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ABSTRACT

ARTICLEINFORMATION

Tissue engineering (TE) employs biological, chemical, and engineering methods to regenerate and restore injured
or lost living tissues by applying biologically activated biomaterials, cells, and molecules. The fast and convenient
restoration of tissue is a great challenge, emphasizing the need to imitate tissue structure and its physicochemical,

biological, and mechanical behavior to give back the desired functionality of damaged tissue. Depending on
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the particular tissue, numerous requirements have to be fulfilled with the help of material and scaffold design

that provides a base for cell adhesion and proliferation. As a result, countless biodegradable and bioresorbable

materials have been extensively examined. Composite systems combine the benefits of bioactive ceramics and T ”

. . ) L L . . eywords:
polymers, which seem to be good alternatives for bone tissue engineering. This article intends to introduce bioac- Seaffold

. . . . . . . L. . . . catio
tive polymer, tissue engineering methods, the kinds of biomaterials applied in scaffold invention, and the different . X
. L . . . Tissue engineering
approaches to producing the bioactive polymer-based composites with various structures such as porous, mem- Biodeeradabl
. . ; . . . . iodegradable

brane, and 3D structure. Biomaterials and invention techniques could crucially influence the consequences of the € .

. . . . . . . Bioresorbable polymer-based composites
scaffold's design architectures, cell proliferation, and mechanical behavior. Moreover, an excellent scaffold assists . i .

. o . . . . . . o Activated biomaterials

cell generation and the provision of cell nutrients in the human body with their particular material characteristics.
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1. Introduction

The field of tissue engineering is an interdisciplinary science that
needs cultured cell technology. Therefore, it uses growth factors that
allow the correct and constant control of cell growth situations and ma-
terials engineering for improved biomaterials scaffolds that can imitate
the structure of a process [1]. Scaffolds are a model whose key function
is to work as an anchoring platform to the growth and reproduction of
cells, provide rigidity to the tissue, and produce a vacant volume for
vascularization [2]. Nevertheless, it must also play other roles such as
releasing, transporting and storing active factors. They should be able to
stimulate particular cellular responses and provide mechanical integrity
for the managed region. Accordingly, characteristics such as the scaf-
fold microstructure (interconnectivity of pores, pore size, porosity), the
external geometry, and surface topographic properties (roughness or hy-
drophilic-hydrophobic style) significantly influence cell-scaffold reac-
tions [3,4]. Moreover, the biocompatibility, degeneration, and mechan-
ical characteristics of the scaffold have played a key role because they
influence both the production of scaffold tissue in vitro and its viability
and functionality once entered [5]. Scaffolds must manage the physical
integrity and stability required to promote the sterilization process and
be stored for a long period [6]. Recently, attempts have been carried out
to estimate the influence of structural characteristics and chemicals of
scaffolds on cellular manner, that is, on cell adhesion, migration, pro-
liferation, and differentiation [7,8]. A proper raw material to achieve
scaffolds by an optimal internal structure has a positive influence on
the activity of cells, so it is apparent that the choice of a suitable raw
material is essential for optimal cell growth. In this way, scaffolds can be
made natural and synthetic, but they must exhibit their particular prop-
erties throughout the complete runtime [9,10]. Among the commonly
used polymers, ceramic materials, polymers, and metallic materials have
been significantly considered. The former is the most promising group
of biomaterials used to synthesize biomedical devices [11]. This kind of
material can allow scaffolds to be processed with sufficient control of
the structural factors, including surface area, size and shape of pores,
pore interconnectivity and porosity, and desired morphology, which are
key points for cell seeding and growth, migration, tissue formation, and
mass transport. The major disadvantage is the lack of hydrophilicity for
cell adhesion, limiting biocompatibility [12]. As usual, synthetic poly-
mers are classified into two types of non-biodegradable and biodegrad-
able materials. The biodegradable ones offer the greatest utilization in
tissue engineering [13,14]. The degeneration method of biodegradable
polymers is hydrolysis by absorption of water and the enzymatic break
of the polymer chain [15]. Among the various synthetic polymers, the
poly-a-hydroxy esters, including polyglycolide (PGA), polylactic acid
(PLA), and polycaprolactone (PCL), have the most significant applica-
tion among others [16—-18]. Natural polymers (biopolymers) are exten-
sively utilized in tissue engineering thanks to their characteristics and
chemical structure, with a high affinity to water, biodegradability, bio-
compatibility, and Muco-adhesiveness [19]. Biocompatibility enhances
the attraction of cells on the scaffolds to reconstruct damaged tissue.
Nevertheless, the reduced mechanical and structural properties of these
polymers restrict their widespread use. The most natural polymers are
proteins and polysaccharides [20,21]. There are various fabrication
methods for the preparation of polymer-based scaffolds, the ones based
on 3D printing, supercritical CO, foaming [22], electrospinning technol-
ogy [23], melt electrospinning [24], thermally induced phase separation
(TIPS) [25]; solvent-based methods, such as solvent casting or phase
division [26], self-assembly [27], etc. However, developing technol-
ogies have recently become prevalent in this field due to the potenti-

ality to provide highly controlled scaffolds in terms of morphological
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Fig. 1. Bio-based and biodegradable polymers.

and mechanical properties. Microfluidics and 3D printing methods are
great examples of those emerging techniques that allow achieving a de-
fined geometry, good interconnectivity, high control on the regularity in
the pore size [28]. In this review, following past research [29-31], we
have an overview of different methods for the fabrication of bioactive
polymer-based composites and various structural and mechanical prop-
erties. Then applications of these materials on tissue engineering were
discussed. The data were obtained in 2021, mostly from Science Direct
and Google Scholar using keywords such as manufacturing technology,
thermally induced phase separation, melt electrospinning, supercritical
CO, foaming electrospinning, bioactive polymer, biomaterial, and tissue

engineering.

2. Bioactive polymers

A biomaterial was described as a material used to provide devices
that can replace a section or function of an organism in a safe, physical-
ly plausible, and economical method; however, it can also be referred
to as materials achieved from biological materials or biological origin
[32,33]. Although, the acceptable explanation was supplied by William
as “a non-viable material which used in a biomedical device and intend-
ed to interact with biological systems” [34]. Nowadays, biomaterials are
employed for the treatment of trauma damage, aesthetics, and degen-
erative diseases. Also, biomaterials for treating congenital defects are
becoming a requirement since human beings demand to live longer and
better [35]. Currently, the average life expectancy in the world is more
than 73 years; according to the United Nations Organization (UNO) data,
approximately more than 950 million humans are above 60 years old,
and by the end of the 21* century, that number will be tripled [36,37].
The search for enhancements in life expectancy and quality has made it
feasible for the modern community to observe scientific and technolog-
ical advancements in several sciences during recent years[38,39]. The
first advances took place at the start of the 20" century by synthesizing
the first vanadium steel alloys for fracture fixation or threads capable
of being degraded and absorbed with the human body [40]. Since the
1960s, by the implementation of statistical analysis and protocols, prac-
tical methods were employed to distinguish the structure and surfaces of
materials, which led to exponential advancements in the field of bioma-
terials [41,42]. Since the 1970s, combining medical sciences with basic
sciences (chemistry, biology, and physics) and engineering has been the
absolute incentive for the improvement of biomaterials. Fig. 1 indicates
different types of the bioactive polymer [43].

Biomaterials are evaluated in terms of three types of properties: first,
properties of biomaterials related to their response in accurate working
situations; second, structure and composition; third, the behavior of bio-
materials in different situations and answers to alterations in the sur-

rounding location [44]. Biocompatibility is defined as the capacity of a
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compound to give enough response in a particular application, such as
bacterial growth, resistance to blood clotting, and normal healing with
an adequate response from the host (patient). Consequently, biomaterials
must be effective devices that do not interfere with the metastable condi-
tion of the living body or the efficiency of the equipment in the implant-
ed environment for an indefinite period [40,45]. Biomaterials have been
classified in various forms based on the response of the human body or
tissue to the implant. The biomaterial is recognized as toxic; if it creates
fibrous tissue, the biomaterial is estimated inert if it develops a connec-
tion interface, and it is supposed to be bioactive and, ultimately, if it
improves tissue replacement, the biomaterial is considered soluble [46].
At the start of using biomaterials in a different regular pathway, in the
1950s, the research concentrated on bio-inert materials (1 generation)
[47]. Over time, in the 2™ generation, the study was directed toward the
bioactivity of compounds [48]. Currently, in the 3™ generation, the focus
has been on the recovery of functional tissue and more on the human
body’s response rather than regaining the function with the least biolog-
ical responses of the sufferer [49]. Efforts were made to prolong the life
of implants during their interaction with the host tissue interface [50].
After then, the focus has been on the improvement of biodegradable
materials able to be absorbed or incorporated on the host tissue, and
currently, the significance of biomimetics in the 4™ generation has led to
the examination of materials that actively take part in the improvement
process and stimulation at the cell level [51,52].

Furthermore, the biomaterials can be whether classified according
to their duration as temporary and permanent or based on the mechani-
cal characteristics as thick tissue and soft tissue. Nevertheless, the best
known and most popularly used classification is the one that classifies
these by their origin as artificial or natural. The natural type of the bio-
material can be classified as ceramic, metallic, composite, and polymer-

ic materials [53].

3. Bioactive polymer-based composites

Those composites that are created by the mixed of non-living and
living compounds are called vital-avital composites. So, these compos-
ites are the type of synthetic scaffold that is combined with in-growing
living tissue [54]. In this kind of composites, the cellular component can
produce the novel tissue by the generation of the extracellular matrix and
create mechanical stability and structural integrity in a short time. Over-
all, the composites can be considered bioresorbable and bioactive with
regards to the properties of the bioactive part applied, such as systems
including both bioactive silicate glasses, related calcium phosphate ce-
ramics, and hydroxyapatite [S5-57][58]. Moreover, classification can be
carried out according to the architect of the scaffold as dense or porous
structures. In another classification approach, the method of including
the bioactive phase in the composite, such as being as an external layer,
a filler, or coating, should be taken into accounts. The types of bioactive
and biodegradable composites and recent references that applied them
within TE are displayed in Table 1.

Table 1.
Kinds of composite scaffolds used in tissue engineering

4. Synthesis routes of bioactive polymer-based compos-
ite

Synthesis of scaffold biomaterials from polymers and inorganic ma-
terials to synthetic, semi-synthetic, hybrid, and natural polymer-based
composites have been broadly recommended and examined for tissue
regeneration. Natural polymers applied in TE involve agarose, chitosan,
hyaluronic acid, collagen, and fibrin [67—69]. Synthetic polymers, unlike
natural polymers, are manufactured polymers that may present different
advantages also more flexibility and processability for being produced in
various shapes and sizes. The physical and chemical properties of these
kinds of polymers can be modified; the mechanical performance and
degeneration can be suitably modulated by altering the chemical compo-
sition of the polymer. By combining side chains and functional groups,
synthetic polymers can be bioactivated by particular molecules [70]. In
the field of synthetic polymers, aliphatic polyesters, like PGA, PLA,
and their copolymers such as poly(lactic-co-glycolic acid) (PLGA) and
PCL are regularly used for TE scaffolds [71-74]. Products obtained from
the degeneration of the mentioned polymers can also be eliminated by
natural metabolic methods. The scaffolds are originally fabricated using
both polymers and ceramics. Moreover, polymeric scaffolds aimed to
be flexible, while the ceramic ones were considered to be too break-
able [75]. Recently, composite materials contained polymers augmented
with inorganic ceramic fillers have excited research interest in the field
of tissue engineering [76] to replace several tissue types, such as bone,
meniscus, tendons, or ligaments and cartilage. Compared to polymers,
composites exhibit enhanced mechanical characteristics and sufficient
flexibility and structural integrity than brittle ceramic materials. That
means reinforcing porous scaffolds with increased bioactivity and con-
trollable resorption proportions can be achieved by appropriately mixing
ceramics and polymers [77].

This work gives a description of various processing techniques for
synthesizing bioactive polymer-based scaffolds. Mainly, a comparison
between different and most innovative technologies to create bioactive
composite scaffolds from biomaterial polymers is made That common
methods include 1) solvent casting/particulate leaching that is the ther-
mal processing for producing porous structures of synthetic biodegrad-
able polymers; 2) microsphere sintering method applied to create the
particles by hollow or porous structures and providing the encapsulation
of other biomedical materials; 3) (TIPS) method that is usually used
to manufacture microporous membranes for phase separation; 4) super-
critical CO, (scCO,) methods that prepare porous scaffolds without the
use of dangerous organic solvent; 5) electrospinning method that allows
fiber invention from different materials including natural polymers, syn-
thetic polymers, and combined polymers synthesized by functional addi-
tives; 6) additive manufacturing (AM) techniques that have the capacity
to fabricate the structure in a green and sustainable way which decreases
waste produced from the consumed materials; 7) melt electrospinning
process that is the new method in TE and several clinical applications.
In the following sections, the advantage of each method is discussed.

Dense (non-porous scaffold)

Porous scaffolds (foam-like structure)

L Bioactive component:
Bioactive component:

Silicate gl:
TCP, HA, and related ceramics ticate glass
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Bioactive Bioactive Bioactive Bioactive
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Refs. [59,60] Ref. [61] Ref. [62] Ref. [63]

Bioactive Bioactive Bioactive Bioactive
component: component: component: component:
Added as filler Added as coating Added as filler Added as coating

Ref. [64] Ref. [65] Ref. [65] Ref. [66]




M. Azad Alam et al. / Journal of Composites and Compounds 3 (2021) 194-205 197

4.1. Solvent casting/particulate leaching

The solvent casting method is innovated to alleviate some of the dis-
advantages connected with fiber bonding formation. This technique was
explained by Mikos et al. in 1996 [78]. The appropriate thermal process-
ing can generate porous structures of synthetic biodegradable polymers
by specific pore size, a ratio of surface/volume, porosity, and crystallini-
ty for various utilization [79]. This method has been approved for PLGA
and PLLA scaffolds; however, it can be used for different polymers that
are dissolvable in a solvent such as methylene chloride or chloroform.
The used salt particles are insoluble in chloroform solvent [80]. The sol-
vent is evaporated by vacuum drying. As a result, the PLLA is converted
to PLLA/salt films with high crystallinity. The film undergoes additional
processes depending on the desired crystallinity of the final films. In
this technique, the PLLA/salt films are covered with the water solvent
to leach out the salt. This is used in very crystalline, salt-free PLLA film
prior to drying [81]. In the other process, PLA/salt films are heated to
a high temperature to ensure the complete melting of the polymer crys-
tallites [82]. After melting, the PLLA films and dispersed salt are both
annealed by freezing at a moderate and controlled speed, which provides
semi-crystalline films with particular crystallinity; then are quenched to
fabricate amorphous films [83]. Subsequently, the salt is leached out by
being immersed in water producing salt-free PLLA membranes [84].

The solvent-casting method can be applied to fabricate the highly
porous films with porosities up to 95% and an interconnected pore struc-
ture [85]. The porosity of PLLA films can be tunned by changing the
volume of utilized salt to create the composite compounds. Also, the
pore size of the film can be regulated separately by changing the size of
the salt particles. Scaffolds with pore sizes larger than 500 nm have been
manufactured using this method. The high surface volume/area ratios of
the membranes depend on the particle size or salt weight. Moreover, ac-
cording to the utilization requirements of the membrane, the crystallinity
of PLLA films can be adjusted.

These properties are all acceptable characteristics of a scaffold for
organ improvement. The major limitation of this approach is its capabil-
ity to fabricate only thin films and membranes, and thereby 3D scaffolds
cannot be produced. Membrane melt molding or lamination, neverthe-
less, can solve this problem [86,87]. One of the difficulties associated
with the aforementioned method is that the polymer scaffolds are brittle
and consequently inapplicable for soft tissue treatments. To overcome
this limitation, PLGA has been combined with poly (ethylene glycol)
(PEG) and shaped into flexible foams utilizing solvent-casting/partic-
ulate-leaching techniques [88]. As the amount of PEG in the mixture
is raised, the flexibility of the foams is improved. Thus, thick polymer
films can be designed with the capacity to be rolled into tubes with-
out destroying the pore structure. Using this technique, foam scaffolds
can be manufactured in a tabular form. These scaffolds have numerous
potentials for soft tissue engineering, such as the regeneration of the
esophagus and blood vessels [89,90].

A concern for scaffolds prepared with PLGA or polylactic acid PLLA
is the even seeding of cells, which is relevant to the hydrophobicity of
the polymer. In this regard, a method has been acquired in which porous
PLGA scaffolds were soaked in an aqueous suspension of a hydrophilic
polymer, for example, polyvinyl alcohol (PVA) [91]. Hepatocytes seed-
ed on the employed scaffolds were present in much greater densities
than on untreated scaffolds. An alternative technique to deal with the
challenge of seeding cells in PLGA or PLLA scaffolds is pre-wetting
the scaffolds with ethanol solvent [78]. In this method, porous polymer
scaffold films were soaked in ethanol solvent for 1 h. The scaffolds were
then submerged in water to pre-wet them. Hepatocytes and chondro-
cytes seeded on the pre-wetted scaffolds exhibited a stable distribution
throughout the scaffolds. This method could also be probably beneficial
for seeding other kinds of cells as well [92]. As a result, solvent casting

by particulate leaching methods is used to generate porous structures
from synthetic biodegradable polymers with particular pore sizes, ratios
of surface/volume, porosity, and crystallinity for various utilizations.

4.2. Microsphere sintering

The development of microspheres manufactured from biopolymers,
bioactive glasses, and ceramics is a continuing challenge for numerous
researchers around the world. Microsphere techniques have various
benefits for biomedical treatments [93]. They can be designed to have
an identical shape and size, developing a larger surface area, providing
adequate corrective coatings, and improving ion freedom [94]. Also, this
method can help researchers create particles by hollow or porous struc-
tures and encapsulate other biomedically related materials [95]. Porous
microspheres with a high surface area can be created having internal and
external porosity or even a combination of them [96]. Microspheres con-
taining porosity display larger surface area, lower mass density, cell pro-
liferation, drug release kinetics, and drug absorption in comparison with
bulk microspheres. Moreover, these microspheres can be manufactured
as standalone products or collected 3D porous scaffolds [97]. According
to starting materials, the porous microspheres have different properties
such as pore size, level of porosity, interconnectivity, and surface area
[98]. The porous microspheres by polymer-based materials have been
widely investigated for drug delivery and other biological applications
while carrying ingredients, such as proteins and growth factors. Whereas
ceramic and glass-based microspheres have been essentially considered
for bone tissue improvement, radionuclide therapy, and orthopedic and
dental applications [99]. Thus, the microsphere sintering method has
been applied to create the particles by hollow or porous structures and

encapsulate other biomedically-related materials.

4.3. Thermally induced phase separation (TIPS)

In 1978, the TIPS technique was devised to manufacture micropo-
rous membranes [100]. This method involves a uniform multi-element
approach (solvent, polymer, filler, drug, etc.) under determined condi-
tions, in which a divided system comprising of two different compo-
nents, a polymer-lean and a polymer-rich phase, is produced [101]. Fol-
lowing the evaporation of the solvent, the polymer-rich phase is turned
into a porous scaffold skeleton, and the eliminated solvent provides the
final porosity [102]. The mentioned technique yields polymer-based
foams with a porosity of 95% [103] and pore sizes around 1 to 100 pm.
Many innovations in this field, such as the combination of TIPS with
other preparation methods including porogen leaching [104], electro-
spinning [105], 3D printing [106], the solvent elimination process [107],
or alteration in TIPS factors [108] have been introduced. These develop-
ments have permitted scientists to fabricate a diversity of architectures
and pore morphologies in nano/micrometer scales that are appropriate
for particular applications. Porous scaffolds with micro/macro-porous
architectures, anisotropic (oriented/aligned-pore or microtubular), iso-
tropic (random-pore), fibrillar (micro/macro-fibrous), biphasic struc-
tures, spherulites, axialites, lamellar stacks, lamellar platelets, bilayered,
and/or a combination of these constructions have lately been fabricated
by TIPS techniques [109]. The wide range of 3D porous polymer-based
scaffolds established by TIPS provides broad range of applications in
tissue engineering for regeneration of bone, dermal, osteochondral, car-
diovascular, cartilage, neural tissues, etc. The basis of TIPS method is
reducing the temperature of a homogeneous multicomponent system
or a homogenous polymer solution, created at high temperatures. The
thermal energy reduction is utilized to trigger phase separation [110].
Whilst cooling, the system enhances unstable thermodynamically,
causing distribution into two separate phases [109]. In this technique,
a polymer-rich and a polymer-lean phase are presented with low and

high polymer amounts, individually. The solvent that presented in the
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Fig. 2. TIPS method with polymer solutions via two chief mechanisms a) sol-
id-liquid phase separation and b) liquid-liquid phase separation.

phase with lower amounts of polymer is consequently removed by evap-
oration, extraction or sublimation [111]. Followed by the elimination of
solvent, the polymer-lean phase models of porosities and the rich phase
in polymer are changed to a porous structure identified by convenient
pore interconnectivity and geometry [112]. This method depends on the
relationship between polymer and solvent and could be recognized by
two usual mechanisms depicted in Figure 2 [113], which are called sol-
id-liquid and liquid-liquid phase separations. The solid-liquid separation
happens before solvent freezing, and the liquid-liquid separation occurs
while the solvent is frozen [114]. The particular separation route could
be chosen by determining the parameters of TIPS, which influence the
thermodynamics of the procedure (polymer type, solvent, cooling tem-
perature, concentration, cooling rate) [64]. Solid-liquid phase separation
might occur through cooling, having convenient adaptability between
the solvent and polymer (1,4-dioxane and PLA with Hansen solubili-
ty parameters (HSP)) [115], and the solvent possesses a comparative-
ly elevated freezing point (Fig. 2a). The appearance of the solid-liquid
phase-separated systems, the freezing point of the solvent, or crystalliza-
tion temperature in the solution should be more significant compared to
the liquid-liquid phase separation temperature. Decreasing the polymer
solution’s temperature leads to the crystallization of the solution, the
polymer to be discharged from the crystallization exterior and the sys-
tem supports solid-liquid phase division [116]. The structuration of the
system is checked by the crystallization of the solvent in this method
[117]. After eliminating the solvent, the achieved foam morphology is
defined by the pores with the same geometry as the crystallites [118].
As an example, for the PLA solutions in the 1,4-dioxane solvent, a po-
rous network with a mediocre pore size of about 100 um has been per-
formed [119]. The solid-liquid phase separation of a polymer-solvent
system results in a structure and pore construction of the foam, which is
extensively related to the applied solvent and its crystallization tempera-
ture, polymer density, phase separation temperature, and the tempera-
ture of the system [120]. Normally, organic solvents with a low freezing
point, such as 1,4-dioxane (11.8 “C) or benzene (5.5 ‘C) are used for
the preparation of synthetic polymer networks by the solid-liquid phase
separation method. With checking the cooling process, networks provid-

ed by solid-liquid phase separation might have anisotropic or isotropic
architectures. Networks with a random, isotropic, and pore structure
are provided with transporting immediately the uniform solution to a
cooling apparatus that permits solid-liquid phase separation and solvent
crystallization. Certainly, by controlling the crystallization regulation
and employing a uniaxial temperature in the system (via insulating the
sidewalls of the mould, including polymer solution, before transporting
it to the cooling apparatus) a composition of oriented pores, anisotro-
pic, can be obtained. Liquid-liquid phase division in a polymer solution
might happen throughout the cooling method while the polymer-solvent
association is extremely indistinct (Fig. 2b). Schugens et al. [120] deter-
mined that combining water to a PLA/1,4-dioxane system, results in the
phase division mechanism that could be repaired undercooling [121].
By combining water (a poor solvent of PLA) with the system, the coop-
eration between the solvent and polymer is decreased. Consequently, a
liquid-liquid separation happened at temperatures which are upper than
the temperature of solvent crystallization.

As a result, TIPS is a good method to manufacture microporous
membranes for phase separation and purification of the liquid and gas

phases.

4.4. Supercritical CO, Foaming

Supercritical CO, is one of the well-known methods to create po-
rous scaffolds in the tissue engineering field. In this method, the porous
scaffolds are generated without using dangerous organic solvent [122].
Moreover, moderately low temperature and pressure were used in scCO,
methods, respectively 31.1°C and 7.4 MPa. [123]. Another significant
benefit of this method is to create the opportunity for accurately tuning
the pore composition structure of the scaffolds and the proper choice of
the processing provisions, depressurization time, gas density, solubili-
zation pressure, and foaming temperature [124]. Numerous natural or
synthetic, biodegradable, and biocompatible polymers were considered
for improving bone defects. PCL is one of the most common synthetic
polymers that recently corroborated as a desirable compound of bone
tissue due to its ability to the in vivo and in vitro bone tissue growth for
several months by achieving a nontoxic response and maintaining its
mechanical properties [125]. Besides, the extrusion process is assisted
by supercritical CO,. Extrusion assisted by scCO, is an emerging tech-
nique for the microcellular foaming of polymer. Alternatively, batch
foaming, which needs the production of single-phase polymer/CO, solu-
tion in extended period times, is tuned where the extrusion supported
by supercritical fluids defeats this issue by producing fast mixing and
dissolution of CO, in the polymer melt. Because the scCO, is solvable in
several molten polymers and performances as a detachable plasticizer,
its introduction into an extruder will permit a reduction of the processing
temperature.

In this method, the pressure or temperature supercritical fluid is high-
er than the critical conditions. Supercritical fluids demonstrate particular
properties such as liquid-like density and gas-like viscosity, which can
be used in various applications, including particle generation methods,
polymer composite processing, and microcellular foaming procedures
[126]. ScCO, is utilized in tissue engineering due to different benefits
such as non-flammable, chemically inert, non-toxic, and supercrit-
ical conditions [127,128]. Also, it can be eliminated from the system
by depressurization. The high solubility of this substance can increase
the plasticizing and expansion of the material by the modification of
physical and mechanical characteristics. Also, scCO, reduces the glass
transition temperature and, the viscosity of the various polymers and
Tg without differently altering their pseudo-plastic behavior [129].
Another benefit of using scCO, extrusion techniques is modifying the
rheological characteristics of the compound inside the extruder, which
also performs the role of an expansion factor [38]. The reduction of vis-
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Fig. 4. Different electrospinning apparatus. a) Flat plate, b) Rotating cone, ¢) Ro-
tating disc, d) Parallel stripes, ¢) Double inclined slopes, and f) Parallel attaining
probes.

cosity will appear in the limitation of shear and mechanical stresses and
provide a decrease in mixture temperatures. Consequently, the manage-
ment of the molecules with insufficient thermal stability will be possible
[130]. The extruders in scCO, are classified into two various types: a) the
twin-screw extruder and, b) the single-screw extruder due to the num-
ber of screws turning in the barrel [131]. The procedure of both models
is similar, so, at the first step, the polymer is conveyed on the barrel,
next fed and melted in the beginning part, then pressurized in the last
part, and applied within the die [132]. At the end of the extruder screw
can be attached to any ancillary device [133]. Also, a static mixer can
be established to improve either dispersive or distributive mixing and
increase the dissolution and also absorption of the CO, in the polymer
melt. Le Moigne et al. [134] attached a static mixer to the system that
contains four elements. Also, in the separated research, Pilla et al. [135]
and Matuana et al. connected a diffusion-enhancing device as the static
mixer. In the applied research, Mihai et al. [135] attached a gear pump
placed at the head of the extrusion line to maintain a high-pressure level
at the collection of the extruder. Rizvi et al. [136] checked the pressure
by joining a two-hole flow nozzle. As a result, the scCO, method is the
green method to create porous scaffolds in tissue engineering without
the use of dangerous organic solvent.

4.5. Electrospinning

Electrospinning is a considerable method that has been broadly used
in TE and scaffold production. According to the data obtained from Goo-
gle Scholar, Scopus, Science Direct, the annual number of papers in-
cluding “tissue engineering” and “electrospinning” has risen sixty-seven
times in the past two decades (Fig. 3).

The electrospinning method comprises three sections: a material
transfer system (regularly a thin tube including a spinneret of miniature
diameter); a high voltage power system; and a fiber collection system
[137]. The electrospinning method uses an elevated voltage to generate
an electrically charged melt jet outside the control system or polymer

solution. The jet of released polymer solution performs through elonga-
tion and instable process, and the solvent is evaporated by an elongated
jet system. The jet is assembled as an interconnection of the fibers at the
collector [138,139] that is grounded or attached to an electrode. Due
to starting material, process setup, and device combination, the elec-
trospun fibers’ diameter can be obtained from 10nm to 100 Im. Unusu-
al melt polymers can be converted to the submicron fibers by a more
powerful DC voltage in the electrospinning method [140]. Conventional
electrospinning systems are shown in Fig. 4. The straightforward meth-
od which is broadly used for the creation of the membrane filtration is
applying a flat plate into the collector that fibers are collected there (Fig.
4a). Different setups have a rotor that rotates the collector with a particu-
lar rotating rate to assemble aligned fibers. The concentric collector can
be fabricated by a drum [141], a disc (Fig. 4c) [142], and a cone (Fig.
4b) [143]. The random-to-aligned nanofibers create a hard-soft tissue
interface (Fig. 4d). The identical probes are used to obtain 3D scaffolds
with fluffy structures (Fig. 4f) [144] and, likely double slopes (Figure
le) [145] were used for aligned and random fibers, individually (Fig.4e).

The various degrees of elasticity by the electrospinning method al-
lows fiber production from different materials that varying from natural
and synthetic polymers to polymers blends which combined with new
functional additives [146] including, silk, collagen, elastin, gelatin, and
PGA, poly(l-lactic acid) (PLLA) and PCL [147]. PCL with crystalline
nature is one of the commonly utilized biomaterials for scaffolds. elec-
trospinning can also create porous covers as a very adaptable method
for providing constant fibers of sub-micro to nano diameters [148].
Moreover, the nanofiber covers regularly have extraordinary porosity,
good mechanical characteristics, and a wide surface area to volume ra-
tio [149]. The nanostructure of the covers can simulate the construction
of the extracellular model (ECM) in either composition or morphology.
Different models of electrospun nanofibers can be manufactured based
on biomedical treatments, achieving from endocrine organs to the ner-
vous systems, and cardiovascular applications to artificial skin [150]
[151]. In the case study, Zhao et al. created 3D fibrous scaffolds us-
ing the electrospinning method by gelatin methacryloyl (GelMA) and
applied them to the accelerated wound healing process [152]. Also, in
the other research Sun, et al. investigated the accelerated in vivo vas-
cularized skin flap by using the GeIMA fiber. The results have rendered
a more microvascular structure and higher flap endurance rate. [153].
Chen et al. applied the GeMA hydrogel fibers to create a promising sur-
vival and metabolic condition for neurons because this material can soak
up water six times more than its weight. [154]. As a result, the various
gegrees of elasticity by electrospinning method allows fiber production
from different materials that varying from natural and synthetic poly-
mers to polymers blends which combined with new functional additives.

4.6. Additive Manufacturing (AM)

Traditionally, most scaffolds were fabricated by electrospinning
technique, gas forming, freeze-drying, and injection molding. Recent-
ly, additive manufacturing methods have been largely utilized in tissue
engineering because of their capacity in creating complicated structures
of scaffolds. This method has a low cost and is feasible to be employed
in several scales [155]. Construction patterns are necessary to warrant
the convenient performance of fabricated structures in vivo and in vi-
tro analyses before human implantation [156]. Additive manufacturing
techniques are now extensively utilized in TE, and many researchers
have evaluated different methods to overcome the medical difficulties
of transplantation [157]. Additive manufacturing techniques can control
the properties of the composite, for example, porous construction, and
geometry, by utilizing computer-aided design (CAD) [158]. In 1986,
the first 3D printing method called SLA was formulated by Charles
WHull31. AM is also capable of producing structure using liquid com-
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Fig. 5. The classification of AM technologies with different methods and materials.

pounds and UV light emitted in three directions to fabricate a solid 3D
composition through a layer-by-layer approach [159]. Researchers have
later utilized various biochemical, biomaterial, and living cell materials
to produce biodegradable and biocompatible scaffolds, which satisfy the
particular purposes of constructs that are recognized as 3D bioprinters.
Fig. 5 displays the classification of additive manufacturing techniques
[160]. Seven types of AM processes that are broadly used in TE are
powder-based processes such as) SLS( [161,162], the extruded-based
method of thermoplastic filaments FDM [163,164], liquid-based SLA
method [165], binder jetting process, sheet lamination process, laminat-
ed object fabrication (LOM) [166], material jetting method, and direct
energy deposition (DED) [167-169]. As a result, the additive manufac-
turing (AM) techniques have the capacity to fabricate different struc-
tures in an environmentally-friendly and sustainable way by decreasing
the waste of used materials.

4.7. Melt Electrospinning Process

The melt electrospinning (MES) process has been widely studied
in recent years. This process provides fibrous structures from polymer
melts or solutions and has been used for preparing scaffolds [170]. Scaf-
folding concepts have been largely influenced by additive production
methods during the last decade. SLS fused deposition modeling (FDM),
selective laser melting (SLM), hydrogel printing, and 3D printing are
among the additive composition methods currently applied in the tissue
engineering field [171].

The melt electrospinning is similar to the solution electrospinning
method. In this method, a solution or a polymer melt is drawn from
a small orifice (spinneret), connected to a high-voltage power supplier
[172]. By applying a sufficiently high voltage to a liquid droplet, it be-
comes charged by which the surface tension counteracts due to the elec-
trostatic repulsion. This phenomenon stretches the droplet, and a stream
of liquid bursts from the surface at a critical point, providing a charged
liquid jet. The formed jet dries in flight and is elongated by a whipping
approach, until its deposition on the grounded collector [173]. Melt elec-
trowriting (MEW) is used for producing nonwoven fibers with various
diameters ranging from about 270nm to 500 mm [177]. MEW provides
high-resolution with the ability to fabricate micro- and nanometric fibers
via a procedure similar to MES. The only difference between MEW and
MES is the use of various parameters with a moving collector, which
facilitates direct writing of 3D scaffolds. The MES method provides the
analytical study of scaffolds by evaluating pore size and pore intercon-

nectivity [174,175]. The parameters affecting scaffolds can be used to
determine the best conditions for tissue engineering applications [176].
The 3D scaffolds are produced using a layer-by-layer process, which
enhances the process of collecting data regarding scaffold models. The
MES process presents significant capacity in manufacturing scaffolds
with excellent reproducibility utilizing a computer-controlled system.
MEW was suggested as an additive manufacturing process [177] by
providing the exact arrangement of submicron and micron diameter
fibers in solvent-free techniques. Recently, poly(oxazoline) and PCL
have emerged for the melt electrospinning process and 3D targets with
particular morphologies [178]. Vaquette et al. [187] fabricated a surface
coating on the melt electrospun PCL to produce scaffolds and examined
the influence of CaP04 protection on ectopic bone production. Different
exciting suggestions were published by Park et al. [179] who explained
how cellular appendage was enhanced by improving the surface area of
any fiber by a formed spinneret. Mazalevska et al. [180] also produced
PP and PLA tubular scaffolds with a diameter of 5 mm. They concluded
that more tests should be conducted to confirm the application of these
structures in blood vessels. Consequently, it can be concluded that the
melt electrospinning process is a new method in tissue engineering for

clinical applications.

5. Application of bioactive polymer-based composites
for tissue engineering

Composites are introduced as materials with more than two com-
ponents. Combining polymers with other materials provides different
characteristics, including biocompatibility, surface characteristics, and
mechanical strength, which make it possible to fabricate compounds
with unique biological activity and mechanical properties [181]. The
composites prepared from polymers are usually applied in military, aero-
space, and automobile industries as well as a different scientific fields for
drug delivery, tissue engineering, regenerative medicine, wound dress-
ings, surgical operations, and dental resin composites [182,183]. A large
number of studies in this field comprise different methods to fabricate
various types of biomaterials from polymer-based composites. Bioactive
polymer-based composites fabricated by microsphere sintering, additive
manufacturing, and electrospinning methods present promising charac-
teristics for biomedical applications, including wound healing and tissue
engineering [184]. Moreover, they can be used in medical imaging to
determine cancer disease or assist precise cancer treatment [185]. Also,
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the composites prepared with the supercritical CO, foaming method
can develop the technology of maxillofacial surgery using bone tissue
engineering and promoting periodontics and implantology, producing
new substitute bone grafts [186]. The composites fabricated by the melt
electrospinning method can be used in stereolithography, FDM, selec-
tive laser sintering, hydrogel printing, and 3D printing [164]. Also, the
composites fabricated by the thermally induced phase separation (TIPS)
method can be utilized for phase separation, purification of the liquid,
and gas phase [119].

Salamanca et al. reported the production of collagenated porcine
grafts and concluded that collagenated porcine graft stimulated osteo-
blast differentiation in vitro and illustrated guided bone reconstruction
in vivo. PLLA is one of the important biodegradable polymers that is
generally utilized in orthopedic devices [187]. Poly-L-lactide is one of
the important biodegradable polymers that is generally utilized in ortho-
pedic devices [188]. Although PLLA shows unique biocompatibility, its
inadequate mechanical strength confines its application in load-bearing
regions. Therefore, for resolving this problem, the improvement of bone
tissue by adding PLLA was investigated [189]. Leu et al. [190] com-
bined PLLA and tricalcium silicate to produce a novel membrane and
utilized it to limit leakage of polymethyl-methacrylate (PMMA) bone
cement through kyphoplasty modification. They emphasized that the
antidegradation properties and mechanical characteristics of the new
composite could be improved without changing the cytocompatibility,
providing a possible antileakage membrane for the kyphoplasty classifi-
cation of osteoporosis-related spine breaks. Soft tissue reconstruction is
a different paramount tissue engineering issue. Huang et al. [191] devel-
oped hydrogels of thermosensitive chitosan—gelatin—glycerol phosphate
to produce a collagenase carrier for tendon bone. Following experiments
with an organism model, they recommended this new composite as a

possible compound to support tendon-to-bone remedy.

6. Conclusions and outlook

In this research, the result of 189 studies was analyzed and classi-
fied according to structural properties, used biomaterials, and types of
different methods for TE applications. Different methods have been
applied for the fabrication of composites in TE. In this paper, several
methods were reviewed, including (I) casting/particulate solvent meth-
od, a thermal processing method, for generating porous composites, (II)
microsphere sintering method, applied to create the hollow or porous
structures, (IIT) thermally induced phase separation method, mainly used
to manufacture microporous membranes for phase separation, (IV) su-
pereritical CO, (scCO,) method to create porous scaffolds in green con-
dition, (V) electrospinning method for creating fiber composites, (VI)
additive manufacturing for fabricating structures by the green method,
and (VII) melt electrospinning process as a new method.

These composites have been applied for 3D bioprinting of bone,
implantation, organs regeneration, drug delivery, and scaffold fabrica-
tion. Scaffolds with excellent characteristics can be fabricated by novel
techniques using printing machines and changing machine parameters.
The typical biomaterials that could be applied in TE techniques are still
being investigated. In this review, different polymers, including PCL and
PLA in combination with other compounds for the preparation of bio-
active polymers, were discussed. Biomaterials have been conveniently
produced for TE using these methods. It is presumed that the composite
of various materials can improve the mechanical properties and material
characteristics of scaffolds.

The result of the review paper can be used by the researcher for fur-
ther investigation in different fields of TE techniques, fabrication meth-
ods, and biomaterials utilized in biological cell generation as well as
tissue engineering development. Biomaterials and processing methods

can significantly affect the final properties such as design architectures,
cell proliferation, and mechanical behavior of the scaffolds used in tissue
engineering. Recent advances in bioactive polymer-based composites
have provided significant advantages for preparing polymer-based com-
pounds with appropriate characteristics for tissue engineering. Howev-
er, more studies should be performed on the newly-emerged processing
techniques of bioactive polymer-based composites to guaranty their safe
and effective application in the human body. The melt electrospinning
process is one of the promising methods for fabricating polymer-based
constructions, which has to be investigated in more detail before being
employed for tissue engineering applications.
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