooctynol PEG crosslinker, as indi-
cated by oscillatory rheology, created hydrogels within 30 seconds of
mixing. In vitro release studies indicated that the BMP inhibitor Grem-
linl remained effective after being dissolved in prepolymer solutions
and then incorporated into hydrogels, confirming the bioorthogonal na-
ture of the SPAAC crosslinking method. When the prepolymer solutions
were injected with Gremlinl into a surgically produced brain injury in
weanling mice, a hydrogel capable of releasing the inhibitor for 14 days
grew in situ. Using this method, scientists were able to limit postoper-
ative bone regeneration in a model with a cranial lesion, but not com-
pletely prevent it. Resynostosis therapy’s ultimate objective is to tem-
porarily block the formation of bone after surgery, but then let the bone
regenerate as the child ages, the current technique has the potential to be
used as a treatment for craniosynostosis after surgical intervention. In
addition to thiol-ene/yne reactions [178], native chemical ligation [179],
oxime chemistry [180], and Diels—Alder cycloadditions are promising
bioorthogonal techniques for the synthesis of chemically crosslinked
hydrogels [181].

4. Controlled release mechanisms

After loading the drug into a hydrogel, it may be released in a variety
of ways, including environmental-responsive, chemically-controlled,
swelling-controlled, and diffusion-controlled [182].

To achieve the optimal drug release rate, a hydrogel’s drug character-
istics and beginning concentration must be taken into consideration to-
gether with its intended use and the kind of ailment that is being treated
[183]. For successful drug distribution and release, a hydrogel with ap-
propriate characteristics has to be created based on the above-mentioned
dependencies. Preferably, altering the average pore size allows the drug
release rate to be controlled (mesh size). The crosslinking density in
the gel network may be used to modify the hydrogel’s high porosity
structure. Pore size decreases with increasing crosslinking density and
vice versa. By adding crosslinker (chemical or physical crosslinking ap-
proach) or by using various other techniques (e.g. UV polymerization),
it is possible to improve the crosslinking density [104]. pH and tempera-
ture, as well as changes in polymer concentration, may all affect mesh
size [184]. It is possible to modify the rate of drug release by changing
the mesh size, which alters the diffusion pathways of the drug molecules
[185].

Mathematical modeling may also be used to enhance the design of
hydrogels that can be used to regulate the release of drugs. In systems
like this, where diffusion is the primary mode of mass transfer, determin-
ing the drug diffusion coefficient is critical [186]. Pores, tiny crevices
between macromolecular chains, allow drug molecules to diffuse. Pore
size is often determined by the length of correlation (g), which is the dis-
tance between neighboring crosslinks. Diffusion distances between mac-
romolecular chains may be measured using this unit of measurement.

One of the most critical structural metrics for describing the hydrogel

network’s structure is the correlation length [187]. The mesh size of the
hydrogel is often referred to as. It is possible that this classification is
erroneous, however, the correlation length and thus the predicted mesh
size are lowered in the case of hydrogels with higher crosslinker addi-
tion. So it may be hypothesized that correlation length directly influenc-
es hydrogel network mesh size [186]. Drug release from hydrogel may
be accomplished by various methods including swelling/deswelling/
diffusion and chemical processes. It is described major mechanisms of
drug release especially influenced by crosslinking parameters as below:

4.1. Diffusion

The ability to immobilize active substances and biomolecules by
crosslinking aids in controlled drug release. To alter macroscopic fea-
tures like Young’s modulus and diffusion, crosslinking density is widely
employed to alter important parameters like molecular weight and mesh
size between crosslinkers. It is critical for the health of live cells in bi-
ological systems that tiny molecules, such as nutrients, diffuse freely
[188]. A popular method for drug release from hydrogels is passive dif-
fusion, which allows for the free diffusion in and out during the loading
and storage of a wide range of molecules [189].

As previously mentioned, hydrogels are 3D, crosslinked polymeric
networks that expand when exposed to water. The network structure of
the hydrogel is governed by the crosslink, which may be either chemical
(covalent bonding) or physical (hydrogen bonding, electrostatic interac-
tions, and hydrophobic contacts). The hydrogel’s mesh size is a measure
of the number of open spaces in the hydrogel network. Because it is
affected by crosslinker and polymer concentrations as well as environ-
mental stimuli, hydrogel mesh size affects how drug diffuse across the
hydrogel network. As a consequence of the network abnormalities and
polymer polydispersity caused by the gelation of hydrogels by polymer-
ization, the mesh size is often heterogeneous [154].

For large-mesh drug release (r, /r g > 1), diffusion takes over the
mechanism of drug release. The diffusion of small drug molecules is
essentially unaffected by the network mesh size. The Stokes-Einstein
equation Eq. (1) [190] states that the diffusivity, D, is proportional to the

radius of the drug molecule (r

drug) and the solution’s viscosity (1):

Do RT
6”’7rdmg

Eq. (1)

where T is the absolute temperature and R is the gas constant.

Steric hindrance becomes an issue when the mesh size is near to the
drug size (r__/r g 1) Finally, significant steric hindrance immobilizes
drugs and keeps them physically entrapped within the network until the
network degrades or the mesh size grows, for example, in response to
external stimuli, for very tiny mesh sizes and/or very big drug molecules
(T et T < D [182].

Another method of managing the release of active molecules from
physical hydrogels is to create them to degrade spontaneously under
physiological settings [191]. Enzyme activity [192] and hydrolysis
[193] are the most common mechanisms for degradation. Water-soluble
hydrogels may degrade on the surface or in bulk, removing or eroding
polymer mass. There are several hydrogels available that may be ma-
nipulated to achieve desired release rates ranging from weeks to months
by changing the surface and bulk erosion. When the rate of diffusion of
these agents is faster than the rate of bond disintegration, bulk erosion
occurs due to permeability to degrading enzymes or water. In contrast,
surface erosion occurs when link breakdown occurs at a faster pace than
water or enzyme penetration into the gel bulk [194].

Fick’s first rule of diffusion states that hydrogel drug release is pri-
marily controlled by diffusion (with variable or constant diffusion co-
efficients). The diffusion of a drug through a hydrogel matrix is up to
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the mesh sizes inside the gel matrix, which are impacted by a variety of
variables, including external stimuli, the contributing monomers chem-
ical structure, and the crosslinking degree within the gel matrix. When
it comes to the physical qualities of a hydrogel network, the mesh size
has a significant impact on its degradability and mechanical strength.
When swelled, biomedical hydrogel mesh diameters may be in the range
of 5-100 nm, which is substantially bigger than the average molecular
size of a typical small-molecule drug. Therefore, drug diffusion is not
significantly slowed in hydrogels, but macromolecules with hydrody-
namic radii, such as peptides, oligonucleotides, and proteins, will have
sustained release unless the mesh size and structure are optimized for
macromolecular diffusion [195].

The membrane’s hydrophilicity altered with pH and temperature.
However, the crosslinking density of membranes would also affect the
rate of penetration. With increasing crosslinking density, the intramo-
lecular space would shrink, resulting in decreased fertilizer penetration.
Zhang et al. [196] developed a cellulose film co-crosslinked with PVA
for ammonium salt release. The ammonium salt penetration rate de-
creased as crosslinker concentration increased. In general, the coating
is regarded to be the most suitable form for fertilizers. Large fertilizer
usage necessitates a high loading content, which is one of the most ad-
vantageous properties of permeation-type CRF. Using toluene diisocya-
nate as a crosslinker for urea coating, Qiu et al. [197] created a cellulose
membrane. With increasing crosslinking density, the urea penetration
rate was drastically reduced due to the increased hydrophobicity and
decreased free volume percentage.

4.2. Chemically-controlled release

The gel matrix’s chemical reactions govern the release under chem-
ical control [198]. They include enzymatic or hydrolytic degradation of
polymeric chains, as well as interactions between the polymer network
and the releasing drug that are either non-reversible or reversible [199].
In addition to the above indicated release mechanisms, two additional
processes have been identified as impacting drug release rate: hydrogel
bulk or surface erosion or the binding equilibrium among the drug bind-
ing moieties incorporated into hydrogels [200]. The degradation events
taking place in the delivery matrix determine the release of the medicine
in chemically controlled systems. Polymer degradation (bond cleavage)
is the rate-determining process for drug release in the pendant chain, and
diffusion is expected to be low. One of the most prevalent types is the
pendant chain. The other is the EDR system, where polymer degradation
and drug diffusion occur at the same time. To accurately forecast the
release of the medicine, both elements must be taken into account. When
it comes to synthetic hydrogel systems, erodible systems are especially
intriguing. Drug release rates are not influenced by diffusion in any of
these chemically controlled systems [201].

Crosslinkers unite molecules, increase molecular weight, and typ-
ically give greater mechanical characteristics and increased stability.
However, crosslinking also leads to poorer degradability, lesser avail-
ability of functional groups in the crosslinked polymer, and affects the
rheology of the polymers, leading to future processing challenges and
the probable increase in cytotoxicity [202].

Network degradation may also be used to control the release of me-
dicinal molecules from a hydrogel. As the hydrogel network degrades,
the mesh size expands, enabling medicines to escape [203]. Backbone
and crosslinks can be degraded by hydrolysis or the action of enzymes. It
is possible to alter the transport properties of bioactive chemical release
strategies by altering the handles used. Bio-responsive domains can be
introduced to the polymer network to provide cell-responsive actions
[204].

For the regulated release of bioactive siRNA, biodegradable hydro-
gels can also be employed [205]. Using a gelatin hydrogel, Saito et al.

crosslinking polymer

Crosslinked point or

\—"> Polymer chain

@ Reactive site

Fig. 3. Illustration of a hydrogel consisting of hydrophilic polymer chains joined
by crosslink sites or crosslinking polymers.

[206] were able to regulate the release of siRNA. Cationized gelatin
(CG) was combined with siRNA in the various ratio of amino groups of
gelatin to phosphate groups of siRNA in order to produce the siRNA-CG
nanocomplex. The siRNA was released and inhibited gene expression
once the siRNA-CG hydrogel was broken down. Hydrogels may not
only release siRNA, but they may also retain their bioactivity for a long
amount of time, as demonstrated by this study. Endogenous angiogen-
esis and osteogenesis were boosted by the prolonged administration of
the miR-26a enhancer.

4.3. Swelling

Understanding the varied processes involved in drug release from
swellable polymer matrices is vital in order to the rational design of
DDSs that correspond to the required temporal and spatial drug release
schedules to satisfy the various therapeutic demands [207].

According to Gibas and Janik [208], hydrogel swelling is a compli-
cated event involving many phases of water absorption processes that
do not entail the disintegration of the polymer network. The swelling
of biomaterials in aqueous settings is mediated by the hydrophilicity of
the polymer network resulting from the polar group’s presence (such
as—SO,H, -COOH, -NH,, and —OH). In addition to osmotic pressure
gradients and capillary effects, osmotic pressure gradients and capillary
effects are additional important processes of water entry into the 3D
network of the hydrogel. The fact that the hydrogel network structure’s
interconnections keep the material stable despite the fact that the cross-
linked junctions’ rubber elastic pressures offset the effect of solubility is
fascinating [90]. When a drug’s diffusion rate is substantially faster than
the hydrogel’s distention rate, swelling is thought to influence release
behavior in the swelling-controlled mechanism [209]. Optimal design
and characterization of hydrogel scaffold degradation, bioactive chem-
ical diffusion, and cell migration across the hydrogel network may be
achieved by controlling the hydrogel network structure [12,22]. When
determining the hydrogel’s network structure, researchers looked at four
key swelling characteristics:

. The expansion ratio (Q), comprises the volume expansion ratio

(Q,) and the ratio of mass expansion (Q,)
. The volume fraction of the polymer in the state of swollen
(v2,s).

. The number of average molecular weight crosslinks per mol-

ecule (Mc)

. The size of the network mesh (&) (Fig. 3).

kCarrageenan hydrogel and beta-carotene were used as the drug and
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the device in a model system for controlled drug release by Hezaveh and
colleagues [210]. Using the dripping method, different concentrations
of genipin were used to crosslink the beta-carotene-containing beads.
Results reveal that the swelling ratio of crosslinked beads decreases
when genipin concentration rises under all pH conditions (pH 7.4 and
pH 1.2). An examination of the network’s microstructure demonstrates
that crosslinking has enhanced its structure and stability. When beads
are crosslinked, the diffusion coefficient for the release of encapsulated
beta-carotene demonstrates a reduced diffusivity. As shown by models
of swelling based on adaptive neural fuzzy logic, the use of genipin as
a crosslinker in kKC/NaCMC alters the mechanism of transport. Using
glutaraldehyde as the crosslinking agent, a variety of crosslinked LVCS/
PVA hydrogels with different feed contents were synthesized in the
study by Khan and Ranjha [147]. The swelling of hydrogels reduced as
the crosslinking ratio increased, as the hydrogel structure became more
compact. It was discovered that when glutaraldehyde concentration rose,
porosity reduced and gel fraction increased. As the ratio of crosslinking
agent rose in the hydrogel structure, drug release reduced due to the
strong physical entanglements between polymers.

5. Future direction

New techniques for crosslinking, one of the useful features of hy-
drogels, have improved the efficacy of these materials. Innovative cross-
linking techniques, which are regarded as an influential influence on the
characteristics of hydrogels, have contributed to the enhancement of
these materials’ performance. Extensive advances over the past 50 years
have transformed relatively simple networks of hydrogels into complex
multi components systems. Because of easy administration and simple
combination of active agents, in situ forming hydrogels is expected to
have an effective role as controlled DDSs.

Therefore, the usage of hydrogels that gel both physically and chem-
ically in tandem that able to combine injectability with mechanical
strength is an excellent method. While localized and controlled diffusion
is facilitated in the detection of a cellular event by enzyme response
systems, Multi-responder hydrogels allow more control over the release
of stimulated drug in response to environmental stimuli. With the advent
of bio-inks and the enhancement of additive manufacturing, increasing-
ly, 3D-printed hydrogels mimic the complex functional and biological
architecture of natural tissues.

The improvement of cellular control and behavior by the combina-
tion and release of active substances, like 3D-printed growth factors,
may represent a significant advance in tissue engineering. In contrast
to macroscopic hydrogels, nanogels are administered intravenously
and transport medications to the cell during therapeutic administration.
Notable is the targeting of triggered medication delivery in response to
intracellular signals. The effect of microgels and nanogels on increasing
the local transport of drug molecules and amphiphilic nanogels in the
delivery of proteins and peptides are examples of progress in this field.
These innovations create enhanced, more efficient, and individualized
controlled DDSs that promote medication targeting and DDS therapy.

Although several challenges to the development of this viewpoint
remain unsolved, it is considered that new ideas are useful in enhancing
the safety, efficiency, and application of hydrogels, and their function in
DDS has been emphasized:

1. Polymers with the desired functional groups that are hydro-

philic

2. multiarm / multifunctional structures, like star polymers and

branching or grafted co-polymers, which in the future would
provide superior characteristics and be suitable for a broader
variety of possible uses.

6. Conclusions

This review studied the natural hydrogels applicability for controlled
drug delivery. Chemical and physical interactions may alter the physical
and chemical characteristics of hydrogels. These interactions provide a
suitable platform for the emergence of many applications in DDS, es-
pecially natural hydrogels with respect to controlled local drug deliv-
ery. Over the last five decades, hydrogels have undergone an evolution
from simple physically or chemically crosslinked networks to complex
multi-component systems. Today’s hydrogels which are able to releas-
ing controlled and triggered therapies have also an effective role as
controlled DDSs with features such as easy administration and simple
combination of active agents. Unlike conventional hydrogels with the
capability of prolonged single component release, Today’s ones provide
controlled and triggered release of multiple therapeutics in a spatial and

temporal manner.
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