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ABSTRACT ARTICLEINFORMATION

Drug delivery is known as the administration of drugs using suitable vehicle for achieving effective treatment Article history:
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as zinc oxides and Zn-containing composites, can be considered as viable platforms for some biomedical uses,
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1. Introduction

Drug delivery systems are designed for the administration of a phar-
maceutical compound to promote its therapeutic effects in the animal
or human body with minimum side effects [1, 2]. Through extensive
studies on animals and humans, our understanding of pharmacodynam-
ics and pharmacokinetic fundamentals has been improved widely. Based
on these improvements, several attempts have been implied to improve
drug effects in treatment. As a result of these attempts, controlled-release
technology is developed, for instance, sustained release drug delivery
systems, targeted drug delivery systems, on-demand drug delivery sys-
tems, etc. Such systems include tablets, capsules, liposomes, nanoparti-
cles, hydrogels, microneedles and other medical devices [3, 4].

In the past few years, a wide range of composites has been devel-
oped and evaluated for different biomedical applications such as cardiac
prosthesis, tissue engineering, and drug delivery [5-9]. For instance, for
delivering a drug to the intestines, the structure of the composite should
include an acid-resistant fatty acid surface covering the interlayers of
lactate dehydrogenase (LDH) [10-12]. In recent years, there has been a
great interest in the development of bioactive mesoporous materials for
drug delivery and bone repair owing to their high pore volume as well
as specific surface area. In this regard, a variety of bioactive mesoporous
materials have been studied including mesoporous amorphous calcium
silicate [13], silica-hydroxyapatite (HAp) composite [14], silica with
different pore sizes [15], and CaO-SiO,-P,O, bioactive glasses [16-19].

Zinc is the second most abundant trace element found in our body
[20, 21], 85% of which is stored in the bone and muscle [22]. It has
been estimated that the zinc amount in our bone is between 110 to 300
mg/kg [23]. The combination of multifunctional properties of zinc and
high bioactivity of HAp yields attractive characteristics for biomedical
applications [24]. Zn has been termed ‘calcium of the twenty-first centu-
ry’ [25]. Intrinsic physiological relevance, pro-regeneration properties,
biocompatibility, and biodegradability of Zn has resulted in the emer-
gence of Zinc-based degradable biomaterials [25]. Zn metal-organic
frameworks (MOFs), Zn ceramic nanomaterials, and metallic Zn alloys
are common Zn-based biomaterials [25, 26]. In the field of drug delivery
systems, nanoparticles (NPs) have exhibited prospective performance
resulting from facile synthesis and incorporation, high surface area, and
high stability, making them suitable for targeting specific cell types and
controlling drug release within various microenvironments [27]. PH-re-
sponsive drug carriers such as ZnS and ZnO nanoparticles can target tu-
mor cells because the pH values of these cells are noticeably lower than
those of normal cells [28, 29]. Nanocomposites are preferred materials
for drug delivery due to their adsorption [29].

Mg alloys have attracted great interest among different biodegrad-
able materials owing to their biosafety and desirable mechanical prop-
erties [30-32]. Several studies have concentrated on the application of
magnesium alloys for temporary cardiovascular stents [33-40]. Further-
more, drug-eluting stents (DESs) have been developed after success-
fully placing temporary Mg-based cardiovascular stents into a preterm
baby’s left pulmonary artery [41]. Recently, some Mg alloy-based DESs,
such as DREAMS and DREAMS 2G, have been developed, which have
lower degradation rate compared to the bare Mg stent and release anti-
proliferative drug including paclitaxel or rapamycin. The BIOSOLVE-I
and BIOSOLVE-II clinical trials of these stents were reported to be suc-
cessful and no obvious scaffold thrombosis or death was observed, indi-
cating optimal efficacy and biosafety [34, 40, 42]. The mentioned merits
of biodegradable Mg-based alloys have encouraged researchers to in-
vestigate porous magnesium-based composites that offer higher fracture
toughness as well as compressive strength for bone tissue engineering

applications [43, 44]. Mg-based composite scaffolds have also shown

favorable drug release profiles appropriate for bone infection treatment
[45].

The objective of this paper is to review the progress and development
of Mg and Zn-containing composites for drug delivery, their synthesis
methods, mechanisms, and current challenges and future developments.

2. Drug delivery system

Controlled drug delivery systems (DDSs) are known as formulations
or devices that can transport therapeutic agents in the body for their ac-
tion at specific site, at desired rate, for specific time, and release of the
drugs to the target location [46-48]. Therefore, these systems act as an
interface between the drug and the patient and help us to develop person-
alized medicine including pharmaco proteomics, pharmacometrics, and
pharmacogenomics. In addition to active pharmaceutical components,
an improved delivery process provides a suitable pharmaceutical formu-
lation containing a variety of inactive constituents [49, 50]. Any disease
is treated by the specific concentration of therapeutic drugs in plasma
with a special regimen [51], which is achieved by a specific drug dose
taken at a particular interval in conventional drug therapy. The intervals
and the dose of the drug are regulated only based on the half-life and
therapeutic index of the drug. In general, fluctuations occur inevitably
due to missed dose of the drug, improper patient compliance, over med-
ication or under medication. In order for the drug to be released with an
effective therapeutic concentration in a controlled release system, a defi-
nite drug release kinetics is required to be followed which is achieved
through controlled drug delivery systems [52, 53].

The administration route also influences drug bioavailability. Vari-
ous administration routes namely, parenteral (subcutaneous, intramus-
cular, and intravenous) or enteral (ocular, nasal, oral, or transmucosal)
can influence the drug bioavailability by altering the biological barrier
numbers a drug should cross or by altering the drug exposure to meta-
bolic and pumping mechanisms [54, 55]. To overcome these limitations,
it is required to use existing drug effectively and safely using concepts
and techniques contributing to controlled/sustained and targeted drug
delivery systems. Moreover, the attempts towards overcoming negative
aspects of conventional drug delivery that are formed by compression of
tablets, coating, and encapsulating bioactive drug molecules have result-
ed in technological advancements in drug delivery systems and revolu-
tion in medication methods [50, 56]. In this regard, computational simu-
lations have also provided a unique insight into the mechanisms of drug
diffusion and adsorption in porous carriers at the atomic level [57-60].

3. Composites in drug delivery

In recent decades, noticeable advancements have been observed in
the design of chemotherapeutics. However, most chemotherapeutics
have some limiting drawbacks such as high cytotoxicity, nonspecific
and uncontrolled delivery, high drug dosing, lower solubility, poor ab-
sorption, and high side effects [61, 62]. Therefore, it is needed to de-
velop ideal drug delivery systems with some particular properties such
as biodegradability, biocompatibility, high drug loading capacity, and
capability of drug release in a controlled way. In recent years, different
drug delivery systems have been designed to address these parameters
including dendrimer, liposomes, and polymers nanoparticles; however,
they cannot address the mentioned factors independently [63-66].

The expected characteristics of an ideal drug delivery system could
be provided by metal substrate composites. A composite system can of-
fer some advantages like controlled drug release over a long time, sta-
bility improvement of drug delivery system, and drug bioactivity preser-
vation in polymeric-based technology. Furthermore, in comparison with

pure liposome, dendrimer, and polymeric-based systems, this integrated
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system may increase the delivery efficacy [67, 68].

4. Composites containing Mg and Zn in drug delivery
4.1 Zinc and composites containing Zn in drug delivery

Owing to better biocompatibility as well as in vivo biodegrada-
tion rate for tissue therapy and regeneration, zinc is considered a pre-
ferred candidate for biodegradable metallic materials over Fe and Mg.
The emerging theranostics field, such as drug delivery, cancer therapy,
bioimaging, and tissue targeting, have extensively benefited from zinc-
based ceramic nanomaterials [69, 70]. These ceramics possess sever-
al promising characteristics including a high surface-to-volume ratio,
pH-responsive nanostructure, good biocompatibility, antibacterial ac-
tivity, and photoluminescence [71]. Organic biomaterials based on Zn,
mainly MOFs, are also promising materials for bioimaging, drug de-
livery, and cancer therapy due to pH responsiveness as well as large
surface/volume ratios [25].

In mesoporous silica nanoparticles (MSNs), the ZnS and ZnO quan-
tum dots, or nanoparticles, are incorporated to cover pores as a compo-
nent in nanocomposites or cappers [25, 72-74]. In addition, ZnO can
exhibit various nanostructures such as nanobels, nano rods, nano disks,
nano sheets, nano spheres, quantum dots, etc. It can also be modified to
provide excellent properties as a nanocomposite. The US Food and Drug
Administration introduced ZnO as one of the safe metal oxides [75, 76].
Moreover, its high energy of excitation-binding around 60 meV, as well
as its the wide spot gap around 3.37 eV, add positive properties to its
long list of attractive features. Regarding the rewarding properties of
ZnO together with its low cost, nanomaterials based on this metal oxide
attracted attention in applications related to biomedicine [28, 77]. Fur-
thermore, ZnO nanomaterials exhibit a high capacity of drug loading,
have good biodegradability, and can be synthesized through different
routes, making them prospective materials for drug delivery. Not only
ZnO-based nanocarriers have been fabricated into various forms of
nanostructures to deliver drugs to target sites but also they have designed
to release the drugs in a controlled manner in response to the pathophys-
iological conditions [78, 79].
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4.2. Magnesium and composites containing Mg in drug delivery

Mg, as one of the important elements in bone tissue and body flu-
ids, has some key roles in the improvement of bone mineral density,
reduction of bone fragility, and enhancement of the growth and adhe-
sion of osteoblast cells leading to bony tissue development [31, 80, 81].
Because of the excellent biocompatibility, bioactivity, and mechanical
properties of Mg-based biomaterials, they have been considered for lo-
cal drug delivery systems as well as bone regeneration materials. These
systems include forsterite (Mg,SiO,) [82], calcium phosphate bone ce-
ments doped by Mg [83, 84], magnesium-containing bioactive glasses,
etc. [85]. To make biomaterials suitable for bone repair, they are pre-
ferred to exhibit a controllable drug delivery capacity in addition to
bioactivity [86, 87]. The Mg alloy surface can be treated by bioactive
agents to become suitable for this kind of application. Local drug release
strategies have several advantages over traditional systemic drug deliv-
ery including avoiding systemic drug exposure as well as using a lower
amount of drugs [88]. Until now, some drug release orthopedic implants
based on Mg alloys have been reported containing antibiotics, e.g. anti-
microbial peptide [89, 90], gentamicin [91], or gentamicin sulfate [92].
Magnesium alloy implants commonly suffer from an easy infection re-
lated to implantation along with the high rate of degradation. Dong et al
[89] fabricated a surface drug delivery system based on Mg/Epoxy res-
in-ZnO/Polycaprolactone (PCL)-Ibuprofen using a dip coating method
followed by spraying. It was suggested that the composite coating could
be a promising alternative for biodegradable Mg-based drug delivery
and implant applications.

5. Synthesis methods of composites containing Mg and
Zn

5.1. Electrospinning method

In order to fabricate composite with well chemical composition and
controlled morphology, many advanced methods have been employed.
Meanwhile, electrospinning is considered the simplest and most adapt-
able technique. The fabrication of composites can easily be prepared via
the electrospinning technique; however, the only restriction is that the
second phase should be well dispersed or soluble in the primary solu-
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Fig. 1. Schematic illustration of composites containing bioactive agents by (a) blend, (b) coaxial, and (c) emulsion electrospinning.
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tion. This technique has been developed approximately for a century and
can be considered as sub-branches of the electrospray process [93-95].
During the electrospinning process, the elongation of the liquid drop oc-
curs by increasing the electric field. A conical shape of the liquid drop is
created by achieving a balance between the induced charge distribution
on the drop surface and the liquid surface tension. The process is shown
schematically in Fig. 1.

In the case of electrospinning, the fundamental setup is easily con-
trolled and very simple. Mainly, it consists of an electrically conductive
collector (an aluminum foil or silicon part), a high-voltage power sup-
ply, and a spinneret, however, all of these segments are not essential
[96]. Therefore, to produce fibers instead of droplets, a number of pro-
cessing parameters must be optimized actually e.g. fibers, droplets, or
a beaded structure that depends on the different processing parameters,
such as distance between collector and source [97].

5.2. Solvothermal technique

Another synthesis method for the composites is the solvothermal
technique. The general procedure is similar to the hydrothermal tech-
nique, but organic solvents are utilized instead of water in the solvo-
thermal method [98-100][96]. Through this technique, a transformation
or chemical reaction occurs under supercritical temperature and pres-
sure in an organic solvent such as toluene [101], 1, 4 butanol [102], and
methanol [103]. To make the final material crystallized, it is required to
perform a subsequent thermal treatment [104].

5.3. Co-precipitation method

A commonly used technique for the fabrication of layered double
hydroxides (LDHs) and similar materials for drug delivery applications
is co-precipitation [105-107]. For all co-precipitation variations, similar
materials are required for initiation. The starting materials are composed
of similar starting materials: 1) a divalent cation soluble source for the
formation of the layers; 2) a trivalent cation soluble source for the for-
mation of the layers; 3) a soluble ionic compound such as sodium nitrate
and sodium carbonate as a source of interlayer anions; 4) a strong base
including sodium hydroxide, urea, ammonia, and potassium hydroxide
to cause LDH precipitation [105, 108, 109].

5.4. Sol-gel method

The sol-gel technique is an extensively used method to synthesize
highly pure and homogeny products [93, 110, 111]. Depending on the
homogeneity degree of the gel, two types of the sol-gel method are
known: monophasic and diphasic. In case metal ions are dispersed at

the atomic level, it is called a monophasic gel, while in diphasic one,

Fig. 2. Free-radical polymeriza-
tion technique for the nanostruc-
tured hydrogel preparation.
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the homogeneity scale is in the range of 1-100 nm [112]. The hybrid gel
is a combination of monophasic and diphasic gels [113, 114]. The final
material properties are determined by the rate of hydrolysis and conden-
sation in the sol-gel process, which is dependent on different factors.
These factors include starting materials, inorganic and organic additive
addition, pH, water content, etc. [114, 115]. Recent developments in the
sol-gel process have made it possible to embed organic compounds as
well as other modified inorganic oxides in SiO, and also to control the
release of these compounds from the matrix into the medium [116, 117].
Despite the remarkable advantages of these sol-gel carrier systems, they
are not widely known for drug delivery applications. The sol-gel method
is facile and versatile; the starting materials are inexpensive, inert, stable
to heat and light, and benign for the environment or humans [118-121].

5.5. Water-in-oil-in-water (w/o/w) double emulsion method

According to Sahoo et al. [122] and Jaraswekin et al. [123], the
most popular method for the preparation of poly(lactic-co-glycolic acid)
(PLGA) microparticles (MP) or microsphere (MS) is the solvent evap-
oration method. In this technique, elevated temperatures or agents for
inducing phase separation are not needed, and sterile microcapsules can
also be produced by scaling up microencapsulation (ME) [124, 125].
Based on the drug state in the polymer solution and the dispersion me-
dium, the emulsion method is categorized into oil-in-water (o/w), water-
in-oil (w/0), and water-in-oil-in-water (w/o/w) double emulsion meth-
ods [126, 127]. Among the methods used for MS preparation, the w/o/w
solvent evaporation is the most commonly practiced technique [128]. In
order to provide the controlled drug release, degradation protection of
the drugs, and alleviating adverse effects of the drugs in the body, phar-
maceutical industries extensively use w/o/w by evaporation removal of
the emulsion solvent technique [129, 130]. In this method, to internalize
the active ingredient efficiently, the stability of the primary emulsion is
considered to be a critical factor [131]. Low encapsulation efficiency is
the result of unstable primary emulsion [132, 133].

5.6. Microemulsion method

The microemulsion method is employed for the preparation of high-
T, oxide of YBa,Cu,0,, nanocrystalline Al,O,, TiO,, Fe,O,, colloidal
metals, colloidal AgCl, and colloidal Fe,O, [134, 135]. Microemulsions
consist of at least three components including a surfactant, a nonpolar
phase (usually oil), and a polar phase (usually water). Microemulsions
are thermodynamically stable solutions, isotropic, and macroscopically
homogeneous. The polar and the non-polar regions are separated by an
interfacial film formed by the surfactant molecules [136]. This meth-
od shows some significant advantages such as thermodynamic stability,
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nanoparticle monodispersity, large interfacial area, and ultralow inter-
facial tension [137, 138]. Microemulsion has attracted attention in the
preparation of nanoparticles mainly due to the versatility of microemul-
sion systems like the very small droplet size production, cost-effective-
ness [139-141], simple procedure, and mild reaction conditions [142,
143].

5.7. Free radical polymerization method

In bioprinting, free radical polymerization is frequently utilized for
the creation of cross-linked hydrogels [144]. Through using thermal or
photo-initiator or redox reaction, polymerization of a polymer consisting
of vinyl groups occurs leading to the formation of a hydrogel. This meth-
od is not a suitable technique for the fabrication of end-functional poly-
mers. On the other hand, the situation has changed by the emergence of
living radical polymerization, so that the production of end-functional
polymers is also possible using this technique. Free radical polymeriza-
tion is employed to synthesize composites containing polymers, metal,
and metal oxide used in the drug delivery systems [145]. The processing
steps are presented in Fig. 2.

5.8. Microwave radiation method

As a result of several rewarding properties of microwave stimula-
tion including controllable operability, deep tissue penetration, and good
thermal efficiency, it is being increasingly used in numerous smart drug
delivery investigations [146]. Microwave is composed of both magnetic
and electrical components with high-frequency radiation in the range
of 300 MHz-300 GHz [147]. By the use of the electromagnetic and/
or heating elements of the microwave, drug delivery systems can be
processed and modified. The introduction of microwave radiation can
be carried out directly onto the pre-formed products and/or upon the
dosage form preparation. Furthermore, the microwave can be used in
the excipients processing before using them in the drug formulation in
delivery systems [148].

Qiu et al. [149] designed a microwave-sensitive drug microcarrier
based on Fe,0,@ZnO@mGd,O,: Eu nanoparticles using poly [(N-iso-
propyl acrylamide)-co-(methacrylic acid)] as the microwave stimulus
gate-keeper. By using a short-time high-frequency microwave device,
it is possible to avoid the bulk heating, therefore, the construction of
drug delivery systems based on MSN responsive to microwave radia-
tion is feasible [150]. Shi et al. [146] fabricated NPs for drug delivery
based on a doped ZnO@Fe,0, core surrounded by a mesoporous silica
shell. The silica shell was used due to its large pore volume and good
biocompatibility, while the core exhibited high-performance microwave
absorbance.

5.9. In-situ gelling procedure

The in-situ gel forming polymeric systems have been extensively
studied as carriers for sustained drug delivery. Before administration in
the body, these vehicles are in the form of sol or suspension and after
administration, they undergo in-situ gelation [151-153]. In the formula-
tion of these systems, a gelling agent is used to form a stable suspension/
sol system containing dispersed drugs and other excipients. Due to the
pH change in the gastric environment, the gelation of the sol/suspen-
sion system is triggered. The adopted formulation is a sodium alginate
solution or gellan gum containing sodium citrate and calcium chloride,
in which the free calcium ions turn into complexes and released only
in the stomach acidic environment. Sodium alginate/gellan gum acts
as a gelling agent producing textures in the final product, which can
be in the form of hard, brittle, non-elastic gels of fluid gels [153-155].
Ca ions entrapped in sodium alginate or gellan gum polymeric chains
enable polymer chains crosslinking to form matrix structure. In the ge-

lation process, double-helical junction domains are first formed, then,
these domains are re-aggregated forming a three-dimensional network
by hydrogen bonding with water and complexing with cations [156,
157]. Some advances in the field of in-situ gelling include: overcoming
the problem of poor conventional ophthalmic solution bioavailability
by using gel drops that are instilled into eyes; increasing drug contact
time at the maximum absorption site; reducing systemic drug absorption
through the nasolacrimal duct and the resulting side effects; reducing the
frequency of administration, and drug delivery with narrow windows
of absorption in the small intestinal zone. Gastro-retentive drug delivery
systems are beneficial for drugs that are absorbed through the stomach
such as ferrous salts and also for the ones that are used for local treat-
ment in the stomach and peptic ulcer disease treatment (e.g. antacids)
[158-160].

6. Drug delivery mechanisms of composites containing
Mg and Zn

There are slightly different ways for the definition of the term “re-
lease mechanism”. It has been used for describing the process that deter-
mines the rate of release and also for describing the procedure through
which drug molecules are released or transported. A number of process-
es or mechanisms have been demonstrated to be rate-controlling in drug
release [161]. In recent years, the development of novel approaches for
designing new controlled-release drug delivery systems has been at the
center of attention [162]. The traditional drug delivery system works in a
way that causes a rapid increase in the drug dosage in the blood follow-
ing by a drop in the dosage [163, 164]. Drug plasma levels are described
as under level and overhead, which are inefficient and toxic, respectively
[165]. In an ideal drug delivery system, a suitable drug concentration
should be transmitted to targeting sites while keeping other tissues safe
[166, 167].The following two formulas (Eq. 1and Eq. 2) are used for the
calculation of the levels of loaded and released drug [166]:

the amount of drug (g) 100

. . o) —
Drug loading of carrier (wt%) the amount of nanohybride and drug (g) -

weight of drug inasample 00

OR  %Drug loading = weight of sample taken ()

the amount of released drug (g) +100 (2)

%Drug release =
o 9 the amount of loaded drug (g)

The efficiency of drug encapsulation can be determined according
to Eq.(3) [168]:

Initial drug weight—Drug weight in supernatan
g e L x100 (3)
Initial drug weight

Encapsulation ef ficiency(%) =

The drug release of nanocomposite has been studied in the literature
using mathematical models [169]. Eq.4 can determine the sample liquid
uptake:

M, =K )

where, K and n are constants. By using the mechanism of drug re-
lease, the following power law equation is obtained:

M,/M, =Kt* )
where, the drug released fraction at time t and equilibrium is represented
by M, and M_, respectively. The characteristic of the drug and the sam-
ples determines the value of K and the diffusion exponent of n is used
for the characterization of the drug release mechanism. The values of
‘k’ and ‘n” are obtained by calculating the intercept and slope of the plot
between M/M_ [170].

Das et al. [171] designed a colon-specific drug carrier based on Zn/
pectin/chitosan composite microparticles. By studying the drug release,
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Fig. 3. Hydrogel beads containing ZnO NPs for the drug delivery application.

the formulation was optimized. The drug release pattern was shown to
be significantly affected by formulation parameters. It was reported that
the specific content of the colon-specific drug could be loaded without
hampering its behavior. Results showed high encapsulation efficiency
and stability of the drug in the formulation during storage time. Further-
more, in vivo drug release was observed from the optimized composite
particle formulation in rats. Company et al. [172] developed a novel
composite of zinc oxide nanoparticles and citric acid-based polyester
elastomer (POC—ZnO). Results indicated that the original concentration
of NPs in the composites affected the ZnO release kinetics for 15 days.
Among all composites, POC-ZnO 5% was reported to have the zero-or-
der release kinetics.

7. The state-of-the-art of composites containing Zn and
Mg in drug delivery

Dodero et al. [173] used an electrospinning technique to embed
ZnO nanoparticles within alginate-based nanofibrous membranes. In
order to combine ZnO nanoparticle with the polymer through electro-
spinning, it is preferred to use medium-molecular-mass alginates with a
low mannuronic and guluronic acid residues (M/G) ratio or low-molec-
ular-mass alginates with a high M/G ratio. Composite scaffolds based
on ZnO-polyetherimide (ZnO/PEI) with antibacterial activity were
also developed by the electrospinning process [174]. The effectiveness
of the developed scaffolds was reported by positive responses against
gram-negative (Escherichia coli) bacteria as well as gram-positive
(Staphylococcus aureus).

Javanbakht et al. [166] developed a novel drug delivery bio-nano-
composite based on carboxymethylcellulose (CMC)/zinc MOF/
graphene oxide via the solvothermal method. It was reported that the
prepared bio-nanocomposite could be used for anticancer drug delivery.
Bhattacharjee et al. [175] successfully incorporated ZnO into Fe (III)
trimesate metal-organic framework (MIL-100(Fe)) to deliver anticancer
drugs of doxorubicin hydrochloride (DOX) by the one-pot in-situ meth-
od. The investigation rendered interesting insights into the incorporation
of NPs into MIL-100(Fe) and its drug loading capacity as well as release
rates. Kura et al. [176] loaded L-3-(3,4-dihydroxyphenyl) alanine as
an anti-parkinsonian drug in a novel layered organic-inorganic nano-
composite based on Al-layered double hydroxide (LDH)/Zn via a direct
co-precipitation technique. Sustained-release behavior was observed

in these composites suggesting that they are suitable for controlled-re-
lease formulations. In comparison with pure levodopa, the synthesized
nanocomposite showed enhanced cell viability of 3T3 cells after 72 h
of exposure.

Seyfoori et al. [177] fabricated a robust nanostructure composite of
ZnFe,0, and ZnFe,0 -hydroxyapatite using the co-precipitation meth-
od for multiple applications of cancer treatment, bone filler, and drug
delivery.

Nigam et al. [178] reported a successful synthesis of Zn Mg, Fe,0,
nanoparticles using the sol-gel method with the potential to be used for
drug delivery. SiO,~CaO mesoporous bioactive glass nanoparticles
doped with Zn?*" ions were produced by Nesc¢akova et al. [179] using the
microemulsion assisted sol-gel method. It was reported that the nanopar-
ticles have the potential for being used as drug delivery systems as well
as bioactive fillers for various applications such as wound healing and
bone regeneration. Thangaraj et al [180] synthesized superparamagnetic
Ce,~xSr|, Fe, ZnxO,,,
trate sol-gel route for different applications such as drug delivery, sensor,

5 (x=0-0.45) nanocomposites by the nitrate-ci-

dielectric, conductivity studies, and optical properties. Pathania et al.
[181] studied the drug release kinetics of chitosan-g-poly(acrylamide)/
Zn (CPA-Zn) nanocomposite synthesized by microwave radiations. The
nature of the matrix and the pH of the medium were shown to affect the
drug release behavior.

Zn-clinoptilolite/GO nanocomposite was introduced by Khatamian
et al [182] for the preparation of drug delivery systems with high load-
ing capacity. The reflux method and microwave-assisted hydrothermal
method were used for the fabrication of the nanocomposites. As a cancer
drug, the nanocomposite exhibited slow release for DOX, high load-
ing capacity, and cytocompatibility. Nanocomposite hydrogel scaffolds
based on chitosan-gelatin/ZnO with both drug delivery and inherent
antibacterial properties were prepared using an in-situ method. The pre-
pared scaffolds demonstrated high porosity and no agglomeration in the
chitosan-gelatin matrix. Additionally, the nanocomposite scaffolds ex-
hibited improved antibacterial, biodegradation, swelling properties, as
well as a controlled release for naproxen [183]. Yadollahi et al [184]
synthesized nanocomposite hydrogel beads of chitosan/ZnO by the
in-situ generation of zinc oxide nanoparticles upon the chitosan bead
formation. According to the results, the drug release from the chitosan
beads was prolonged by the addition of ZnO nanoparticles. This was
reported to be due to a longer drug migration path from the beads to the
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media. The nanocomposites showed promising behavior for develop-
ing controlled delivery of drugs. The drug release behavior of hydrogel
beads containing ZnO particles is demonstrated in Fig. 3.

Yang et al [185] assembled flower-mesoporous carbon (FPCS)-mag-
netic Fe,0, and pH-sensitive ZnO nanoparticles to construct the FPCS-
Fe,0,-ZnO composite as microwave and pH bi-triggered drug carrier.
Yang et al. [186] incorporated Mg particles into poly (I-lactic acid)
(PLLA) microspheres to suppress inflammatory response induced by
PLLA and regulate the drug release profile. It was shown that the in-
ternal connectivity of the microspheres was altered during hydrolytic
degradation by changing the Mg particle sizes and contents, resulting
in manipulating drug delivery with tunable release patterns. Foroughi et
al. [168] developed a novel synthesis method (one-step modified reverse
microemulsion) for the preparation of HAp-MgFe,0, nanocomposite for
the drug delivery application. It was demonstrated that the drug deliv-
ery rate of the nanocomposite was influenced by calcination temperature
and textural properties.

In a study by Cheddadi et al. [187], the free radical polymerization
method was used to synthesize poly (magnesium acrylate) hydrogel for
drug delivery applications. They were suggested for oral drug delivery
devices due to prospective drug release properties along with simplicity
and low cost. In the work performed by Rijal et al. [188], the electrospin-
ning technique was utilized to synthesize Mg incorporated polycapro-
lactone/low molecular weight chitosan (PCL/LMW-CS) composite
nanofiber. They showed that the obtained nanofibrous were good can-
didates for applications in tissue engineering such as bone regeneration,
wound healing, regenerative medicine, and drug delivery. Rijal et al.
[189] used the electrospinning method to prepare composite nanofibers
of MgO, chitosan (CS), and poly(e-caprolactone) (PCL). They realized
that the obtained new composite nanofibrous membranes were able to
mimic the function and physical structure of the tissue extracellular ma-
trix (ECM). This, in turn, suggested that they can be potentially used for
various tissue engineering applications e.g. DDSs.

In another study, Mohammad et al. [190] prepared a composite of
ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO4) via the
sol-gel technique. Their results proved that the composite could be used
in the fields of drug delivery, biosensor, bioanalytical, and scaffolding
applications. Foroughi et al. [191] used a one-step reverse microemul-
sion method to synthesize nanoporous HAp-MgFe,O, nanocomposite.
They found that calcining the nanocomposite at 700 °C results in a
core-shell structure with MS of ~9.5 emu/g. In addition, considering the
IBU release behavior of all samples, the drug delivery rate of the nano-
composite could be altered by calcination temperature that in turn may
change the textural properties of samples.

Bakhsheshi-Rad and his colleagues [45] synthesized composite scaf-
folds of Mg-Ca-TiO, (MCT). They loaded different concentrations of
doxycycline (DC) in the scaffolds and used the space holder technique
as a cost-effective, feasible, and novel method to have an appropriate
corrosion rate, a network of interconnected pores, and appropriate com-

Nanocomposite
Hydrogel bead

Fig. 4. Preparation of composite scaffolds
by the space holder technique.

@ ZnONPs

Drug molecule

pressive strength. A schematic presentation of this technique is shown in
Fig. 4. Considering the drug release profiles, they found that DC loading
MCT scaffolds showed sustained and burst drug release and by increas-
ing the concentration of DC, the drug release rate was increased.

Tabia et al. [192] fabricated the Mg-doped bioactive glass nanopar-
ticles (BG-NPs) through the sol-gel route. They loaded amoxicillin to
the synthesized BG-NPs and investigated their drug release behavior.
They concluded that by increasing Mg content the loading efficiency
decreased. However, the release kinetics was increased by increasing
magnesium content. They realized that the specific surface area and po-
rosity were responsible for this advancement.

8. Conclusions and future insights

In this review, the drug delivery composite systems containing Mg
and Zn either matrix or reinforcement are summarized. Both Zn and
Mg have been applied in various areas of DDSs due to their amazing
intrinsic properties i.e. biocompatible and biodegradable as well as be-
ing abundantly available. This has made them remarkably advantageous
over their conventional counterparts. Besides, the synthesis methods of
these excellent composites are also reviewed and their mechanism of
drug release is discussed. It should be noted that studying the drug deliv-
ery properties of zinc/magnesium and their composites might lead to the
realization of more effective drug delivery systems in the future.
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