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ABSTRACT ARTICLEINFORMATION

One of the most important problems in the manufacturing industry is metal corrosion. Recently, conductive poly- Article history:

mers (CPs) have attracted attention due to their economic viability and widespread industrial applications. Upon Received 28 July 2020

adsorption, long-chain carbon bonds of polymers provide a blockage for large surface areas of corroding metals. Received in revised form 07 September 2020
The adsorbed thin films create a barrier between the surrounding environment and the metal substrate. Polypyrrole Accepted 13 October 2020

(PPy), polyaniline (PANI), and polythiophene (PTh) are conducting polymers that are utilized to protect metals

and metal alloys against corrosion. A proper selection of synthesis parameters for CPs can improve the anticor- Keywords:

rosion behavior of the coatings for metals and metal alloys. This paper has an overview of conducting polymer Corrosion resistance

composite coatings on substrates based on steel, copper, magnesium, aluminum, and their alloys. Polyaniline
©2020 JCC Research Group. Polypyrrole
Peer review under responsibility of JCC Research Group Polythiophene

Metal substrates
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1. Introduction technique is the application of conducting polymer coatings [2, 3]. An
active area of research in electrochemistry in the last decades has been

In the electronic and metallurgical industries, corrosion control is the electrodeposition of CPs on the surfaces of metallic electrodes. In

a challenge with great importance worldwide [1]. To protect metals contrast to other coatings, such as paints, CPs do not contain toxic and
from corrosion, various methods have been used. A widely practiced hazardous constituents for the environment. Additionally, compared to

other coatings that only provide physical barriers against corrosive envi-
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Fig. 1. FChemical composition of PANI, PPy, and PTh.

ronments, CPs provide physical and electronic barrier effects and elec-
tromagnetic interference (EMI) shielding which enhances the protection
behavior [4-6].

These composite materials are strongly adsorbed onto active sites of
the metal substrate leading to suppression of the dissolution process and
production of a protective film layer. In fact, corrosion protection of CPs
is a kind of anodic protection. According to studies, coating a metal with
a conducting polymer places the potential of the electrode in the passive
zone in the absence of redox reactions [7]. CPs have been applied on
the surface of metals such as zinc [5], copper [6, 7], aluminum [8, 9],
iron [10, 11], stainless steel (SS) [12], mild steel (MS) [13], etc. Mostly,
polyaniline, polypyrrole, and polythiophene are used for coating met-
al substrates [8-19]. This review article has an overview of conducting
polymers and composites and the state-of-the-art findings in the field of
composite conducting polymers coated on various metal substrates are
presented.

2.1. Conducting polymers

CPs can be used as a protective coating for the prevention of met-
al surface corrosion and enhancement of PE values [20]. Intrinsically
conducting polymers are organic polymers with electrical conductiv-
ity. These compounds can either be semiconductors or show metallic
conductivity. Their great advantage is the processability of conductive
polymers, mainly by dispersion. Generally, these polymers are not ther-
moplastics and thereby they are not thermoformable. However, they are
organic compounds like insulating polymers. Mechanical properties of
conducting polymers are not similar to other commercial polymers, but
they exhibit high electrical conductivity [21]. Using organic synthesis
methods as well as advanced dispersion techniques, the electrical prop-
erties of these polymers can be fine-tuned [22, 23].

Different CPs are commercially available including PANI, PPy, PTh
[24-26]. The chemical composition of these polymers is illustrated in
Fig. 1. To synthesize CPs, electrochemical or chemical oxidation meth-
ods are used [27, 28]. PANI and its derivatives are extensively utilized
for anticorrosion coatings due to facile synthesis, enhanced environmen-
tal stability, as well as various redox states that allow property regula-
tion. Localized/delocalized polarons and bipolarons may be present in
the PANI structure in various proportions, which depends on the meth-
ods of synthesis and isolation. PANI is practically applied to protect con-
crete steel bar reinforcement [28, 29].

Among all known CPs, one can consider PPy as promising material
due to its high conductivity, easy and flexible preparation, good me-
chanical properties, and stability. Potential technological application of
PPy include membrane separation [30], electronic and electrochromic
devices [31], light-weight batteries [32], chromatographic stationary
phases [33], sensors [34], and counterelectrode in electrolytic capacitors
[35]. In recent years, it has been reported in several studies that PPy can
protect metals and their alloys from corrosion [36-38].

An important class of conjugated polymers is PTh polymers that
have a wide range of applications including field-effect transistors, elec-
trochromic, and conducting films [39]. Few reports have demonstrat-
ed the use of PTh for the corrosion protection of metals. Among CPs,

some PTh derivatives have shown good performance, which ultimately
depends on the environment nature that CPs are in contact with. It is
feasible to generate PTh and its derivatives on other CPs such as PPy
by applying proper voltage. The combination of these two conducting
polymers has led to better corrosion performance [40].

It is possible to formulate CP-based coatings to inhibit corrosion of
metals even in damaged areas where the surface of the metal is direct-
ly exposed to the corrosive environment. Conducting polymers can be
whether in the reduction-nonconductive state or oxidation conductive
state. Under appropriate conditions, they can easily switch between
the two states. Redox processes occur in CPs; therefore, the expelling/
binding of dopants (counterions) is conducted in response to the metal
surface potential variation. The potential variation is initiated by local
electrochemical reactions resulting from the corrosion. Based on the lo-
cal corrosive conditions, the dopants can be expelled or inserted by the
CP, which often act as inhibitors that prevent the local corrosion reac-
tions upon release [41, 42]. This is considered as a strategy suggested for
taking advantage of CP-based corrosion-resistant coatings [43].

3. Corrosion protection mechanisms of CPs

For the provision of electronic conductivity in CPs, oxidative po-
lymerization and anion doping are performed into the polymer. The
penetration of aggressive anions into CP coating is prevented by con-
trolling the doping ions. When CP-coated metal substrates are immersed
in aggressive environments, such as the sodium chloride solution, the
chloride anions present in the medium is exchanged with doped anions
in the CP coating. The corrosion protection mechanisms of CPs have not
been precisely revealed. Four possible hypotheses have been proposed:

I) Mechanism of controlled inhibitor release: In this mechanism, the
anion dopant may be released upon reduction from the oxidized and
hence doped CP-based coating on a metallic substrate, which is driven
by a coating defect. As far as doped PANI is concerned, the anions are
released either through a reduction mechanism or a simple acid-dopant
elimination if it is soluble in water [44, 45].

II) Mechanism of anodic protection: according to this mechanism,
protective metal oxide layers are formed on the metal surface as a result
of CPs providing corrosion protection [46].

III) It is proposed that an electric field is produced when there is a
contact between a doped semiconductor or a conducting polymer and a
metal resulting in a reduction in the corrosion rate due to the restriction
of the electron flow from the metal to an oxidizing species [47].

IV) CPs create an adherent, dense, low porosity film on the metal
surface limiting the access of oxidant agents and prevent metal surface
oxidation [48] (Fig 2).

A denser CP layer provides a better barrier effect and decreases the
rate of H,O and O, transport into the polymer. The reaction site on which
O, reduction occurs moves from the metal/CP interface to the CP/solu-
tion interface by the enhancement of the compactness of the coating and
its adherence to the substrate [49]. The change in the O, reduction site
on the surface of the polymer leads to a decrease in reduction products
such as OH across the metal/CP interface, and thereby prevent the coat-
ing disbondment and delamination [50]. Furthermore, oxygen reduction
requires the local reoxidation of the coating and its active role in the
case that local small-size defects or pinholes are generated. Therefore,
the improvement of the barrier effect should not inactivate CPs. The
open-circuit potential of the metal/CP-based coating/solution system
will be is in the passive state as far as the conducting polymer is in the
conductive form. The site of the O, reduction and its kinetics are import-
ant factors to determine the prolonged protective properties of the coat-
ing. Generally, it has been reported that the barrier effect is improved by
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Fig. 2. Barrier effect of CPs for the diffusion of corrosive agents.

the dehydration of CP film electrodeposited on metal surfaces from an
aqueous medium [43].

Mechanisms I and II are the most important contributing mecha-
nisms that can rationalize corrosion inhibition by CPs. For a specific
metal substrate/CP-based coating/solution system, the other two mech-
anisms contribute to the corrosion process simultaneously with the con-
trolled inhibitor release or the anodic protection mechanism [10, 43].

3.1. Corrosion inhibitors

Different ways of CP doping can be used for controlling the electro-
lytic environment near the surface of the metal substrate in case a scratch
is formed. In this condition, a galvanic coupling exists between the CP
coating and the metal. The anodic reaction involves the metal oxidation,
while the cathodic reaction is the CP reduction resulting in the release of
the doping anions. However, oxygen is reduced simultaneously on both
the metal surfaces and CP coating resulting in the OH production and the
CP reoxidation, respectively. Based on the nature of doping anions and
the metal, a self-healing process may be triggered. In some metals such
as steel, copper, and aluminum, the doping anions such as molybdates
and phosphonic acid derivatives act as inhibitors, or oxide formation is
initiated [43].

In the inhibition mechanism, a monomolecular barrier is formed by
the organic species adsorption onto the surface of the metal. The pres-
ence of the adsorbed molecules results in the limitation of the cathodic
and/or anodic corrosion reactions such as electron transfer and decreases
the rate of corrosion [51, 52]. According to Brycki et al. [53], the in-
hibitor action involves the replacement of the adsorbed water from the
surface of the metal by soluble organic species (Org):

Org +nH,0  ,—Org +nHO_ (1)

Several investigations have reported that monomeric aniline, as well
as functionalized aniline derivatives, act as potential corrosion inhibitors
for steel and iron [54-56].

3.2. Anodic protection

The anodic protection activity involved the ways wherein general
corrosion of the metal substrates and alloys is prevented by CPs mostly
in solutions free of halides [43]. According to Kinlen et al. [57], the elec-
troactive conducting polymer (ECPs) electrochemistry provides anodic
protection for the substrate and also prevents cathodic debonding of the
polymer coating. In this protection mechanism, the corrosion potential
of the metal substrate in the electrolyte of interest moves to the passive
region. The proposed reaction between the metal (M) and the oxidized
state of the polymer coating (ECP™) is:

1 1 y 1 (n-y) , 1 0, Y

M +;ECP’"+;H20—>;M(0H)J, +—ECP"+<H 2
reoxidation of the ECP can occur by dissolved or atmospheric ox-

ygen:

20, + 2 H,0 + ECP® » ECP™ +mOH~ 3)

4. Composite conducting polymers (CCPs)

Polymer nanocomposites have found increasing attention in various
engineering applications [58-60]. The essential characteristic of this pro-
cedure is that CPs make it possible to maintain the substrate surface
potential into a passive state wherein a protective oxide film is generated
on the surface of metal substrates [43, 61]. As a result, CPs-based coat-
ings are pinhole and defect resistant in such a way as that of the hexava-
lent chromium coatings. It is due to the replenishing of CP charges con-
sumed by oxidation of metal by O, reduction within the CP coating.
The corrosion process of metal is prevented by switching the CP-based
coating into the oxidation state and thereby changing the potential into
the passive region [62].

Expanded studies have focused on the anti-corrosive features of CPs;
however, there are still numerous problems to be resolved regarding the
fulfillment of mechanical and physico-electrochemical requirements of
high performance anticorrosive CP-based coatings exposed to various
practical conditions. Anticorrosive CP-based coatings have some lim-
itations such as poor adhesion to the metallic substrate, anion-exchange
properties, poor barrier effect due to porous structure, and irreversible
consumption of stored charges within the coating, which can oxidize
the substrate and form a passive oxide layer. The mentioned drawbacks
show their effect more significantly under harsh environments. In case
chloride ions are present, these ions can either penetrate through the CP
coating or undergo anion-exchange (replacement of chlorides with CP
doping anions) and reach the metal-substrate interface. Extended local-
ized corrosion may be induced by chloride ions and during the redox
reactions, the charge stored in the CP layer might be irreversibly con-
sumed.

Using CP-based composites consisting of a conducting polymer and
different inorganic fillers like metal oxides has been offered as an effi-
cient strategy for the elimination of the disadvantages. In CP-based com-
posites, the CP self-healing properties are combined with qualities of
inorganic materials. Therefore, the composite coatings exhibit improved
physicochemical and mechanical properties including enhanced hydro-
phobicity, barrier effect, and adhesion [43, 63-65]. The improvement of
these properties leads to the enhancement of corrosion protection. Nano-
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Fig. 3. Corrosion mechanism of steel.

technology has gained dramatic attention in recent years and is expected
to make advancements in the design and development of commercially
viable CP-based composite coatings [66]. It seems that CP-based nano-
composite can combine the properties of CPs and inorganic materials
more effectively compared to microcomposites [67].

5. CCPs coatings on metals
5.1. CCPs coated on steels

Structural steel is corroded through an electrochemical process in
the presence of oxygen and moisture. Rust is produced by the oxida-
tion of iron in the steel, which has a volume of six times the original
material [68]. The corrosion mechanism is presented in Fig. 3. There
are numerous reported focusing on the corrosion protection effect of CP
coatings on metals, especially iron and mild steel, and stainless steel
and significant advancements have been made [69-76]. Most conduct-
ing polymers form conducting films directly on the substrate surface by
anodic oxidation [77, 78]. Changing from an insulating state to a con-
ducting state by different doping methods including injection of charge
at the interface of a metal and the conducting polymer, photo doping,
electrochemical doping, and chemical doping by charge transfer [71].
Due to the capability of these polymers in charge storing and transport,
they can anodically protect metals against fast corrosion [79]. The corro-
sion protection mechanisms of CPs are complex and affected by various
parameters [80-85]. Some theories have proposed that a passive oxide
film is formed on the metal surface by oxidation-reduction processes,
while others have predicted that the barrier mechanism is responsible for
provided protection [61, 86, 87].

There are many studies targeting to investigate the corrosion pro-
tection of steel by CPs and CCPs. Sathiyanarayanan et al. [88] synthe-
sized the PANI-TiO, composite coating (PTC) on steel and studied its
corrosion protection behavior. To prepare PTC, aniline and TiO, were
chemically oxidized by ammonium persulfate in a medium containing
phosphoric acid. According to the results, the redox property of PTC led
to maintaining the steel potential in the passive region. The resistance
of the PTC coating in a 3% NaCl solution after 60 days was more than
107 cm?and in the salt spray test for 35 days was 109 cm® However, in
both cases, the resistance of the coating was less than 104 cm? It was
proposed that the corrosion protection is due to the passivation of steel
resulting from the presence of polyaniline. Lenz et al. [73] incorporat-
ed TiO:2 pigment into PPy during the electrochemical synthesis of the
CP-based coating on AISI 1010 steel. Weight loss and salt spray tests
demonstrated that the PPy/TiO, composite significantly increased an-
ti-corrosion properties compared to PPy films. The composite coatings
were suggested as a primary coating that can be applied on mild steel
instead of phosphatized layers.

According to Radhakrishnan et al. [89], composite coatings com-

posed of PANI and nano-TiO, prepared by in-situ polymerization on
steel plates showed superior corrosion resistance than did PANI coatings
in aggressive environments. It was reported that the corrosion resistance
improvement for the nanocomposite coating containing 4.18 wt% TiO,
nanoparticles was beyond 100 times. It was proposed that the improve-
ment is the result of the high surface area accessible for the dopant re-
lease due to nano-size additive, redox properties of PANI, charge trans-
port prevention by the TiO, nanoparticles, and an increase in diffusion
barrier. In a research study by Patil et al. [90], polyvinyl acetate (PVAc)-
ZnO-PANI hybrid composite coatings (PVAc as the major matrix) were
deposited on steel plates by the dip-coating method. In comparison with
the coatings that contained either ZnO or PANI, the coatings that con-
tained both the components exhibited higher corrosion resistance. The
PVAc-ZnO-PANI coating showed the /__value of two-order lower than
that of PVAc—ZnO and PVAc coatings. The improvement was reported
to be the result of the redox behavior of PANI, enhancement of barrier
properties by nanoparticles, as well as the formation of protective oxide
layers near the substrate. Hosseini et al. [91] electrodeposited the poly-
pyrrole phosphate (PPy-P) coating by cyclic voltammetry (CV) method
on ST12 mild steel. The deposited PPy—P films demonstrated higher cor-
rosion resistance compared to the PPy coating.

To coat 304 stainless steel for bipolar plates used in a proton ex-
change membrane fuel cell, Ren et al. [92] used galvanostatic deposition
to produce an inner layer of PPy with large groups of dodecylsulfate
ions, and then a PANI external layer containing small groups of SO
was applied via cyclic voltammetric deposition. According to results,
the increase in pitting corrosion potential and corrosion potential of the
bare steel for the single PPy and PPy/PANI coatings was more than 500
mV and 400 mV (saturated calomel electrode), respectively. Compared
to the single PPy coating, the bilayer composite coating showed more
effective corrosion reduction through providing passivity protection as
well as a physical barrier with acceptable contact resistance.

Jiang et al. [46] deposited PPy-graphene oxide (GO) composite
coatings on 304 stainless steel bipolar plates by in-situ electrodeposi-
tion to protect them against aggressive environments. The analysis in
the simulated PEMFC environment exhibited that during potentiostatic
polarization, the polarization current density of the substrate was sig-
nificantly reduced by the conductive PPy-GO composite coating. The
addition of GO to the PPy matrix led to the enhancement of the adhesion
strength and an increase in the diffusion pathway of corrosive agents
and therefore, restriction of their inward penetration. The best corrosion
resistance was obtained for the composite coating containing 1 mg mL"!
of GO in the electrodeposition electrolyte. The corrosion enhancement
in the composites is the result of the improved anodic protection and
physical barrier. Jadhave et al. [93] added poly-o-anisidine (POA) and
PANI nanoparticles to alkyd paint formulation for protecting the mild
steel surface. In comparison with the POA/alkyd coatings, corrosion
protection of the PANI/Alkyd coatings was remarkably higher.

Epoxy/graphene composite coatings with hydrophobic surfaces were
prepared by Chang et al. [94]. The water droplet’s contact angle with
the epoxy surface and hydrophobic epoxy/graphene surface were 82°
and 127°, respectively. The improvement of the corrosion resistance by
applying the composite coating was reported to be due to the physi-
cal barrier effect, a decrease in the adsorption of water/corrosive me-
dia resulting from the coating hydrophobicity, and high aspect ratio of
graphene nanosheets leading to enhancement of the oxygen barrier prop-
erty. Sumi et al. [95] synthesized PANI-Fe,0, composite by an In-situ
method and added it to a commercial alkyd resin as an anti-corrosive
coating for mild steel. The composite coating was proposed to offer pas-
sivation protection and better barrier performance. The complimentary
cathodic reaction of the nonconductive leuco-PANI to the conductive
emeraldine-PANI was explained to be also responsible for the improved
corrosion resistance in the acidic medium. Table 1 summarized research
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Table 1.

Research reports on using CCPs for corrosion protection of steel

Authors CPs Additive Coating technique Medium Corrosion behavior
Jadhav et al. PPy Fe,0, Electrochemical method NaCl Better corrosion resistance was observed by the coating of Fe,O.,/
(2020) [96] PPy.
Sun et al. (2020) . . The density of corrosion current decreased 5 times and the coating
PANI - Electrochemical deposition NaCl . . .
[97] exhibited effective protection for 140 days.
Deyab et al. . . . The composite of PANI/Zn-Pr with 1.0% of Zn- Pr rendered the
PANI Zn-Porphyrin Electrochemical deposition H,SO, . . . .
(2020) [98] highest anti-corrosion activity (99.41%).
Polydopamine —func- X .
Chen et al. A R L The PPy/C-PDA coating showed good protection performance for
PPy tionalized carbon Electropolymerization H,SO, . .
(2020) [24] d the 304SS bipolar plate in PEMFC.
powders
Rajkumar et al. . X L. X The PPy coating provides the denser passivation film at the inter-
PPy TiO,, ZnO, and SiO, Incorporation in resin NaCl .
(2020) [99] ? ’ face of PPy and TiO,.
Chen et al. . . . comparing V-TiO,/PPy and TiO,/PP composite coatings, the
PPy TiO:2 and V-TiO: Electrochemical method HC1 . 2. .
(2019) [100] V-TiO,/PPy showed better corrosion resistance performance.
K cal Using the PANI/CTS in 0.5 M HCl solution was effective for corro-
ong et al.
(20]; [101] PANI Chitosan - HC1 sion protection of Q235 steel and at high PANI/CTS concentrations,
the highest inhibition efficiency was obtained.
Babaci-Sati et PPy/Al,O, nanocomposite with declining the density of corrosion
abaci-Sati e
PPy ALO, Electrodeposition H,SO, current by 18 times, exhibited excellent performance in the protec-
al. (2019) [102] ? tion of MS
Shi et al. (2019) The silicone-SiO,@PANI coating with a 4:1 weight ratio of SiO,/
i et al.
© 26] PANI Si02 Drop casting technique H,SO, PANI exhibited the highest resistance against corrosion (2.24x107
Q cm?) after immersion in a corrosive medium for about 180 days.
Jaouhari et al. R Galvanostatic electrodepo- The ZP/PPy coatings showed excellent corrosion resistance and
PPy Zinc phosphate . NaCl . . .
(2019) [103] sition increased the ZP/PPy coating thickness.
Liuetal. (2019) The epoxy coating with TiO,/PANI particles showed high corrosion
iuetal.
[104] PANI TiO, Electrochemical deposition NaCl protection compared to the blank coating after subjecting to a
corrosive environment.
W tal The presence of Nb: TiO, nanofibers in the coating of PANI led to
ang et al. ?
¢ PANI Nb: TiO:2 nanofibers galvanostatic method HCI the provision of better in-situ anodic protection and physical barrier
(2019) [38] effect
Abd El-Lateef The PANI coating could prevent the carbon steel corrosion and
-Latee:
id i ielding of 89% and thi t after th
ctal.(2019)  PANI TLO,-Si0, Electrochemical deposition HCl provide maximum yieiding of 85770 and tuis amount after the
[105] ’ modification with T1,0,-SiO, nanocomposites was improved and
reached 96%.
R deh
amezanzace . The deposition of CeO, and PAni improved the properties of active
et al. (2018) PANI GO-CeO:2 Electrodeposition NaCl . .
(83] and barrier corrosion inhibition of GO nanosheets.
Contri et al.
(2018) [106] PPy Montmorillonite (Mt) Electrodeposition H,SO, The Epoxy/Mt-PPy (5 wt%) could prevent carbon steel corrosion.
Jadhay et al The pigment-based composite coating of Mo-doped PPy/mica ex-
adhav et al.
2018) [107] PPy Mica Incorporation in resin NaCl hibited better protection against corrosion with the steel passivation
by the anions of molybdate.
Salem et al. . . The possibility of delamination and blister formations were reduced
PANI - Electrochemical deposition NaCl . K
(2018) [108] by composite coatings.
. . The Ni(OH), particle deposition in a matrix of PANI prevented
Jiang et al. . Cyclic voltammetry tech- . . . . .
PANI Ni(OH) . NaCl access to aggressive media. Also exhibited long-term anti-corrosive
(2018) [109] 2 nique behavi
chavior.
Arabzadeh et al. PPy . Cyclic voltammetry method Hel The sample synthesized with the scan rate of Polymerization equal
(2017) [110] to100 mV/s was the best coating.
Ladan et al. . . . Co doping TiO,/PPy decreased the charge transfer across the inter-
PPy TiO, Dip coating NaCl
(2017) [111] face of electrolyte/AISI 1018 steel.
Yan et al. (2017) PPy ALO Cyclic voltammetry tech- NaCl The PPy-AlO, composite coating exhibited good performance in
[112] 23 nique the corrosion protection of 316SS.
Yan et al. (2017) PPy Sio Cyclic voltammetry tech- NaCl The PPy-SiO, coating exhibited good performance in the corrosion
[113] 2 nique protection of 316SS.
Qiu et al. (2017) .. Phosphate The 98.4% corrosion inhibition efficiency and 99.3% protection
PANI GO Pulse-current deposition . . . R .
[114] buffer efficiency was obtained by using the PANI-GO composite coating.



https://www.sciencedirect.com/science/article/pii/S0300944016311031
https://scholar.google.com/citations?user=Cq9tAGcAAAAJ&hl=en&oi=sra

L. Bazli et al. / Journal of Composites and Compounds 2 (2020) 228-240 233

investigation on using CCPs for corrosion protection of steel substrates.

5.2. CCPs coated on magnesium and its alloys

Because of biocompatibility, easy biodegradation, and excellent
mechanical properties, Mg alloys have been extensively investigated
for biomedical applications. Nevertheless, in a physiological environ-
ment, these alloys show a high corrosion rate leading to an increase in
the pH value, which adversely affects cell differentiation, proliferation,
and viability on the implant surface and thereby induces blood clots to-
gether with chronic tissue inflammatory responses [115-119]. Two main
strategies for the improvement of the corrosion resistance of Mg and its
alloys are surface modification and alloying [120, 121]. CPs and CP-
based composites have been developed for the corrosion reduction of
Mg-based substrates. The corrosion mechanism of Mg with and without
CP coatings is shown in Fig. 4. PANI-TiO, composites were deposited
on the ZM 21 alloy by Sathiyanarayanan et al. [122]. To synthesize the
coatings, aniline underwent oxidative polymerization in phosphoric acid
with (NH,),S,0,, in the presence of TiO,. Compared to the PANI coat-
ing, the composite coating exhibited more effective protection perfor-
mance as a coating for the ZM 21 alloy. In another research, Guo et al.
[123] applied a composite coating of PPy/ZnO to protect biodegradable
Mg alloys for orthopedic implant applications. Results indicated the im-
proved corrosion protection, antibacterial property, as well as cytocom-
patibility of the composite coating suggesting it as proper material for
orthopedic implants.

Wang et al. [124] presented the corrosion protection performance
of composite coatings based on PANI and coal. PANI/coal powder was
synthesized by in situ polymerization, the coatings were composed of
epoxy, and PANI/coal was deposited on the surfaces of Mg alloys. A
significant decrease in the corrosion rate and corrosion current density
of the PANI/coal coatings was observed suggesting that the coating is a

Table 2.
Research reports on using CCPs for corrosion protection of Mg and its alloys
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Fig. 4. Corrosion mechanism of braec Mg and CP-coated Mg.

promising candidate for the enhancement of corrosion resistance of Mg
alloys in aggressive environments. In a research study by Li et al. [125],
a PPy/V, O, composite film was deposited on magnesium by mild vapor
phase polymerization (VPP) technique. Corrosion investigations in 3.5
wt% NaCl revealed that the prepared composite film reduced the corro-
sion rate of Mg. The VPP method was offered as a technique with great
potential to synthesize CP-based coating for the protection of reactive
metals. Table 2 summarized research investigation on using CCPs for
corrosion protection of Mg-based substrates.

5.3. CCPs coated on alumnum and its alloys

Al is an important metal due to its high technological value and its
application in the household and aerospace industries [134-137]. Al-

Authors CPs Additive Coating technique Medium Corrosion behavior
Najibzad et al. PANI Praseodymium Dip coating NaCl The improvement in the Performance was observed with épplying
(2020) [126] 2000 ppm concentration compared to other concentrations.
Guo et al. (2020 Cyclic voltammet
¢ ) PPy ZnO, Y . R NaCl An increase in the resistance of the corrosion was observed.
[123] technique
Jothi et al. (2020) . .. The coating exhibited good performance in providing the corrosion
PPy Gelatin Electrodeposition NaCl .
[127] resistance of AZ31.
Samadi et al The composite of PANI/Pr31 that exhibits anti-corrosion behavior
amadi et al.
(2020) [128] PANI Praseodymium Electrochemical methods NaCl can be used as environmentally-friendly and non-toxic corrosion
protective coating.
Li et al. (2020) PP e Vapor phase polymeriza- NaCl For the synthesis of the protective coating of CPs on reactive metals,
a
[125] Y 203 tion (VPP) the method of mild VPP may be effective.
Maurya et al. Incorporation as pigments The amount of the resistance value >10° Q cm? was estimated using
PANI Graphene R K NaCl . .
(2019) [129] in epoxy resin the composite coatings.
Yufene Li et al For the Mg-Li alloy, the good resistance was obtained with the coat-
ufeng Li et al.
(2015) [130] PANI Sio, Electrochemical methods NaCl ing and the density of the corrosion current and impedance value was
6.7x107 A cm? and 5%10* Q cm?, respectively.
Gao et al. (2018) . The improvement was observed with the PANI-PhA addition because
PANI - Electrochemical methods NaCl . .
[131] of the synergistic effect of silane, PhA, and PANIL.
W tal. (2017
ang ?1;4]( ) PANI Coal Electrodeposition NaCl This sample exhibited excellent resistance to corrosion.
. . The observed improvement in the corrosion behavior of the PPy
Saremi et al. NaF and polyeth- Cyclic voltammetry . . . .
PPy . NaCl coating with PEG and NaF was due to the inhibition fluoride effect,
(2016) [132] ylene glycol (PEG) technique L. . . .
which is considered a barrier for magnesium alloys.
In the solution of 3.0 wt% NaCl, the coating of PANI-SiO, showed
Chen et al. (2010) . . . . . . N
[133] PANI Sio, Electrochemical methods NaCl better performance in keeping the potential values in the noble poten-
tial compared to the coating of pure epoxy.
Sathiyanarayanan. PANI Tio Electrodeposition NaCl For the protection of the Mg ZM 21 alloy, the composite coating was

(2007) [122] 2

better than Polyaniline coating.
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Table 3.

Research reports on using CCPs for corrosion protection of Al and its alloys

Authors CPs Additives Coating technique Medium Corrosion behavior
The improvement in the electrochemical potential was
Tomaev et al. PPy . . . . . . .
(2019) [146] Aluminum Oxide Galvanostatic H,SO, obtained by PP coating, and the incensement in the
surface impedance was provided by oxide coating.
For the corrosion protection of the Al in aircraft infra-
Kumar et al. . . . .
(2017) [147] PPy CeO, Galvanostatic NaCl structures, the nanocomposites of PPy with nanoparti-
cles of CeO, could be effective.
Hosseini et al An excellent improvement in the corrosion protection
osseini et al.
(2017) [144] PPy TiO,, Mn,0O, and ZnO  Cyclic voltammetry technique oxalic acid was observed by applying the synthesized polypyrrole
with nanoparticles of TiO,.
. The barrier effect increased with the nanoparticles of
Hussein et al. . . . .
PANI/ . . . . . NiLa oxide. Also, the reaction of oxygen reduction
(2016) [143] CNT and Ni,LaO, Cyclic voltammetry technique oxalic acid . R .
PPy ? catalyzed by these particles led to improving the Al
passive state.
Ates et al. (2015) PANI . . The nanocomposite film of PANI/Ag exhibited the
TiO,, Ag, and Zn Cyclic voltammetry method NaCl . . .
[148] highest efficiency of protection (PE = 97.54%).
According to the results, the efficiency of corrosion pro-
Ates et al. (2015) PANI/ . . L tection of the nanocomposites coated on the electrode
TiO, Cyclic voltammetry oxalic acid
[149] PPy ’ of A11050 was larger compared to PPy (94.9 %), PANI
(96.4 %), and uncoated A11050 electrodes.
. Due to the electronic properties and chain conforma-
Alvi etal. (2015) . . . . .
[150] PANI ZnO Cyclic voltammetry method HCI tion of the ZnO-PANI, it provided excellent protection
against corrosion for Al and steel.
] tal The composite coatings exhibited the reduction of dis-
ensen et al.
2014 [151] PPy Aluminum flake Electrochemical methods KCl1 solved oxygen over the scribe with no corrosion product
concomitant buildup.
Gupta et al. . The low corrosion amount was obtained with the coat-
PANI Lignosulfonate - NaCl . .
(2013) [152] ing of 5 wt% Pani-LGS/epoxy.
For the larger defect protection of the AA 2024-T3
Jadhav et al. . L. . Electrolyte . .
PPy Aluminum flake Incorporation in epoxy resin . substrate, the composite of the wire PPy/Al flake was
(2013) [153] solution .
effective.
Yan et al. (2013) L. . . The best performance of the protection was obtained by
PPy Al flake Incorporation in epoxy resin DHS solution . . . .
[142] doping the vanadate in the composite coating.
Shabani et al Using nanocomposite-coated compared to uncoated Al
abani et al.
(2011 [154] PANI Montmorillonite Electrosynthesis NaCl led to a decrease in the amount of the corrosion current
(i) from 6.55 pA cm™to 0.102 pA cm™.
Hosseini et al. . . Epoxy blend with polyaniline and MMT showed the
PANI Montmorillonite Electrochemical methods NaCl . : .
(2011) [134] highest corrosion protection for 100h.
Castagno et al. Montmorillonite . . The PPy/MT films with 1% clay provided good perfor-
PPy Electrochemical techniques NaCl . . .
(2010) [155] (MT) mance in the protection of corrosion for Al
Hosseini et al The coating provided good protection of Al corrosion
ini .
(2009) [156] PPy Montmorillonite Electrochemical methods NaCl with a combination of epoxyblend with MT and PPy
advantages.
With the incorporation of the NiZn ferrite/PANI par-
Wu et al. (2007) . . . . ticles, the denser configuration of the ormosil hybrids
PANI Silicate-NiZn ferrite  Electrochemical and salt-spray NaCl . .
[157] was obtained which could prevent the Al alloy substrate
corrosion.
Shah et al. (2001) PANI/ Galvanostatic and potentiostat- lic acid The low corrosion rates were observed in moderate to
- oxalic aci
[145] PPy ic technique high applied electrochemical current densities.

though on the surface of reactive metals such as Al, a thin oxide film
is formed protecting them from further corrosion, localized corrosion
occurs on the surface of Al when it is exposed to corrosive environments
containing complexing agents such as halides [138-141]. There have
been several studies regarding the deposition of CP-based coatings on
Al-based substrates to enhance their corrosion resistance. In a study by
Yan et al. [142], PPy was first deposited on Al flakes in the presence of
inhibiting dopants including vanadate, molybdate, or phosphate oxyan-
ions. Then, the modified Al flakes were added to an epoxy primer to
protect the AA 2024-T3 alloy. The composite coating showed good pro-
tection performance for the Al alloy through the mechanism of oxygen

scavenger protection provided by PPy in the composite coating.
Hussein et al. [143] used the cyclic voltammetry technique to deposit
PANI-NiLa and PPy-carbon nanotubes (CNTs) nanocomposite coating
on aluminum. The thermal stability of PPy was enhanced by the addition
of CNTs, while decreased in the presence of NiLa. The addition of CNTs
and NiLa particles improved the protection role and adhesion of the PPy
coating for aluminum. Compared to the PPy layer, the nanocomposite
coatings had higher protection property for Al in the NaCl solution. PPy-
NiLa nanocomposite coating demonstrated the highest corrosion protec-
tion. In another study by Hosseini et al. [144], ZnO, MnZOS, and TiOz,
nanoparticles were dispersed in PPy by in-situ electropolymerization to
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protect Al electrodes. It was found that the corrosion resistance of the
nanocomposites was higher than that of bare PPy in harsh environments.
The PPy/TiO, composite coating exhibited a remarkable improvement
in corrosion protection. The great enhancement of protection properties
was reported to be due to the high surface area of nano-additives for
the dopant release, charge transport prevention by the TiO, nanoparti-
cles, redox properties of PPy together with increased barrier effect to
diffusion.

Kunal et al. [145] coated Al-2024-T3 substrate with PPy, PANI, and
PPy/PANI composites via potentiostatic and galvanostatic techniques.
Results showed that the corrosion rate reduction in the presence of
CPs was about three orders of magnitude. Deposition time and applied
current density as electrochemical processing variables were found to
noticeably affect the corrosion behavior of the coated substrate so that
low corrosion rates were achieved by applying moderate to high current
densities. Table 3 summarized research investigation on using CCPs for
corrosion protection of Al-based substrates.

5.4. CCPs coated on copper and its alloys

Cu is used in industrial and technological applications on a large
scale because of its outstanding processability, thermal and electrical
conductivity, wear and shock resistance, and ductility. Cu is the best
selection for integrates circuits, especially microprocessors due to its
improved electromigration performance as well as low resistivity [158-
162]. Under neutral pH conditions, protective oxide or hydroxide layers
form on the surface of Cu substrates [163-167]. In chloride-containing
environments, the copper corrosion process and the protective layer for-
mation are more complex [168, 169]. In oxidative environments, the

mechanism of corrosion for copper involves the electrochemical reduc-

Table 4.
Research reports on using CCPs for corrosion protection of Cu and its alloys

tion of water and oxygen at local cathodic zones and the dissolution of
Cu at local anodic zones. The rates of reduction and dissolution reac-
tions are slowed down by the formation of the protective film formation,
and the diffusion rate of Cu chloride ions into the chloride solution influ-
ences the rate of these reactions. However, the diffusion and reduction
of corrosive species like oxygen cannot be prohibited by the oxides or
hydroxide layers [170, 171].

The enhancement of the corrosion resistance of copper has been an
attractive topic for researchers [172, 173]. Applying CPs on copper sub-
strates and their corrosion behaviors have been reported in the literature
[174-182]. Beikmohammadi et al. [37] used the in situ electropolymer-
ization technique to deposit PPy/TiO, composite coating on copper elec-
trodes. It was proved that the addition of TiO, nanoparticles promoted
the corrosion protection behavior of the coating compared to bare PPy in
a harsh environment. As reported for the similar coatings for other met-
als, an increment of barrier to diffusion, charge transport prevention by
the TiO, particles, high surface area of the titanium oxide nanoparticles
for the dopant liberation, as well as redox properties of polypyrrole are
responsible for the improvement.

Pan et al. [183] used Cu as substrate and electrochemically synthe-
sized the conductive composite coating consisting of an outer PANI lay-
er and an inner PPy layer. They found that the corrosion potential of Cu
substrate increased via both the single PPy coating and the bilayered
PPy/PANI. In addition, the corrosion current density decreased by an
order of magnitude compared to uncoated Cu substrate. They also eval-
uated the Long-term protection of the coatings. It was shown that the
PPy/PANI bilayer coating was better than the single polypyrrole coating
that can be an effective physical barrier for inhibiting the penetration of
corrosive species.

In another study, Cakmakci et al. [184] fabricated the poly(pyrrole)/

Authors CPs Additive Coating technique Medium Corrosion behavior
. The coating containing the nanoparticles of PANI-Ag
. X X Electrochemical o . . .
Badi et al. (2020) [94] PANI Silver nanoparticles HCl exhibited corrosion protection for 6061 Al alloys used in
solar panel frames.
. . The composite film exhibited good performance in
Benzotriazole (BTA) or/ Cyclic voltammetry . . . e
PPy . . NaCl corrosion protection due to the synergetic effect of silica
Wan et al (2019) [189] and silica technique . . . .
physical barrier and BTA active protection.
. Nanoparticles of TiO, exhibited good performance in the
. . . Cyclic voltammetry . ;
Beikmohammadi et al. (2018) PPy TiO, techni NaCl improvement of polypyrrole films for the protection of
echnique
[37] d copper.
The number of polymer pores decreased and the nano-
Cyclic voltammetry composite morphology after immersion in NaCl solution
. PPy Graphene . H,SO, . .
Jafari et al. (2016) [190] technique at a concentration of 5000 ppm for 2 hours, remained
constant and unchanged.
By using this coating the corrosion current density
Shabani et al. (2015) [191] PPy Zeolite Electrodeposition NaCl declined and reached 0.34 pA cm 2 and also the potential
of corrosion shifted from —0.314 V to —0.141 V.
Pan et al. (2015) [183] PPy/ . Cyclic Voltamme?ric and acidic medium The'PPy/PANI bilayered coating provided better Protec—
PANI galvanostatic tion for the copper substrate than the PPy coating.
High tection of i btained by usi
Multi-walled carbon Cyclic voltammetry 1gher protee 10“,0 corroston wz'is © 'ame Y using
X PPy . NaCl the nanocomposite of PPy/functionalized MWCNT
Davoodi et al. (2015) [192] nanotubes technique
compared to PPy/MWCNT.
Dhibar et al. (2013) [193] PANI B Electrochemical Hel The promising eAlectroc.hemical properties were exhibited
methods with doping of 2 wt% PANL
Th tection d for electrodes of
Ozkazanc etal. (2013)[209] PPy Zinc and nickel Electrodeposited H,SO, ¢ protection degree for electrodes of copper was
enhanced.
K. Wu et al. (2009) [93] PANI Silicate/carbon black Electrochemical NaCl The resistance of corrosion and barrier properties were

methods

enhanced by using the system of PANI/CB.
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poly(N methyl pyrrole) bilayer and poly(pyrrole-co-N-methyl pyrrole)
copolymer composites via electrochemical synthesis. They applied them
on Cu substrate through cyclic voltammetry from an aqueous solution of
0.1 M monomer and 0.3 M oxalic acid. They suggested that the mono-
mer feed ratio strongly affects the performance of coatings, in which the
most protective property was illustrated by copolymer fabricated with
8:2 concentration ratio. Electrochemical impedance spectroscopy and
anodic polarization using 0.1 M H,SO, solution were employed to eval-
uate the corrosion behavior of polymer composites. They implied that
the bilayer and copolymer coatings had a higher protection effect than
that of single PPy coatings.

Branzoi et al. [185] investigated the electropolymerized monolayer
poly (N, N’ dimethylaniline) (PNDMA), bilayer PNDMA/PANI, poly-
aniline (PANI), PANI/PNDMA coatings on Cu substrate.

They found that good corrosion protection was obtained by PND-
MA-SDS/PANI coatings in aggressive media. In addition, better corro-
sion inhibition efficiencies were observed for bilayer coatings.

Singh et al. [186] used electrophoretic deposition (EPD), as a less
time-consuming, inexpensive, and fairly facile method, to fabricate hy-
drophobic graphene oxide-polymer composite (GOPC) on copper. The
efficacy of the coating under stringent environmental conditions was in-
vestigated via EIS and potentiodynamic polarization investigation. They
implied that electrochemical degradation of the bare copper substrate
was three orders of magnitude higher than GOPC coating. They realized
that the GOPC coatings were impermeable to ion diffusion of corrosive
liquid solution and oxidizing gas.

In another study, Kim et al. [187] fabricated graphene/polysiloxane
(PSX) nanocomposite films possessing superior corrosion protection,
high electrical, and dual function. A facile bar coating method using a
metering rod was employed for the better in-plane ordering of filler net-
works in the coating. It was found that PSX-G composite coating films
improved the charge transfer resistance dramatically (20,000%), high-
er electrical conductivity (1700 Sm™), and decreased rate of corrosion
(1/40 th). This was due to complementary effects between the covering
agent of graphene defects and inorganic polymer matrix as the anticor-
rosive layer as well as graphene conductive filler. They implied that the
system could be potentially employed in industrial fields including en-
ergy storage systems, electromagnetic shielding (EMI), and anti-icing.

Singh et al. [188] applied a cathodic electrophoretic deposition
(EPD) technique to fabricate anticorrosive graphene reinforced com-
posite coating. They implied that the Cu substrate became resistant to
electrochemical degradation by applying the composite coating. In this
regard, the Tafel analysis showed that composite coating reduced the
corrosion rate about an order of magnitude lower than that of bare sub-
strate. Table 4 summarizes the studies focusing on the application of
CCPs for corrosion protection of steel, Cu, Al, and Mg.

6. Conclusions and future insights

CCPs have been widely investigated for the protection of metal sub-
strates such as steel, Al, Cu, and Mg. PANI, PPy, and PTh are common
conducting polymers that have been developed as protective coatings
for metals. Composite conducting polymers have been prepared with the
incorporation of different components such as ZnO,, TiO,, NiLa, Mn,O,,
etc. Corrosion inhibiting and anodic protection is the most important
contributing mechanisms to the reduction of the corrosion rate of metals.
It has been demonstrated that CCPs have superior corrosion protection
properties than do conducting polymer coatings. This is the result of
the high surface area of nano-additives for the dopant release, and the
promotion of barrier effect against diffusion. It is expected that in future
investigations, a variety of reinforcements will be at the center of atten-
tion and more focus will be placed on the application of CCPs on other

metallic substrates and in different fields. Moreover, since the protection
against corrosion by CPs is mostly based on the mechanism of anodic
protection, the stabilization of the passive oxide film under the polymer
coating and inhibition of the aggressive anions from penetration into the
polymer film must be carefully considered.
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