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ABSTRACT

ARTICLEINFORMATION

A synergetic effect of nanocatalyst and ultrasonic irradiation was examined for the synthesis of 4H-chromenes Article history:

from benzaldehyde, cyclohexanone, and malononitrile. It was observed this contributory improved the reaction Received 07 March 2021

that was used for the synthesis of the highly pure products in short reaction times and highest yields. The nano- Received in revised form 12 April 2021

composite includes the guanidine anchored on to magnetic NiFe,0, nanoparticles were used as the active base Accepted 26 May 2021

nanocatalyst for the sonication synthesis of 4H-chromenes compounds. The product was separated with simple

filtration and purify with recrystallization by ethanol solvent. After completing the reaction, a nanocatalyst was Keywords:

collected and reused in 6 runs of model reaction. This nanocomposite has a magnetic core and a very active base 4H-Chromene

surface area shell. The nanocatalyst was provided by the simple technique and identified by using FT-IR spec- Cyclohexanone

trum, scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Malononitrile

and Brunauer-Emmett-Teller (BET). This nanocomposite was used for the synthesized various derivatives of Ultrasonic mesopore silica

4H-chromenes under ultrasonic irradiation. The organic products were identified by FT-IR and IH-NMR.
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1. Introduction

Recently mesoporous silica spheres include magnetic metal nanopar-
ticles, have an attractive idea for chemistry researchers [1-3]. These
nanocomposites have active surfaces area for use in various sciences.
This nanostructure has the potential for use as the nanocatalyst [4-6],
sensors [7, 8], nanoreactors [9], and drug delivery processes [10], gas
filtration [11], and also as nano-sized quantum materials [12]. The large
surface area of mesoporous silica was used in optical coatings and cat-
alytic processes [13]. The bulk mesophase [14, 15] was managed the
ratio between silica-to-surfactant and silica/surfactant self-assembly
formation of cubic, hexagonal, and lamellar shape [16]. Recently, the
heterogeneous nanocomposite was used in organic reaction to synthesis
of different organic products [17, 18].

The chromenes compounds have notable biological attributes, [19-
21] such as anticancer [22], antibacterial [23], anticonvulsant [24], an-
timicrobial [25], anti-influenza [26], antimalarial [27], and anti-virus
activities [28]. Tetrahydro-4H-chromenes were used for the cure of
counting Huntington’s disease [29] neurodegenerative illnesses [30],
Alzheimer’s disease [31], Parkinson’s disease [32], and schizophre-
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nia [33]. The usual reaction for synthesis tetrahydro-4H-chromene
is the Michael addition in the presence of a base catalyst. Numerous
multi-component reactions have been determined for the synthesis of
various tetrahydro-4H-chromenes derivatives via the condensation of an
aldehyde, malononitrile, and cyclic ketone at the presence of different
inorganic and organic catalysts [33, 34].

Ultrasonic is the sound waves belonging to the group of mechanical
waves, which included frequencies higher than the audible frequency
of humans (20k Hz) [35, 36]. The piezoelectric influence has been used
to provide ultrasonic waves since the 1880 s [37, 38]. Ultrasonic waves
were invented with development in the technology of ceramic materials
[39], for example, quartz, [40] lead zirconate barium titanate, and lead
titanate [41, 42], the ultrasonic technique has progressively grown to
be considered encouraging, green, and novel technology that can be re-
placed or help traditional chemical processing [43, 44].

Following the previously reported [45-47], in this research, it was
reported a clean synthesis of 4H-chromenes derivatives from cyclo-
hexanone, different benzaldehyde, and malononitrile under ultrasonic
irradiation at the presence of the NiFe,O,/mesopore silica anchored to
guanidine nanocomposite as the base catalyst.
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Scheme. 1. Synthesis of NiFe2Os/mesopore silica anchored to guanidine nanocomposite.
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Fig. 1. XRD spectra of NiFe:Os@mesopore silica@ guanidine.

2. Experimental procedures
2.1. Materials and instruments

All the solvents and starting materials that used in the reaction in-
clude benzaldehyde derivatives (97%-99%), cyclohexanone (98%),
malononitrile (99%), and ethanol (99%), cetyltrimethylammonium bro-
mide (CTAB) (100%), tetraethyl orthosilicate (TEOS) (97%), sodium
hydroxide (NaOH) (99%), were provided from Sigma, ferric (III) chlo-
ride (FeCl,) (97%), nickel (II) chloride (NiCl,) (98%), and sodium bi-
carbonate (95%), were obtained from Sinopharm Chemical. The organic
products were recognized with '"H NMR, FT-IR, and '*C NMR analyses.
The TH NMR analysis was reported in CDCI, solvents using Bruker
DRX-400 spectrometer, and the internal reference is tetramethylsilane.
FT-IR spectra were reported with a Perkin-Elmer 550 spectrometers in
the range of 400-4000 cm™. The crystal structure of nanocomposite
(XRD) registered with (CuKa, radiation, A = 0.154056 nm) that worked
with a 15-kV accelerating voltage at the speed of 2° min—1 starting from
10° to 80°(2z.Theta;), for determined the morphology and size of nano-
composite used of Electron Microscope (FE-SEM) and EDX with Zeiss
Scanning Electron with a 15-kV accelerating voltage. The surface areas
and the size of pore in the nanocomposite illustrated by BET analysis
with nitrogen adsorption in —196 °C using Tri-Star 3020 Micrometrics
analyzer. The magnetic properties of nanocomposite were measured by a
vibrating sample magnetometer (VSM), the VSM curves were recorded
by PPMS-9 T at 300 K. The TGA was recorded in an air atmosphere by
a 10 °C/min rate.

using the METLER-810 analyzer.

2.2. General procedure for preparation of nano magnetic NiFe,0,

The nickel ferrite nanoparticles were provided during a sol-gel meth-
od [29]. To the accomplishment, the chemical formula NiFe O,, 40 ml

2~

FeCl, 6 H,0 (4 M) was stirred with 40 ml NiCl, 2H,0O (2 M). Then,

Wavenumber (cm™)

Fig. 2. The spectra of FT-IR of NiFe:Os@mesopore silica@ guanidine.

1.5 g citric acid monohydrate was added (C,H,0., H,0) to the reaction
mixture. The pH of the mixture increased to 7.0 added a little ammo-
nia-water (NH,-H,0) to the reactions. The solution was heated to dry
the water at 85°C and production of the brown colored gel. At the end of

the method, the product was dry at 800 oC to 3h.

2.3. Synthesis of NiFe,0 (@ mesopore silica

To provide an active base nanocatalyst, 5 mL NaOH 1 M, and 0.65
g of CTAB were dissolved in 100 mL deionized water and heated the
mixture to 35 min at 100 °C. Then 0.1 g of NiFe,O, nanocomposite was
dispersed in 60 ml ethanol under sonicate irradiation. The obtained solu-
tion added to the reaction mixture. 2 ml TEOS was added to the reaction
mixture two times after 15 and 40 min, the reaction mixture stirred at
room temperature for 15 h at the end of the reaction the product collected
by centrifuge and washed three times with water and ethanol, and dried
at 70 °C for 24 h. The surfactant was removed from the nanocomposite
by dispersed the product in ethanol (100 mL) and ammonium nitrate
(50 mg) and stirred at 80 °C for 5 h. The product was separated by the
centrifuge and dried at 100 °C for overnight.

2.4. Synthesis of NiFe,0 /mesopore silica anchored to guanidine

nanocomposite

50.0 mg of NiFe,O,@mesopore silica was dispersed under ultrasonic
irradiation in 10.0 mL toluene solvent for 30 min. Then Smmol guani-
dinium chloride, 5 mmol 3-chloropropyltrimethoxysilane, and 2.5 mmol
sodium bicarbonate in 10 mL dry toluene added to the reaction mixture
then refluxed for 32 h. Then, the final product was separated by centri-
fuge and washed with water and ethanol. The product was dried at 80 °C
under a nitrogen atmosphere (Scheme 1).

2.5. General multicomponent procedure for synthesis of 4H-chromene

4H-chromenes derivatives were synthesized in the three-compo-
nent reaction. In this reaction, 1 mmol of malononitrile was reacted
by 1 mmol of benzaldehyde at the presence of 10 mg of nanocatalyst.
The reaction was followed under ultrasonic irradiation on the ethanol
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Fig. 3. FE-SEM image of NiFe20s@mesopore silica@ guanidine.
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Fig. 5. EDS curves for NiFe:Os@mesopore silica@ guanidine.

solvent. After 5 min 1 mmol cyclohexanone was added to the reaction
mixture, and the process was followed by thin-layer chromatography.
The final product was separated with simple filtration and purification
by recrystallization in the ethanol solvent. The final product identifies by
the melting point, FT-IR, and "H NMR spectra ("HNMR and FT-IR data
were placed in Sl files).

3. Result and discussion
3.1. Preparation and characterization

The NiFe,O, nanoparticles were synthesized and functionalized
by mesopore silica and guanidine. At first, NiFe,0, was provided by
the sol-gel method [48]. The obtained NiFe,0, was reacted by CTAB,
NaOH, and TEOS at ambient temperature to NiFe, O, @ mesopore sili-
ca. The obtained magnetic nanocomposites reacted by guanidine under
the refluxed condition to NiFe,O,@mesopore silica@ guanidine base
nanocatalyst. The nanocomposite was distinguished by various analyses
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Fig. 4. BET curves for NiFe20s@mesopore silica@ guanidine.

such as; SEM, EDX, XRD, FT-IR, BET, and VSM.

The XRD models were recorded of the crystal structure of NiFe,0,@
mesopore silica@ guanidine displayed in Fig. 1. The XRD pattern in Fig
1 shows the peaks (miller indices) in 30°(220), 37°(222), 45°(400), 58°
(511), 62°(440) and 73°(533), regular XRD pattern of JCPDS card that
due to the crystal structure ofNiFe,0, and the sharp peak in 22° due to
amorphous mesopore silica.

Effective functionalization of the NiFe O,@mesopore silica@ guan-
idine catalyst can be explained through FT-IR spectra (Fig. 2). Accord-
ing to the FT-IR spectrum of the nanocomposite, the presence of a peak
around 458 cm™!' showed stretching vibration of Ni-O bonding; the peak
of Fe-O looked near the 793 cm'; the NH? stretching bond displayed
near 3391 cm™, and the peak of the Si-O stretching bond appeared
around 1084 cm'.

The morphology and size of the nanocomposite were defined by
the scanning electron microscopy analysis. The FE-SEM images of the
NiFe,O,@mesopore silica@ guanidine (Fig. 3) shown the extremely
uniform morphology for the nanocomposite. Moreover, the average par-
ticle size of NiFe,O,@mesopore silica@ guanidine was 77-85 nm.

The surface area and pore volume diameter of NiFe,O,@mesopore
silica@ guanidine were defined using the Brunauer—Emmett—Teller
(BET) technique. According to the acquired curve, the measurement of
surface area was equal to 233 m,g , total pore volume 0.121 cm’g"! (Fig.
4).

Also, to characterize the percent of each element in the nanocompos-
ite, it was studied elemental the energy-dispersive X-ray (EDS) spec-
trum. The EDS curve showed the percent of O, Si, Fe, Ni, and C were
24.1%, 32.9%, 1.8%, and 30.2"%, respectively (Fig. 5).

Thermogravimetric analysis (TGA) curves (Fig. 6) of NiFe O,@
mesopore silica@ guanidine shows that losses of 60 percent of weight
under 800 °C in the models are due to the release of adsorbed water,

solvent, and organic materials.
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Scheme. 2. Synthesis of various derivatives of 4H-chromene in the presence of NiFe2Os/mesopore silica/guanidine nanocatalyst.
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Fig. 6. TGA curves for NiFe:O4@mesopore silica@ guanidine. Fig. 7. FVSM curves for NiFe:Os@mesopore silica@ guanidine.
Table 1.
Investigation of catalyst, catalyst amount in ethanol solvents for the synthesis of
4H-chromenes *
100 En- Catalyst Time  Yield
98 Catalyst
06 try amount (mg) (h) > (%)
94 1 Et,N 10 35 40
S 2 2 MgO 10 2.5 70
= 9% .
,E 88 3 Morpholine 10 0.95 70
86 4 Guanidine 10 0.75 75
4
:2 5 NiFe,O 4/meS(?gf)re silica/guan- 10 075 38
80 1dine
1 2 3 4 5 6 NiFe,0,/mesopore silica/guan-
Run 6 L 10 0.16 98
idine
. . X . L X NiFe,0,/mesopore silica/guan-
Fig. 8. The recyclability of NiFeO4/mesopore silica/guanidine nanocatalyst in 7 idine 5 0.16 83
Six runs.
g NiFe,0,/mesopore silica/guan- is 0.16 %0

idine

* Reaction conditions: benzaldehyde (1 mmol), malononitrile (2 mmol), cyclo-

hexanone (1 mmol), 5 ml solvent.

bIsolated yield
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Scheme. 3. Proposed reaction mechanism for the Synthesis of 4H-choromene.
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Table 2.
Investigation of solvent for the synthesis of 4H-chromenes *
Entry Solvent T°C Time (h) Yield ® (%)
1 Acetonitrile 25 0.75 10
2 Chloroform 25 0.92 0
3 Ethanol 75 0.16 98
4 Methanol 25 0.75 90

* Reaction conditions: benzaldehyde (1 mmol), malononitrile (2 mmol), cyclo-
hexanone (1 mmol), 5 ml solvent.
®Isolated yield

The magnetic properties of NiFe,O,@mesopore silica@ guanidine
nanocomposite were recorded by the vibrating sample magnetometry
(VSM) spectra of the nanocomposite. The magnetization curve of nano-
composite shown superparamagnetic properties (Fig. 7).

According to the TGA and EDX analyzed, the percent of organic
materials was 60%, and mesopore silica around 30%. So, the percent
of NiFe,0, is around 10% in the nanocatalyst structure. Because the
low percent of NiFe,0, and covered with two-layer of mesopore silica
and guanidine compound. The MS of the catalyst was decreased, but it
has superparamagnetic properties and adsorbed with an external magnet.

The synthetic reaction of 4H-chromenes from benzaldehyde, cyclo-
hexanone, and malononitrile was optimized by various solvents, cata-
lysts, and temperatures.

The reaction was studied by utilizing different catalysts such as mor-
pholine, Et,N, MgO, and NiFe,O,/mesopore silica/guanidine in the etha-
nol solvents. The results of the study were exhibited in Table 1.

The results were displayed NiFe,0,/mesopore silica/guanidine (Ta-
ble 1, Entry 5) and have the best yields of product in the short reaction
Table 4.

Table 3.
Several Power for the ultrasonic multicomponent reaction for synthesis of bis-
ortho-aminocarbonitrile tetrahydronaphthalene 4a *

Entry Power (W) Time (min) Yield * (%)
1 Silent 180 20
2 30 60 82
3 35 50 85
4 40 35 90
5 45 10 98
6 50 30 96

2 Reaction conditions: Benzaldehyde (1 mmol), Cyclohexanone (1 mmol), Malo-
nonitrile (I mmol), 5 ml Solvent.
® Isolated yield

time. The model reaction was tested in different solvents and the result
showed in Table 2.

Ultrasound irradiation was constructed as the motive energy for the
improved yield of 4H-chromenes, that due to the increased temperature
correlated to the production of hot spots. While the reaction was carried
out without sonic irradiation in low yield and long reaction time (Table
3, entry 1). The best power for the reaction was acquired 45 W based on
product yield and reaction time (Table 3, entry 5).

After optimization of the model reaction for the synthesis of
4h-chromene (4a-g), 1 mmol of benzaldehyde (1a-g), 1 mmol of malo-
nonitrile (2), and Immol of cyclohexanone (3) were mixed in ethanol
solvent and 5 mg NiFe,O,/mesopore silica/guanidine added to the mix-
ture as the base nanocatalyst. The reaction was done under 45 power
ultrasonic irradiation (Scheme 2) (Table 4).

The mechanism of the reaction for the production of 4H-chromenes

Synthesis of various derivatives of 4h-chromene in the presence of NiFe,O,/mesopore silica/guanidine nanocatalyst *

4a-1°, yield % *, Time (min)

NH, NH, NH,
0 CN 0 X —CN 0 X —CN
X AN N NO,
Br
4a: X=H, Y=H, 98, 10 4b: X= B, Y=H, 95, 15 de: X=NO, Y=H, %, 16
NH, NH,
N NH,
CN
0 X 0" X 0 X CN
NN N
N
F N-CHj
é Cl Cl
4d: X=F,Y=H, 92,17 H3
de: X=N,N dimethyl, Y=H, 4f: X=2,4 dichloro, Y= H, 91, 18
93,20
NH, NH,
CN
0 Xy CN 0" X
S N
NO, ca

4g: X=NO,, Y=H, 94, 19

*Reaction conditions: benzaldehyde (1 mmol), cyclohexanone (1 mmol), malononitrile (1 mmol), 0.1mmol nanocatalyst (5 mg), ethanol solvent (Sml), 45 power

ultrasonic irradiation.
b Isolated yield

4h: X=Cl, Y=H, 92,17
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Table 5.
Comparisons of literatures reported catalyst with this work for synthesis compound 4a
Ti Yield
Entry Catalyst Loading 1r'ne e Method Ref.
(min) (%)
. 0.1
1 Morpholine 30 90 Reflux [48]
mmol
0.1
2 CaMgFe O, 20 92 rt [47]
mmol
CoFe 0O, /lamell: -
OFEDSAMETATIMES o nre 20 93 rt [31]
opore silica/melamine
4 Nif'eZO 4/mes'opore 10 Mg 10 o8 Ultra- This
silica/guanidine sound work

included various steps, at the first step, benzaldehyde and malononitrile
reacted under Michael addition and formation the intermediate A under
the nanomagnetic base NiFe,O,/mesopore silica/guanidine nanocatalyst.
Then the cyclohexanone under condensation reaction joins to the in-
termediate A and formation intermediate B. The process followed by a
cyclization reaction, the 4H-chromene (4a) compounds synthesis by ab-
sorption of the hydrogen, and double bonds rearrangement (Scheme 3).

3.2. Catalytic comparisons

To display the efficiency and influence of new methods for the syn-
thesis of 4H-chromene derivatives, the obtained results were compared
with the other methods, catalysts, and conditions (Table 5). As can be
seen, the present study with different methods for added the starting ma-
terial, nanocatalyst, and using ultrasonic irradiation is superior in yield
of pure products and short reaction times.

3.3. Reusability

The reusability and nanocomposite are important advantages for
commercial utilization. The reusability of NiFe,O,/mesopore silica/
guanidine nanocatalyst, was tested in six runs of the model reaction, and
the results reported in Fig 8.

4. Conclusion

In this study, it was functionalized the NiFe,O,/mesopore silica with
the guanidine compound. The mesopore silica has a large area for func-
tionalization on the surface and pore. The reaction of benzaldehyde,
malononitrile, and cyclohexanone as the model reaction was selected
for examined the catalyst activity. The 4H-chromene was synthesized
by used NiFe,O,/mesopore silica/ guanidine as a nanocatalyst in the ex-
cellent yields and short reaction times. The nanocomposite identified by
FT-IR, SEM, XRD, VSM, BET techniques, and the organic products
recognize by the melting point, 'H NMR, and FT-IR analyses.

Supporting Information

Experimental details, copies of 'H and FT-IR and of products is

available free of charge via the Internet here.
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