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1. Introduction

The rising energy demands and concerns about environmental pollu-
tions have motivated the engineers to utilize new sources of energy such 
as solar, wind, and biogas [1–4]. The optimization of thermal systems 
is inevitable to increase the efficiency and reduce the cost and air pol-
lution [2, 5–9]. The energy-efficient systems are obtained by enhancing 
the heat transfer rate using different passive or active methods [10, 11]. 
Active methods benefit the external energies such as electric or magnetic 
field, vibrating surface, or a mechanical mixer. However, the passive 
methods don’t need external sources and the heat transfer enhancement 
is obtained by a change in geometry or fluid properties [12, 13]. The 
miniaturization of the channels, using the fins, or utilizing nanofluids are 
some common passive methods [11, 14–17]. In the last decades, due to 
the developments of miniaturized devices, such as computer electron-

ic components, the old techniques of cooling became inadequate [15, 
18–20]. Besides, the evolutions in technology have created an urgent 
demand for new and efficient cooling methods to maintain the device 
temperatures below the critical area. This need for new methods has 
motivated the researchers to study and find a profitable way. Nanofluid, 
which is the mixture of nano-sized particles in the base fluid, proved to 
be a novel heat transfer method in heat transfer issues [21]. 

Nanofluids are known as a new generation of fluids with hidden and 
unknown thermal capabilities. 

Choi [22, 23] introduced nanofluids and claimed that they showed 
better heat transfer characteristics than their base fluids. Adding 
nanoparticles to the base fluid is a passive method for improving heat 
transfer processes [24]. The volume fraction of the nanoparticles as well 
as their size and type are significant factors that result in the mentioned 
improvements. Also, the working temperature and type of fluid play role 
in enhancement [25, 26].
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Heat transfer efficiency has always been at the center of attractions for many researchers and industries, and de-
mand for higher efficiency methods and materials are increased in the last decades. Among the different methods 
of heat transfer enhancement, using nanofluids has proven to be an effective technique. In the present paper, the 
properties of nanofluids including viscosity, thermal conductivity as well as convective heat transfer are discussed 
and useful conclusions about the reported results by different researchers are presented. The effect of volume 
fraction, temperature, size and shape of particles, base fluid properties, and other factors on viscosity, and thermal 
conductivity of nanofluids are reviewed. Also, in the present manuscript, the methods of stable nanofluid prepara-
tion, and the effective factors on the stability of nanofluids are exhibited in detail. Besides, a summarized number 
of experimental and mathematical studies on the properties, and stability of nanofluids are listed, compared, and 
analyzed. The works about the Nusselt number in fluids and nanofluids are presented in detail to determine the 
future challenges of nanofluids.
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Nowadays, nanofluids have been used in many fields of industries 
such as electronic, nuclear, medicine, and transportation systems [27]. 

Nanofluids preparation, stability, characterizations, thermal features, 
conduction, and convection heat transfer processes have been studied 
widely by the researchers [28]. For the first time, Choi [22] dispersed the 
nano-sized particles in a base fluid and called the mixture as nanofluid. 
After introducing nanofluids, Lee et al. [29], Eastman et al. [30], Yu et 
al. [31], and many other researchers investigated the thermal behavior 
of nanofluids, and heat transfer rate enhancement by use of nanofluids 
was proved. It was also shown that the unique behavior of nanofluids 
may originate from some mechanisms such as the Brownian motion of 
nanoparticles and decreases in the thermal boundary layer [32].

As mentioned above, the stability of nanofluids is a crucial factor that 
determines the applicability of nanofluids. Researchers always looking 
for stable nanofluids. So, many stability tests have been accomplished 
and the results showed the three main different methods to prepare a 
stable suspension, that is surfactants, ultrasonic bath, and pH control 
[33–35]. Also, there are other factors such as viscosity that are critically 
related to the pumping power of nanofluid. Although there are a lot of 
experimental studies of the nanofluids behavior, numerical methods are 
still a strong tool to obtain detailed information about the investigated 
phenomenon and have wide applications in heat and mass transfer, bio-
mechanics, and solid mechanics [36, 37, 46, 38–45]. 

In the present paper, a critical review of the preparation, characteri-
zation, and heat transfer enhancement nanofluids has been done. We are 
attempting to provide a comprehensive review of the factors that affect 
the thermos-physical properties of nanofluids. Also, the experimental 
correlations and results have been compiled. The present review mainly 
aims to summarize the recent researches on thermophysical properties 
and the stability of nanofluids and applications of nanofluids in various 
industries and devices.

2. Nanofluids

2.1. Preparation methods

Nanofluids are recognized with their unique thermal properties, such 
as viscosity, thermal conductivity, and many other properties, compared 
to common fluids. Many types of nanoparticles are used for synthesizing 
nanofluids including carbon nanotubes, metals, metal oxides, ceramics, 
etc. metals generally have considerably high thermal conductivities than 
fluids, however, some types of advanced ceramics offer interestingly 
high thermal conductivities even more than common metal, such as ZrB2 
[47, 48, 57–66, 49, 67–76, 50, 77–86, 51, 87–96, 52, 97–102, 53–56], 
TiB2 [103, 104, 113–121, 105–112], SiC, AlN [122–125], TiC [126, 127, 
136, 128–135], and HfB2 [137]. These ceramics have proved remarkable 
thermos-mechanical behaviors in different branches of industry [138, 
139, 148–157, 140, 158–164, 141–147]. One of the important factors, 

Nomenclature

A Area (m2) vol Volume fraction

cp Heat capacity (J/kg.K) wt Weight fraction 

CTAB Cetyltrimethylammonium bromide

d Diameter (m) Greek Letters

EG Ethylene glycol α Thermal diffusivity

EO Engine oil β A constant

GA Gum Arabic μ Dynamic viscosity (Pa.s)

h Convective heat transfer coefficient (W/m2 K) ρ density (kg/m3)

k Thermal conductivity (W/m.K) σ A constant

L Length (m) ϕ Particle volume fraction

n Shape factor ψ Sphericity

Nu Nusselt number

PG Propylene glycol Subscripts

Pr Prandtl number bf Base fluid

PVP Polyvinyl pyrrolidone nanofluids c Critical

R Thermal resistance (m² K/W) eff Effective

r Radius (m) l Laminar

Re Reynolds number p Particle

SDBS Sodium dodecylbenzene sulfonate t turbulent

SDS Sodium dodecyl sulfate

T Temperature (K)

Fig. 1. Synthesizing methods of nanoparticles [21].
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which affects the final properties od nanofluids, is the preparation of the 
nanoparticles [165]. Some of the synthesizing methods of nanoparticles 
are presented in Fig. 1.

Also, there are various methods for analyzing nanoparticles. The 
most common methods are Transmission Electron Microscope (TEM), 
Scanning Electron Microscope (SEM), Optical spectroscopy, X-ray Dif-
fraction (XRD), Infrared and Raman Spectroscopy [166].

The synthesis of a nanofluid is a key role task in researches. The 
main goal of preparing nanofluids is to obtain a stable suspension with-
out any agglomeration in a specified period and temperature. The ag-
glomeration of nanoparticles in a nanofluid is a significant problem in 
all nanofluid investigations. Two main methods involved with preparing 
nanofluids are One-step and Two-step methods [167]. The purpose of the 
mentioned methods is to generate good nanoparticle suspensions. The 
unique heat transfer improvements by using nanofluids directly depend 
on the quality of the suspension. The quality of nanofluid is a function 
of the synthesis method and the homogeneity of nanoparticles in the 
base fluid [166]. Overcoming the mentioned problems has become more 
important in higher nanoparticle concentrations [168].

In the One-step method, in a single process, the nanoparticles are 
formed and dispersed in the base fluid. In the Two-step method, nanopar-
ticles are prepared in the first step and after that, in the second step, the 
prepared particles are dispersed in a fluid [167]. From an economical 
point of view, the Two-step method takes lower costs [169]. In the two-

step method, nanoparticles can be synthesized and dispersed in base flu-
id chemically or mechanically [170]. In chemical dispersion, surfactants 
are commonly are added to the fluid, whereas in mechanical dispersion, 
sonication is often employed to disperse nanoparticles [171]. Besides, 
there are other significant factors that have remarkable effects on a sus-
pension’s quality. According to various studies such as Sonawane et al. 
[172], and Buonomo et al. [173], particle size and sonication time are 

Fig. 2. Effective parameters on thermophysical properties of nanofluids. Fig. 3. Thermal conductivity of various materials at 25°C [211].

Fig. 4. Thermal Conductivity of various fluids at 25°C [211].

Table 1.
Some of the reported synthesis studies of nanofluids

Synthesis 
method

Authors Publish year Nanoparticle/Base fluid Particle size (nm)
Fraction

 (Vol% or wt%)

One-Step

Eastman et al. [30] 2001 Cu/EG 10 0.3

Hong et al. [174] 2005 Fe/EG 10 0.55

Liu et al. [175] 2006 Cu/Water 75~100 0.1

Paul et al. [176] 2012 Ag/Water - 1

De Robertis et al. [177] 2012 Cu/EG - -

Two-Step

Choi et al. [178] 2001 CNT/Poly oil 25*50000 2

Murshed et al. [179] 2005 TiO2/Water 15 5

Meibodi et al. [180] 2010 CNT/Water 1-4 0.12

Lee et al. [181] 2011 SiC/Water <100nm 0.001-3

Singh et al. [182] 2012 Al2O3/EG&Water 130,211,300 0.25-1

Fazeli et al. [183] 2012 SiO2/Water 18 3.5-5

Zeinali Heris et al. [184] 2015 MWCNT/Water 10*20000 0.55

Choudhary et al. [185] 2016 Al2O3/Water 40 0.1-2

Irani et al. [186] 2018 GO/Water+MDEA - 0.1 & 0.2
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other critical factors that affect the dispersion level of nanoparticles and 
lead to better thermophysical properties of nanofluids. Some of the syn-
thesized nanofluids utilizing one-step and two-step methods reported in 
various articles are presented in Table 1.

2.2. Stability of nanofluids

Synthesizing a stable and durable homogenous nanofluid has always 
been challenging for researchers due to the agglomeration of nanoparti-
cles as a result of the van der Waals forces [187]. To avoid particle ag-
glomeration, some physical and chemical methods have been proposed 
and investigated [165]. The most common method that researchers use 
while confronting agglomerations is adding surfactants which is a chem-
ical method [188]. The addition of surfactants makes hydrophobic ma-
terials disperse in an aqueous suspension better than normal situations 
[189]. There are many types of surfactants such as Gum Arabic, CTAB, 
SDS, SDBS, NADDBS, CMC, HCTAB, TX-100, etc. [190]. Besides, 
the fraction of surfactants that are used for making a suspension stable 
is very important. If used less than the limit, causes inadequate stability 
and if overused, causes agglomeration of nanoparticles in the suspension 
due to the osmotic pressure [191].

Also, there are other methods that enhance the stability of nanofluid. 
Li and Xuan [192] suggested the ultrasonic waves for increasing the 
stability of nanofluids in addition to surfactants. Peng et al. [193] defined 
and studied the important factors of the preparation of stable nanofluids. 
They showed that the dispersion method, volume fraction of nanoparti-
cles, the viscosity of the base fluid, the value of pH, density of nanofluid, 
type of nanoparticles, and size of nanoparticles in conjunction with ul-
trasonic waves affect the stability of nanofluids.

The main purpose of all methods is to prevent particle clustering by 
changing the surface properties of particles, which results in a stable 
nanofluid. An ultrasonic bath, which is used widely by researchers [35], 
is a powerful instrument for breaking the agglomerations. A conclusion 
of researches, which has utilized an ultrasonic bath to prepare stable 
nanofluids, is presented Table 2.

The stability of an aqueous nanofluid directly depends on electro-ki-
netic properties. The high surface charge density of the nanoparticles 
may result in strong repulsive forces and consequently, bring up better 
dispersion of nanoparticles in suspensions [35]. 

In the isoelectric point (IEP), the concentration ions that play a role 
in zeta potential is zero. In the isoelectric point, surface charge density 
is equal to electron charge density and because of that, the zeta potential 

is zero. The pH value has to be considered to attain the isoelectric point 
[206]. It has been observed that pH control makes a nanofluid to be 
stable for a long time [207]. By controlling the repulsive force between 
nanoparticles, the zeta potential is decreased to zero at a particular pH 
value at the isoelectric point and it is a negative problem for the stability 
of nanofluids [35]. The pH deviation of a prepared suspension from the 
isoelectric point increases the stability of colloidal particles and causes 
the changes in the thermal conductivity of the nanofluid [208]. Jorge et 
al. [209] investigated the MWCNT/water nanofluid at pH values of 2 
and 5.5 and reported that the mentioned nanofluids were stable because 
of the deposition of amines on the MWCNT surface. Zareei et al. [210] 
evaluated the stability of Al2O3/water nanofluid at various pH values and 
showed that the Al2O3/water nanofluid had the highest stability at pH=4 
while pH=10 showed less stability. Each type of nanoparticle became 
stably dispersed at its optimized pH value that leads to optimum thermal 
properties. At an optimum pH, the repulsive force between nanoparticles 
increases and prevents the sedimentations and agglomerations [211].

Among the various methods to evaluate the stability of nanofluids 
the most common techniques are: zeta potential, absorbency, stratifi-
cation observing, sedimentation observing, and particle size-changing 
[212]. When almost all of the particles have high zeta potential values, 
there is no tendency for agglomeration and consequently, the suspension 
becomes stable [213]. In the zeta potential method, a Laser Doppler Ve-
locimetry (LDV) records the movement of nanoparticles under an elec-
trical field. Nowadays most of the investigations about the stability of 
nanofluids are done with the zeta potential method [181]. The acceptable 
values of zeta potential are shown in Table 3 [214]

2.3. Thermophysical properties of nanofluids

The main idea of the synthesis of nanofluids is to enhance the 
thermophysical behavior of the base fluids. Thermal properties of the 
working fluid play an essential role in the heat transfer rate of a ther-
mal system. The working fluid commonly has weak thermal properties, 
therefore the improvements of these properties increase the efficiency 
of thermal devices, reduce costs, and results in more compact and min-
iaturized devices [20]. The properties of some of the base fluids that 
are utilized commonly in various investigations are presented in Table 
4 [187, 215–218]. The dispersion of nanoparticles in the base fluid is 
one of the attractive methods in the enhancement of the fluid properties. 
Many factors affect the thermophysical properties of nanofluids that are 
presented in Fig. 2 [219]. Kolade et al. [220] investigated the effect of 

Table 2.
Investigations of nanofluid stability

Authors Publish year Nanoparticles/Base fluid Particle size(nm) Fraction 
(vol% or wt%)

Sedimentation surfactant

Patel et al. [194] 2005 Al2O3/Water 11 0.8 - -

Lee et al. [195] 2006 CuO/Water 25 0.3 - -

Zhu et al. [189] 2007 Graphite/Water 20 0.5 - PVP

Li et al. [188] 2008 Cu/Water 25 0.1 - SDBS

Chen et al. [196] 2009 Titanate NT/EG 10*100 0.5-8 >2 months -

Yu et al. [197] 2010 Fe3O4/Kerosene 15 0.1-2 - Oleic acid

Chandareskar [198] 2010 Al2O3/Water 43 033-5 - -

Aravind et al. [199] 2011 MWCNT/Water - 0.005-0.03 - -

Shanbedi et al. [200] 2012 MWCNT/Water 15*10000 0-1.5 >6 months -

Shanbedi et al. [201] 2013 MWCNT/Water 15*10000 0-1 >6 months GA

Amiri et al. [202] 2015 Graphene/Water 3.74*3000 0-0.1 1 month SDBS

Mustafizur [203] 2016 SiO2/Methanol 5-15 0.005-0.05 24 hours -

Cacua et al. [204] 2017 Al2O3/Water - 0.1-0.5 30 days SDBS-CTAB

Krishnan et al. [205] 2019 MgO/Water-EG - 0.05-0.6 20 days -
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the particle fraction on the effective thermal conductivity of Al2O3-water 
and MWCNT-water nanofluids and reported 6% and 10% enhancement 
at 2% and 0.2% fractions, respectively. Das et al. [221] reported that 
temperature increment results in higher thermal conductivity of nanoflu-
ids. Also, Shou et al. [222] indicated that an increase in thermal conduc-
tivity had a linear proportion with temperature. Chon et al. [223] studied 
the effect of nanoparticles size on the thermal conductivity of nanofluids 
for spherical nanoparticles with the size of  10-50 nm and showed that 
the thermal conductivity of nanofluids increased with a decrease in par-
ticles size.

2.3.1. Thermal conductivity

In the last decades, the thermal conductivity of the fluids containing 
nanoparticles has become a point of attraction for many researchers and 
various numerical and experimental studies have done about nanofluids 
[220]. The results of various studies show that the thermal conductivity 
of nanofluids improves by diverse factors like volume fraction, nanopar-
ticle type and size, the thermal conductivity of nanoparticles and base 
fluid, temperature, viscosity, Brownian motion, pH value, and the qual-
ity of dispersion[224]

The Brownian movement of nanoparticles at nano-sized levels and 
molecular scales plays a key role in the thermal behavior of solid-fluid 
suspensions including nanofluids. The increases in thermal conductivity 
of nanofluids are related to local convections that caused by Brownian 
motions of nanoparticles [225].

Solid materials have generally higher thermal conductivities than 
fluids. Metals possess considerably high thermal conductivity, however, 
some types of advanced ceramics offer considerable thermal conductivi-
ties such as ZrB2, AlN, BeO, and TiB2 [226–231]. Since the thermal con-
ductivity of solid nanoparticles is very higher than fluids, it is expected 
that dispersing nanoparticles in a base fluid enhances the thermal con-
ductivity and the heat transfer functions of the fluid. The approximate 
thermal conductivity of some materials and base fluids is shown in Fig. 
3 and Fig. 4, respectively [211].

The experimental studies exhibited that nanofluids do not conform 
with general correlations and the thermal conductivity of nanofluids de-
pends on many factors that some of them are still unknown. Jana et al. 
[232] studied various nanofluids and showed that the Cu-water nanofluid 
brings up to 74% enhancement in thermal conductivity. Xie et al. [233] 
investigated the effect of using CNT, CuO, and Al2O3 nanoparticles in 
a base fluid and showed that regardless of the type of the base fluid, 
Carbon nanotube suspensions demonstrated better thermal conductivity 
values in the same volume fractions [233]. Wang et al. [234] compared 
the diverse data for Al2O3 and CuO nanoparticles by considering water, 
vacuum pump fluid, engine oil, and ethylene glycol as base fluids and 
showed that the thermal conductivity of nanofluids increased with a de-
crease in nanoparticle size. Abareshi et al. [235] investigated the thermal 
conductivity of Fe3O4-water nanofluid and highlighted that the thermal 
conductivity of nanofluids improved with increment in temperature due 
to the increases in the activity of molecules to transfer energy. Lai et al. 
[236] and Zhu et al. [237] claimed that the pH value is very effective on 
the thermal conductivity of suspensions. In Table 5 found., the thermal 

conductivity enhancement reported by some researchers is presented. 
Many studies reported the enhancement of thermal conductivity by 

utilizing and dispersing nanoparticles in the base fluid [220]. Although 
the researchers presented many models to predict the thermal conduc-
tivity of nanofluids, however, comparing the experimental data with 
theoretical models shows the need for more investigations to explain 
the abnormal improvements in the thermal conductivity of nanofluids.

Maxwell [251] for the first time presented a mathematical model to 
determine the thermal conductivity of a solid-fluid suspension by assum-
ing spherical shape for all solid particles as follow:

 
2 2( )
2 ( )

p bf p bf
eff bf

p bf p bf

k k k k
k k

k k k k
φ
φ

+ + −
=

+ − −
 			     

(1)

where φ is the volume fraction and kbf and kp are the thermal conduc-
tivity of the fluid and particles, respectively.

Researchers also developed various mathematical models by con-
sidering different parameters that affect thermal conductivity. Hamilton 
and Crosser [252] considered the shape of the particles and justified the 
Maxwell model as below:

( 1) ( 1)( )
( 1) ( )

p bf p bf
eff bf

p bf p bf

k n k n k k
k k

k n k k k
φ

φ
+ − + − −

=
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where n is the shape factor given as 

 3n
ψ

=
						        

(3)

ψ is defined as the sphericity of the solid particles. A series of mathe-
matical models considering the different involving factors are presented 
by several researchers. A conclusion of various presented models sug-
gested by researchers is shown in Table 6.

2.3.2. Viscosity

The viscosity is a significant and important characteristic of all types 
of fluids that shows the resistance of a fluid flow against shear stress. 
Because of that, the viscosity has a great effect on the rheological and 
thermal behaviors of nanofluids as a special type of fluids. The viscosity 
affects the friction between the fluid molecules and the contact surface 
of nanoparticles and plays a key role in fluid flow and heat transfer phe-
nomena. The pumping power and convective heat transfer rate are di-
rectly related to the value of viscosity [267]. 

The viscosity depends on various factors such as dispersing method, 
nanoparticle diameter, nanoparticle type, temperature, and nanoparti-
cle concentration which the effect of concentration is more than other 
factors [268, 269]. Ghazvini et al. [270] showed that the viscosity of 
nanofluids increased by up to 20% in high nanoparticle concentrations. 
Ding et al. [271] investigated the viscosity of carbon nanotube-water 
nanofluid as a function of shear stress and indicated that the viscosity of 

Table 3.
The acceptable values of zeta potential [70]

Zeta potential (mv) Stability

0 No stability or little stability

15 Some stability but settling lightly

30 Moderate stability

45 Good stability with settling possibility

60 Excellent stability

Table 4.
Thermophysical properties of common base fluids that utilized in nanofluids [187, 
215–218]

Base fluid cp (J/kg.K) k (W/m.K) ρ (kg/m3) μ (N.s/m2)

Distilled water 4184 0.599 998 1.00E-04

Ethylene 
Glycol

2383 0.25 1117 2.20E-02

Engine oil 1881 0.145 888 8.40E-01

Propylene 
glycol

4019 0.34 1036 4.20E-02

EG + water 
(X=0.5)

3473 0.316 1094 28.00E-04
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nanofluids increases with increments in concentration on the one hand 
and also, decrements in temperature on the other hand. Zeinali Heris 
et al. [272] showed that the viscosity value of CuO-water nanofluid is 
greater than Al2O3-water nanofluid because of the bigger size of CuO 
nanoparticles. 

Nguyen et al. [273] investigated the effect of temperature, concen-
tration, and size of nanoparticles on the dynamic viscosity of Al2O3-wa-
ter and CuO-water nanofluids. The results showed that the viscosity of 
prepared nanofluids was a function of temperature and volume fraction 
of nanoparticles.

A conclusion of experimental researches about the viscosity of nano-
fluids is presented in Table 7. Also, there are some mathematical correla-
tions for predicting the effective viscosity of nanofluids. A summary of 
the significant viscosity correlations is presented in Table 8.

2.4. Convective heat transfer process in nanofluids

Using nanofluids in various devices is an effective method to reach 
high efficiencies in the cooling procedure. In the previous sections, the 
synthesis and some thermophysical properties of nanofluids have been 
explained, however, convective heat transfer needs many studies about 
the flow regime, heat transfer process, and other significant factors 
[295]. The convective heat transfer coefficient of nanofluids increases 
with increment in conductive heat transfer rate, intensification of turbu-
lence, stopping the growth of the boundary layer, etc. [24]. A decrease 
in the thermal boundary layer can lead to the stimulation of the particles 
around the wall and migration of the particles toward the center of the 
duct and this subject will decrease the viscosity near the wall [296]. Nu-
merous studies have been performed to investigate the convective heat 
transfer using nanofluids. A constant heat flux or constant wall tempera-

ture is usually considered as the boundary condition for studying the 
heat transfer of nanofluids [297].

By using nanofluids, complicated behaviors such as Brownian mo-
tion, rotation of the particles, and micro-displacements of nanoparticles 
emerge [297]. These mechanisms make it necessary to find new correla-
tions to cover the convective heat transfer of the nanofluids. 

Jung et al. [298] investigated the Al2O3-water nanofluid in a micro-
channel with considering the laminar flow regime and showed a 32% 
increase in the convective heat transfer coefficient in comparison with 
used base fluids. Zeinali heris et al. [299] investigated the Cu-water 
nanofluids in a tube with a laminar flow regime at constant wall tempera-
ture condition as a boundary condition and indicated that with increases 
in volume fraction, the convective heat transfer coefficient values im-
proved as 45% at 2% volume fraction. Faulkner et al. [300] investigated 
the convective heat transfer in a microchannel by utilizing CNT-water. 
The results showed that the convective heat transfer coefficient improves 
with an increase in volume fraction. Aravind et al [199] synthesized 
the CNT-water nanofluids at 0.005% and 0.03% volume fractions and 
showed that the convective heat transfer coefficient increases with an 
increase in Reynolds number and volume fraction. Naraki et al. [301] 
investigated the CuO-water nanofluid in a car radiator and presented an 
8% enhancement in the heat transfer rate.

Several mathematical correlations are presented by researchers for 
predicting the Nusselt number of single-phase fluids in a tube at laminar 
and turbulent flow regimes. A conclusion of some correlations for the 
Nusselt number is shown in Table 9.

2.5. Future Challenges

As the researches about nanofluid progress over time, many chal-

Table 5.
The overview of the result of some studies on the thermal conductivity of nanofluids

Authors Publish year Particle/Base fluid
Fraction

(vol% or wt%)
Particle size 

(nm)
Additives Enhancement (%)

Xuan & Li [192] 2000 Cu/water 2.5-7.5 100 Laurate salt 22-75

Xie et al. [238] 2002 Al2O3/water 1.8-5 60.4 - 7-21

Patel et al. [239] 2003 Ag/water 0.001 60-70 -
3% at 30°C
4% at 60°C

Das et al. [221] 2003 Al2O3/water 1-4 38.4 -
2-9% at 21°C

10-24% at 51°C

Wen & Ding [240] 2004 Al2O3/water 0.19-1.59 42 SDBS 1-10

Hong et al. [174] 2005 Fe/EG 0.2-0.55 10 - 13-18

Putnam et al. [241] 2006 Au/ethanol 0.01-0.07 4 Alkanrthiolate 0.3-1.3

Lee et al. [195] 2006 CuO/water 0.03-0.3 25 -
4-12% at pH=3
2-7% at pH=6

Li et al. [188] 2008 Cu/water 0.02-1 wt% 25 SDBS 10.7

Godson et al. [242] 2010 Ag/water 0.3-0.9 60 - 10-30% (50 to 90°C)

Kole & Dey [243] 2010 Al2O3/water 0.001-0.035 50 Oleic acid 10.5%

Colla et al. [244] 2012 Fe3O4/water 5-20 wt% 67 -

0-7% at 10°C
1-10% at 30°C
5-11% at 50°C
3-15% at 70°C

Manna et al. [245] 2012 SiC/water 0.01-0.1 60 - 7.5-11.5%

Teng [246] 2013 Al2O3/water 0,0.5,1,3 20 Chitosan 1-9% decrease

Amiri et al. [202] 2015 Geraphene/water 0.025-0.1 wt% 3.74*3000 SDBS Up to 26.2

Sinha et al. [247] 2017 ZnO/water 0.1-5 - - 33

Micali et al. [248] 2018 CuO-water 2.5 - - Up to 18

Ranjbarzadeh et al. [249] 2019 SiO2/water 0.1-3 - - Up to 38.2

Riahi et al. [250] 2020 Al2O3/water 0.7 9 - 8.6
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Table 6.
A conclusion of models proposed for thermal conductivity of nanofluids

Reference Year Correlation
Dependent Param-

eters

Maxwell et al 
[251]

1890
2 2( )
2 ( )

p bf p bf
eff bf

p bf p bf

k k k k
k k

k k k k
φ
φ

+ + −
=

+ − −
Volume fraction

Bruggeman 
[253]

1937

1 [(3 1) (2 3 ) ]
4 4

bf
eff p bf

k
k k kφ φ= − + − + ∆

2 2 2(3 1) (2 3 ) 2(2 9 9 )p p

bf bf

k k
k k

φ φ φ φ
    

∆ = − + − + + −            

Volume fraction

Hamilton 
& Crosser 

[252]
1962

( 1) ( 1)( )
( 1) ( )

p bf p bf
eff bf

p bf p bf

k n k n k k
k k

k n k k k
φ

φ
+ − + − −

=
+ − − −

Volume fraction
Shape factor

Wasp [254] 1977
2 2( )
2 ( )

p bf bf p
eff bf

p bf bf p

k k k k
k k

k k k k
φ
φ

+ − −
=

+ + −
Volume fraction

Lu and Lin 
[255]

1996 21
2

p p bf
eff bf

bf p bf

k k k
k k

k k k
φ φ

 −
= + + 

+  
Volume fraction

Yu and Choi 
[256]

2003

3

3

3

3

2 2( )(1 )
2 ( )(1 )

[2(1 ) (1 ) (1 2 ) ]
[ (1 ) (1 ) (1 2 )]

pe bf pe bf
eff bf

pe bf pe bf

pe p

k k k k
k k

k k k k

k k

β φ
β φ

γ β γ γ
γ β γ

+ + − +
=

+ − − +

− + + +
=

− − + + +

Interfacial layer
Volume fraction

Nan [257] 2003
3 ( )

3 2

p

eff bf

bf

k
k k
k

φ

φ

+
=

−
Volume fraction

Wang et al 
[258]

2003

1

10

10

( ) ( )(1 ) 3
( ) 2
( ) ( )

(1 ) 3
( ) 2

c

c bf
eff bf

bf

c bf

k r n r dr
k r k

k k
k r n r

dr
k r k

φ φ

φ φ

∞

∞

− +
+

=
− +

+

∫

∫

Size effect
Surface adsorption

Kumar et al 
[259]

2004 2

2
(1 )

bB
eff bf bf

p bf p

rk Tk k c k
vd k r

φ
π φ

= +
−

Temperature, 
Density, Specific heat 

capacity, Viscosity, 
Radius of nanoparti-
cle, Volume fraction

Xie et al 
[260]

2005

2 2

13
1

1
3

1 1

31 3
1

[(1 ) ]

(1 ) 2

T
eff T bf

T

p
b

b

p b

k kφφ
φ

β
β γ

β
γ β β

 Θ
= + Θ + −Θ 

+ −
Θ =

+ +

Interfacial nanolayer
Volume fraction

Prasher [261] 2005
0.746 0.369 0.7476 0.9955 1.23211 64.7 ( ) ( ) Pr Reeff bf p

bf p bf

k d k
k d k

φ= + × ×
Reynolds number
Prandtl number

Particle size
Volume fraction

Murshed 
[262]

2006

1.3
0.3

1.3 0.3
0.3

0.52[1 0.27 1 ][1 1
1

0.521 1 0.27 0.27
1

p p

bf bfeff

bf p

bf

k k
k kk

k k
k

φφ
φ

φ φ
φ

   
+ − + −      −   =

  
+ − + +    −  

Volume fraction
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Continuation of Table 5

Reference Year Correlation
Dependent Param-

eters

Li [263] 2008

eff static Browniank k k= +

2 2( )
2 ( )

p bf p bf
static bf

p bf p bf

k k k k
k k

k k k k
φ
φ

+ + −
=

+ − −

50000 ( ) ( , , )B
Brownian p bf p

p p

k Tk c g T d
d

φ ρ φ
ρ

=

2 2

( , , ) ( ln( ) ln( ) ln( ) ln( )

ln( ) ) ln( ) ( ln( ) ln( ) ln( ) ln( ) ln( ) )
p p p

p p p p

g T d a b d c d d

e d T g h d i j d k d

φ φ φ

φ φ

= + + +

+ + + + + +

Brownian motion
Particle diameter

Temperature
Volume fraction

Vajjha [264] 2010
42 2( )

5 10 ( , )
2 ( )

p bf bf p
eff bf bf pf

p bf bf p p p

k k k k kTk k c f T
k k k k d

φ
βφρ φ

φ ρ
+ − −

= + ×
+ −

Temperature
Nanoparticle type
Volume fraction

Suganthi 
[265]

2014
1 7.926

1 8.195

eff

bf

eff

bf

k
k
k
k

φ

φ

= +

= +
Volume fraction

Gao [266] 2018

23 2
2( 13.4 )

3

k
feff

bf

Rk tk L
k

η φ

ηφ

+

+
=

−

Thickness
Length

Thermal resistance
Flatness ratio

Table 7.
A conclusion of experimental studies on the viscosity of nanofluids

Authors Year Particles/Base fluid Fraction
Particle 
size(nm)

Additives Viscosity increase

Godson et al. [242] 2010 Ag/water 0.3-0.9 20 - 6-23% at 50°C
10-35% at 70°C
20-43% at 90°C

Aravind [199] 2011 MWCNT/water 0.005-0.03 - - 3-15% at 40°C
4-20% at 60°C
6-11% at 40°C
4-16% at 60°C

Colla et al. [244] 2012 Fe2O3/water 5-20 wt% 67 - 21-36% at 10°C
24-49% at 30°C
21-36% at 50°C
32-72% at 70°C

Syam Sundar et al. [274] 2013 Fe3O4/water 0.2-2 13 CTAB 6.3-108% at 20°C
1.8-107% at 40°C
10-196.6% at 60°C

Shanbedi et al. [275] 2015 MWCNT/water 0.1 wt% 10*30000 GA
SDS

CTAB

Temperature increase led to lower 
viscosity values

Chiam et al. [276] 2017 Al2O3/water+EG 0.2-1 - - Up to 50%

Yashawantha et al. [277] 2019 Graphite/EG 0.2, 0.8, 2 <50 - 58% decrease by increasing tem-
perature (25°C-60°C)
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Table 8.
A conclusion of mathematical correlations for the viscosity of nanofluids

Authors Year Correlation Dependent parameters

Einstein [278] 1906 (1 2.5 )eff bfµ φ µ= + Volume fraction

Robinson [279] 1949 1
1

p
eff

r

c
S
φ

µ µ
φ

 
= + − 

Volume fraction
Special heat capacity

Brinkman [279] 1952 2.5(1 )
f

eff

µ
µ

φ
=

−

Volume fraction

Eshelby [280] 1957
7.5(1 )1

4 5eff bf
σµ φ µ
σ
− = + − 

0.333σ =

Volume fraction

Krieger [281] 1959
[ ](1 ) m

eff bf
m

η φφµ µ
φ

−= −
Volume fraction

Shear stress
Particle packing

Frankel and Acrivos 
[282]

1967

0.333

0.3331.125

1

m
eff bf

m

φ
φ

µ µ
φ
φ

  
  
  =    −     

Volume fraction

Jeffrey et al [283] 1976
243

3 ln
eff bf

r
r

φµ µ

φ

  
  
  = +
   
   

   

Volume fraction

Graham [284] 1981
2

4.51 2.5

2 1

eff

bf

p p p

h h h
d d d

µ
φ

µ
= + +

   
+ +      

   

Particle diameter
Inter-particle spacing

Chow [285] 1993
2

2
max

2.5exp
1 1

eff

bf

A
A

µ φ φ
µ φ φ φ

  
= +  − −  

Volume fraction

Pak and Cho [286] 1998 2(108.2 5.45 1)eff bfµ φ φ µ= + + Volume fraction

Liu [287] 1999

2
21 2

2
max max max

2 61eff

bf

k kµ φ φ φ
µ φ φ φ

      − −− = + +      
       

Volume fraction

Noni [288] 2002 1
1

n
eff

bf m

b
µ φ
µ φ

  
 = +   −  

Volume fraction
Bidimensional forces

Orozco and Castillo 
[289]

2003
21 2.5 6.17eff

bf

µ
φ φ

µ
= + +

Volume fraction

Nguyen [290] 2007 0.14830.904eff

bf

φµ
µ

=
Volume fraction

Bobbo [291] 2012 ( )21eff

bf

a b
µ

φ φ
µ

= + +
Volume fraction

Aberoumand [292] 2016 2 31.15 1.061 0.5442 0.1181eff

bf

µ
φ φ φ

µ
= + − +

Volume fraction

Karimipour [293] 2018 0.995246 0.000293119 . 0.125761eff

bf

T w w
µ
µ

= − +
Weight fraction

temperature

Esfe [294] 2019 2 26.35 2.56 0.24 0.068 0.905 0.0027eff T T Tµ φ φ φ= + − − + + Volume fraction
temperature
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lenges in nanofluid studies and applications still exist. Firstly, the syn-
thesis of nanofluids must take lower costs on the one hand and give more 
stable nanofluids on the other hand. So, there is a critical need for more 
studies about the mechanisms and methods to earn information about the 
unique behavior of nanofluids and give more stable nanofluids that make 
them more commercial and applicable.

Secondly, many mathematical and experimental correlations are 
presented to predict the thermal and rheological properties of nanoflu-
ids. Some of them have properly validated, however, all mechanisms 
involved in the heat transfer of nanofluids are still unknown and unex-
plored. Considering optimal parameters for prospecting the behavior of 
nanofluids is very necessary to extract the maximum potential of nano-
fluids.

From the heat transfer aspect, nanofluids have developed in many 
heat transfer processes and instruments such as medical sciences, bio-
mechanics, electronics, etc. [311]. Researchers are studying and inves-
tigating the various facets of the nanofluids to make nanofluids more 
reliable and marketable [312].

Nowadays, nanofluids are utilizing in heat transfer and other fields 
widely. However, this unique type of suspension is still under the inves-
tigation to be more applicable. Finding ways to give more stable and 
high-efficiency nanofluids will lead to a revolution in the heat transfer in 
industry and many other fields.

3. Conclusion

Cooling performance is a major demand of many industries and be-
cause of that, the need for fluids with enhanced thermophysical proper-

ties and reliable stability is more vital than the past. The present review 
gives a piece of summarized information about the nanofluids and heat 
transfer phenomena in nanofluids and make nanofluids more under-
standing and displays the recent developments in nanofluids.

Many rheological and thermal properties of nanofluid have taken 
into account to make nanofluids more applicable. Although, the ther-
mal conductivity, viscosity, stability, and heat transfer processes are re-
viewed in the present paper. Also, summarized experimental studies and 
mathematical correlations about the mentioned properties are brought 
in the present review. The parameters that affect the thermal behavior 
of nanofluids are particle size, volume and weight fraction, fluid type, 
nanoparticle type, temperature, viscosity, stability, and preparation 
method. Nanofluids have a huge potential to be used in many fields and 
industries but, there is more need for study on the hidden and unknown 
mechanisms of nanofluids to make them more applicable. Also, more in-
vestigations are needed to simplify the preparation methods and enhance 
the thermos-physical properties of nanofluids. 
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