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ABSTRACT

ARTICLEINFORMATION

In this paper, the leaching of a sulfide concentrate, from “Sarcheshmeh Copper Complex™, by sulfuric acid is Article history:

studied. The influences of sulfuric acid concentration and leaching temperature were scrutinized to optimize the Received 2 June 2021

processing parameters and to disclose the kinetics of the extraction process. The leaching rate of copper was Received in revised form 15 July 2021

not significantly improved with enhancing the temperature and concentration of sulfuric acid. The formation of Accepted 7 September 2021

elemental sulfur was found as a reducer of the leaching rate. Only ~70% of copper was extracted by adding 1M

ferric sulfate as the oxidant agent, as well as increasing the leaching temperature up to 85 °C. By leaching the Keywords:

mechanically activated concentrate in Fe,(SO,),-doped H,SO, at 85 °C, the amount of extracted copper was ~90% Leaching

after 180 min. The experimental results were excellently fitted with the diffusion-controlled kinetic model as the Copper

activation energy of ~27 kJ/mol was estimated. ©2021 JCC Research Group.
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1. Introduction

Copper mainly exists with other metals in the form of complex sul-
fide ores. Such minerals can be detached from each other through the
flotation process and processed via pyrometallurgical routes [1-4]. Al-
though employing the pyrometallurgical routes is not environmentally
attractive due to the production of significant SO,; however, nearly 85%
of the universal Cu is obtained by such processes [5, 6]. Complex sulfide
concentrates such as chalcopyrite (CuFeS)) can be treated by hydromet-
allurgical routes, which not only lead to enhanced copper extraction but
also result in decreased air pollution hazards [7—12]. Chalcopyrite, as the
main copious Cu sulfide mineral, is the best refractory Cu ore concern-
ing chemical and bioleaching. Compared to the other metallic sulfides,
the chalcopyrite can leach superbly at lower redox potential [13-16].

Because of the togetherness of chalcopyrite and pyrite in nature, a
new galvanically-assisted process for chalcopyrite leaching has been
introduced as the copper concentrate is leached under atmospheric pres-
sure in the existence of pyrite in a ferric-ferrous sulfate solution [17-19].
Pyrite can be added as a catalyst to boost the leaching rate of Cu con-
centrate through forming a galvanic cell that intensifies the Cu leaching
yield and rate [20]. However, recent works mention that ferric ion plays
twofold roles as an oxidizing representative and responsible for chal-
copyrite passivation [21, 22]. Various biological and chemical leaching
processes have been developed to conquer the chalcopyrite passivation
[23-25].

The influences of solution concentration, temperature, particle size,
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and stirring speed, as well as the kinetics of reaction were determined
for the chalcopyrite leaching in sulfuric acid by sodium nitrate. Ele-
mental sulfur was formed during the leaching process as an inhibitor
of the leaching rate [26-28]. The influences of ferrous ions on oxida-
tion of chalcopyrite with ferric ion in solutions of sulfuric acid were
studied. The ferrous ion enhances the chalcopyrite oxidation beside the
high-concentrated cupric ion [29, 30]. Combined chloride—sulfate leach-
ing of chalcopyrite was also investigated, and excellent leaching kinetics
was achieved for solutions containing chloride via promoting the forma-
tion of porous sulfur product and allowing the dissolution reaction to
progress better [31-34].

In this research work, the leaching of Sarcheshmeh copper sulfide
concentrate in sulfuric acid was studied. To improve the leaching pro-
cess, the influences of some variables, including the processing tempera-
ture and preliminary acid concentration, were investigated. Moreover,
the synergistic effects of ferric sulfate addition as an oxidant agent and
the mechanical activation as a pre-leaching treatment were scrutinized.

2. Experimental procedure
2.1. Materials

The copper sulfide concentrate with the mean particle size of 120+30
pm was prepared from the “Sarcheshmeh Copper Complex”, the world
2" Jargest Cu deposit located in Kerman (Iran), was used in this research
work. The mineralogical and chemical specifications of this material are
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Fig. 1. Role of H,SO, concentration on Cu extraction (stirring speed 400 rpm,
particle size 120+30 um, solid/liquid ratio 1/40, and temperature 25 °C).

presented in Tables 1 and 2, respectively.

2.2. Methods

All leaching tests were performed on a magnetic stirrer in a 500-
ml vessel supplied, a thermometer, a condenser, a funnel for adding the
concentrate as well as a sampling device. Such a setup enables heating at
a fixed temperature. The predetermined contents of commercially pure
sulfuric acid (H,SO,) and in some experiments, Merck ferric sulfate
(Fe,(SO,),) were introduced to the vessel and warmed up to the designat-
ed temperature. The concentrations of H,SO, and Fe,(SO,), were in the
range of 15-40 vol% and 1 M, respectively. The sulfide concentrate was
added to the solution when the temperature reached, and the chemical
reactions were started. An atomic absorption spectrometer (AAS3, Vari-
ant Co.) was carried out for chemical analysis. In this way, 5-ml solution
samples were taken after appointed intervals and were immediately re-
placed with the distilled water. Leaching processes were performed with
a solid/liquid ratio of 1/40, a stirring speed of 400 rpm, temperatures of
25 to 85 °C, and soaking times of 60 to 180 min.

3. Results and discussion

Primary experiments, not reported here, showed that Cu extraction
boosts with decreasing the particle size of starting concentrate. The par-
ticle size of 120430 pm and the solid to liquid ratio of 1/40 were de-
termined as the optimum leaching conditions for this research work. It
was found that smaller particles and lower solid to liquid ratios provide
a larger contact area between copper sulfide concentrate and sulfuric
acid. In addition, the concentrate dissolution enhanced with increasing
the stirring rapidity to 400 rpm, but after that, the extraction efficiency
was lessened. Therefore, to investigate the other leaching parameters,
such as the sulfuric acid concentration and processing temperature, the
values as mentioned earlier were selected.

3.1. Role of sulfuric acid concentration

The role of H,SO, concentration (10, 20, 30, and 40 vol%) on the

Table 1.
Copper sulfide concentrate mineralogical specification

Mineral CuFeS, Cu,S CuS Balanced

Mass % 32 21 25 44.5
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Fig. 2. Role of temperature on Cu extraction (stirring speed 400 rpm, particle size

12030 pm, solid/liquid ratio 1/40 and 40 vol% H_SO,).
copper leaching was studied at 25 °C, the solid to liquid ratio of 1/40,
and the stirring speed of 400 rpm. The copper extraction enhanced
from 13% to 15.1% after 60 min, while the H,SO, concentration was
intensified from 10 vol% to 40 vol%. More copper extraction was not
achievable maybe due to the elemental sulfur formation on the surface
of concentrate particles [35, 36].

3.2. Role of temperature

Fig. 2 displays the role of temperature on the extraction of copper
sulfide concentrate under the following conditions: solid/liquid ratio
1/40, 40 vol% H,SO,, and stirring speed 400 rpm. It seems that the tem-
perature did not have a noticeable influence on the leaching progress
because the difference between the percentage of extracted copper at the
range of 25-85 °C is less than 4% at all times. At 25 °C, 14.7% copper
was extracted after 60 min, increased to only 17.4% at 85 °C. However,
at all temperatures tested, a marked deceleration in the leaching rate is
seen after 10 min. Such an observation can be related to the elemental
sulfur formation during the leaching, which was precipitated at the sur-
face of the concentrate particle and acted as a preventer to hinder the
chemical reaction between the sulfide particles and sulfuric acid. There-
fore, it can be concluded that the temperature increasing up to 85 °C
is not enough to improve the copper extraction in the H,SO, medium
because the sulfuric acid, without oxidant agents, cannot significantly
react with the sulfide concentrate.

3.3. Role of temperature in the presence of ferric sulfate

The sulfuric acid could not act as an efficient solvent, even at higher
temperatures; hence, it was necessary to use an oxidant agent for a better
leaching process [21, 37, 38]. The influence of Fe,(SO,), as an oxidant
agent on the Cu extraction was studied in the solution, including 40
vol% H,SO, at 25, 55, and 85 °C with solid/liquid ratio of 1/40, stirring
speed of 400 rpm, and adding 1 M Fe (SO,),. The outcomes displayed in
Fig. 3 verifies that Cu extraction enhances with temperature increasing.
After 180 min, the copper leaching progressed from 28.1% to 72.3%
when the extraction temperature was increased from 25 to 85 °C. How-

Table 2.
Copper sulfide concentrate chemical specification

Element Cu Fe S Balanced

Content (%) 30 24 31 15
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Fig. 3. FRole of temperature on copper extraction in the presence of 1M ferric
sulfate (particle size 120+30 um, solid/liquid ratio 1/40, stirring speed 400 rpm,
and 40 vol% H,SO,).
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Fig. 4. Synergistic effects of ferric sulfate addition and mechanical activation on
Cu extraction (particle size 120+30 um, solid/liquid ratio 1/40, 40 vol% H2SO4,
stirring speed 400 rpm and temperature 85 °C).
ever, it seems that the sulfide concentrate cannot completely dissolve in
Fe,(SO,),-doped H,SO,, even at an elevated temperature of 85 °C. Based
on the Sarcheshmeh concentrate mineralogical data (Table 1) as well as
according to the following chemical reactions between Fe,(SO,), and the
components of copper sulfide concentrate (Egs. 1-3), the uncompleted
dissolving can be attributed to the formation of sulfur on the surface of
particles. The progress of such reactions leads to an inefficient contact
between ferric sulfate and sulfide particles which hinders the full leach-

ing of copper.

Fe, (SO,), + Cu,8 = CuSO, + 2FeSO, + CuS )
Fe, (SO,), + CuS = 2FeSO, + CuSO, + S @)
2Fe, (SO,), + CuFeS, = 5FeSO, + CuSO, + 28 3)

3.4. Synergistic effects of ferric sulfate and mechanical activation

The results of the previous section showed that by adding the oxidant
agent as well as raising the leaching temperature, only ~70% of copper
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Fig. 5. The variations in F(x) with time at various temperatures based on the
results reported in Fig. 3.
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Fig. 6. Arrhenius plot for leaching of Cu concentrate.

could be extracted from the sulfide concentrate. In this section, at first,
the role of mechanical activation on the efficiency of copper concentrate
leaching was studied. In this way, a mechanically activated concentrate
was leached in the 40 vol% H,SO, solution with a stirring speed of 400
rpm and a solid/liquid ratio of 1/40 at the temperature of 85 °C. As pre-
sented in Fig. 4, the amount of extracted copper after 60 min is 31.6%,
approximately two times higher than that for the concentrate leached at
the same conditions but without mechanical activating (17.4%, Fig. 2).
This outcome verifies the positive role of the mechanical activation pro-
cess on the enhancement of copper extraction. However, after 180 min
leaching, even with the help of such a supportive process, the extracted
copper did not exceed 40.5%.

In the previous section, it was discussed that in Fe,(SO,),-doped
H,SO, solvent, the copper leaching progressed to 72.3% at 85 °C after
180 min (Fig. 3). The results of such conditions are also repeated in Fig.
4 for a comparative approach. The extraction process was finally per-
formed under a synergistic condition in which the mechanically activat-
ed copper concentrate was leached in the ferric sulfate doped medium.
The results showed an enhancement in the percentage of copper extract-
ed to 88.9% after 180 min leaching. It seems that by employing such

technique, the surface area, surface reactivity, and surface microstructur-
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al modification led to a better reactivity between the copper concentrate
and H,SO, solvent, which has doped with Fe,(SO,),.

3.5. Leaching kinetics

Choosing a kinetic model for the experiments linearization reported
in Fig. 3 was performed through the “shrinkage core model”. Based on
such a model, the experimental results approximated to the values of the
following kinetic equation (Eq. 4); hence, this equation was used for the
linearization of experimental data.

F(x)zl—%x—(l—x)% —kt )

where x fraction of dissolved copper, & is constant (min™), and ¢ is
reaction time (min). The variations of F(x) with time at various tempera-
tures are shown in Fig. 5. This kinetic model proposes a diffusion control
mode as the dominant rate controller of the leaching process. Although,
the leaching can be restricted by the surface chemical reactions in the
primitive steps, it seems that with the progress of the elemental S on the
surfaces of concentrate particles, the diffusion of the reactant through
such layers will be the rate-controlling stage, as shown in Fig. 5.

To estimate the activation energy (E)), the Arrhenius graph for the
leaching of Cu concentrate in Fe,(SO,),-doped H,SO, solution was
achieved by drawing the value of the slope of the straight line in Fig. 5
versus In(1/T) as displayed in Fig. 6. The amount of activation energy
was evaluated ~27 kJ/mol, using Eq. 5: Arrhenius equation where k  is a
constant, R is the universal gas constant, and T is the temperature, which
shows that the leaching of copper concentrate is a diffusion-controlled

process.

E
k =k, exp(— RQTJ (©)

4. Conclusions

The leaching process of sulfide concentrate from the Sarcheshmeh
Copper Complex in Kerman province of Iran by ferric sulfate and sulfu-
ric acid was studied. The following results were achieved:

1. The copper extraction enhanced from 13% to 15.1% after 60
min, when the H,SO, concentration increased from 10 vol%
to 40 vol%.

2. Increasing the sulfuric acid concentration and temperature did
not lead to a remarkable enhancement in the amount of extract-
ed copper.

3. More copper extraction was not achieved due to the formation
of elemental S on the surfaces of concentrate particles.

4. By adding Fe,(SO,), oxidant, the maximum leaching degree
was only ~70% at 85 °C after 180 min.

5. By employing the mechanical activation trick and adding ferric
sulfate to the solution, the amount of extracted copper reached
~90%.

6.  The kinetic outcomes for the leaching process showed an ex-
cellent fit to the diffusion-controlled model, and ~27 kJ/mol
was estimated as the activation energy.
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