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1. Introduction

The main factor in the agricultural area playing a very important 

role in plant growth is an appropriate distribution of fertilizer and water. 
However, around 50–70 % of potassium, 80–90 % of phosphorus, and 
40–70 % of nitrogen incorporated in conventional fertilizers are wasted 
by volatilization or leaching, which leads to release of them into the 
environment rather than being absorbed by plants [1, 2]. Therefore, there 
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

The present study includes an overview of the applications of clay-based nanocomposites from the past decade to 
date in various fields such as pharmaceuticals, water treatment, food packaging, electricity, automotive, and espe-
cially the production of chemical fertilizers with water retention and slow release. In the agricultural area, one of 
the promising materials that help green chemical engineering and green chemistry is slow-release fertilizer (SRF). 
Clay minerals and clay nanocomposites provide cost-effective and efficient material for this purpose. In this paper, 
the research and development of polymer nanocomposites based on clay in recent years with the focus on their 
application as novel fertilizers have been reviewed. Clay minerals are promising reinforcements to manufacture 
high-performance, lightweight, and low-cost nanocomposites because of their abundance, layered structure, low 
cost, and rich intercalation chemistry.
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is a need for improvement and management of fertilizer nutrients and 
water resources utilization. The utilization of controlled- or slow-release 
fertilizers is one way to improve the fertilizer application. The first ma-
jor category of this kind of fertilizer is matrix type formulations as a 
result of their facile fabrication. In this system, the active materials are 
distributed in the matrix and its diffusion occurs through intergranular 
(pores) or continuum openings (channels) in the matrix [3, 4]. Moreover, 
the aim of developing slow-release fertilizers is the gradual secretion of 
the nutrient to be regulated based on the nutrient requirement of plants. 
In order to control the release rate, the physical preparation of the fertil-
izers using engineered matrices could be used [5, 6]. As environmental 
protection issues are nowadays in the center of attention, the degrad-
ability of these systems is desired [7]. Clay-based nanocomposites have 
significantly attracted attentions among nanocomposites that are utilized 
in chemical fertilizers. Polymer nanocomposites are composed of a 
polymeric matrix filled with reinforcements with at least one dimension 
in the nanometer-scale [8]. One-dimensional nanofillers are in the form 
of layered minerals such as clay [9-12]. In the following sections, we 
have briefly mentioned the applications of clay-based nanocomposites, 
mainly in the field of chemical fertilizers for agricultural applications.

2. Clay-reinforced nanocomposite

Polymer nanocomposites have attracted much attention leading to 
investment in research and development around the world [8]. Clay 
platelets are one-dimensional disc-like nanoparticles that possess unique 
structure and characteristics [13]. These minerals are both synthesized 
clays such as magadiite, laponite, and fluorohectorite, and natural clays 
viz. saponite, hectorite, and montmorillonite [10]. Nowadays, the use 

of polymer/clay nanocomposites (PCNs) is one of the most applied 
modern technologies, since they can generate new polymer properties 
[14]. PCNs are widely used in modern technologies due to being able to 
introduce new properties to polymers [14]. PCNs possess unique char-
acteristics including their capability to confine polymer chains at the 
nanometer scale and disperse in the matrix [15]. Properties of polymers 
such as gas barrier properties, toughness, heat distortion temperature, 
stiffness, modulus, strength, and chemical resistance could be signifi-
cantly enhanced by adding a low amount of fillers [16-18].

Nanocomposites or conventional composites can be formed under 
the processing condition, components nature as well as the interfacial 
interactions of modified or unmodified layered silicates and polymer 
chains. The type of formed nanocomposites is illustrated in Fig. 2 [19].

3. Applications of Clay-reinforced nanocomposite

Clay-based polymer nanocomposites are promising alternatives to 
conventional micro composites as a result of the ability to disperse clay 
platelets in nanoscale in the matrix and improve physical, chemical, 
electrical, optical, thermal, mechanical, and barrier properties [10, 22].

3.1. Electro materials

New organic-inorganic hybrids with excellent electrical properties 
could be produced based on polymer nanocomposites. Conducting poly-
mers reinforced with clay particles exhibit remarkable electrochemical 
properties, which have been employed for applications including smart 
windows, solid-state batteries, modified electrodes biosensors, and other 
electrochemical devices. PPR nanocomposites, for instance, could be 
developed to produce modified electrodes that are utilized as devices for 
electrocatalysis or sensors. Because PEO nanocomposites exhibit single 
ionic conduction behavior and relatively high conductivity at ambient 
temperature and they do not have significant dependence on tempera-
ture over conventional electrolytes based on LiBF4/PEO, they could be 
offered as new electrolyte materials. Additionally, these nanocomposites 
are excellent models for investigation of the interfacial structure and dy-
namics [10, 23].

3.2. Automotive Components

Today, automotive industries are widely benefiting from polymer 
composites. Nevertheless, these composites are composed of polymers 
filled with a great number of microscale particles, flame resistant, chem-
ical resistant, and thermal stabilizer additives. Hence, the enhanced 
performance often leads to the low fuel efficiency and increment of 
materials density. On the other hand, by using polymer nanocompos-

Fig. 1. (a) Crystal structure of clay minerals including 1:1 and 2:1-layer type, 
where M can be Fe, Mg, Al, etc. and X is mostly OH (b) Siloxane cavity in the 

basal plane of a tetrahedral sheet.

Fig. 2. Type of polymer clay nanocomposite.
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ites, transport industries such as aerospace and automotive can benefit 
from higher performance with affordable materials, and a significant re-
duction of weight. The commercial nylon 6/clay nanocomposites were 
first used by Toyota Motors in the timing-belt cover in the early 1990s. 
The manufactured timing-belt cover showed excellent thermal stabili-
ty, enhanced rigidity with no wrap. As a result of the lower amount of 
clays, the weight also was saved by up to 25%. Besides, due to their re-
markable enhancement of mechanical properties, barrier properties, and 
heat distortion temperature (HDT), nylon 6/clay nanocomposites have 
also been utilized as fuel hoses, oil reservoir tank, and engine cover in 
the automotive industry. In 2002, a thermoplastic olefin/clay nanocom-
posite with 2.5% reinforcement was also used by General Motors for 
step-assist on Chevrolet and Safari. Today, polymer nanocomposites are 
believed to have the potential to be used in different internal and exter-
nal parts of vehicles including under-the-hood parts, door handles, and 
mirror housings. The polymer nanocomposites weight can benefit ma-
terial recycling and environmental protection [10, 23]. The fundamental 
stages of nanocomposites' production for automotive applications are 
illustrated in Figure 4. In the production of competitive parts for a par-
ticular use, there might be some great challenges in each step that must 
be resolved. There exist different variations in the preparation process 
for a specific application that must be regulated according to the part 
specifications as well as the method of processing. Regarding these con-
siderations, critical demands are imposed on the science and technology 
required for the processing of polymer-based composites [24].

3.3. Coating and Pigments

Nano pigments or PlanoColors® consisting of environment-friend-
ly organic dyes and clays have been offered as potential substitutes for 

toxic palladium (Pd) and cadmium (Cd) pigments. The Plano Colors 
are easily dispersed in coatings and bulk polymers in the nanometer 
scale. By selecting suitable dyes from various organic dyes, different 
pigment colors are possibly synthesized. Additionally, materials that are 
dyed with Plano Colors completely keep their transparency due to the 
smaller size of these pigments in comparison with the light wavelength. 
Moreover, these nano pigments enhance temperature, ultraviolet (UV), 
and oxygen stability accompanied by high color efficiency and brilliance 
which is due to their improved interaction with light by their large sur-
face area [10, 25].

3.4. Packaging Materials

Clay/polymer nanocomposites could exhibit remarkable improve-
ment of shelf-life for various types of packaged food due to their ex-
cellent barrier properties. Furthermore, adding clay to polymers main-
tain the optical transparency of the nanocomposite films, which is not 
possible to achieve in conventional polymer micro composites. Hence, 
due to the above-mentioned characteristics, clay/polymer nanocompos-
ites are widely acceptable in packaging industries including beverage 
containers, wrapping films, packaging of cereals, confectionery, cheese, 
processed meats, dairy products, fruit juice, and carbonated drinks bot-
tles. Bayer, for example, has recently produced a novel food packaging 
plastic films made from nylon-6/clay nanocomposites with the exfoliat-
ed structure [26].

3.5. Drug Delivery

Recently, polymer/clay nanocomposites have attracted the attention 
of researchers in the field of controlled drug delivery. The number of 
published reports on these nanocomposites for drug delivery applica-

Fig. 3. Applications of clay-nanocomposite.

Fig. 4. Nanocomposites processing steps for automotive applications. Fig. 5. Number of publication reporting clay-based nanocomposite for drug 
delivery.
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tions is illustrated in Fig. 5 [27, 28]. As a result of specific properties 
superior to pristine polymers such as increased thixotropy, enhanced 
mechanical strength, higher heat resistance, increased gaseous per-
meability, even with the addition of 5% or less content of clay, these 
nanocomposites have attracted considerable attention [29-34]. Due to 
the promising characteristics, polymer/clay nanocomposites have been 
proposed for applications in various fields such as pharmaceutical, bio-
medical, and biochemical fields [35-37].

3.6. Wastewater Treatment

One of the applications of polymer/clay is in the  effective water 
treatment by adsorbing and flocculating of both organic and inorgan-
ic micro-sized pollutants from aqueous solutions. When some of these 
nanocomposites are modified with biocides, they show the ability of 
microorganisms removal including Escherichia coli, Staphylococcus 
aureus, Candida albicans, and Pseudomonas aeruginosa from waste-
water. Compared to neat clay, polymer/clay nanocomposites could be 
easily recovered from aqueous solutions [38]. Furthermore, the treat-
ment times of PCNs are reported to be better than that of either clay or 
polymer adsorbents. The nanocomposites also possess better life cycles 
and improved adsorption capacity in comparison with clay alone. There-
fore, clay-reinforced nanocomposites exhibit a high potential of efficient 
wastewater treatment [39, 40].

3.7. Controlled- or Slow-Release Systems Applied to Fertilizers

Smart fertilizers that are fertilizers with controlled- and slow-release, 
can gradually release the containing nutrient with the possibility to regu-
late the release according to the nutritional requirements of plants. These 
systems make the nutrients available for a longer period compared to 
fertilizers with high solubility, which release their nutrients rapidly [41, 
42]. The official distinction between slow-release and controlled-release 
of fertilizers does not exist. Reduction of environmental contamination, 
minimizing root damage and soil compaction, saving fuel, reducing the 
labor, elimination of parcels for covering, and prevention of physical 
damage to the crop due to application processes are the remarkable ben-
efits of these systems [41]. Figure 6 compares a controlled release and 
conventional system for a specific active nutrient. Zhao et al. [43] stud-
ied the influence of fertilizer with controlled-release on the production, 
photosynthetic rate, nitrogen use efficiency, and ammonia volatilization 
in maize cultivation. According to their observation, the use of coated 
urea with sulfur or resin exhibited improved outcomes in all parameters 
compared to common fertilizers. Li et al. [44] utilized a slow-release 
fertilizer system based on treated coal ash for potassium sources. They 
tested the system directly in the soil and reported that the use of the 
slow-release system led to a positive effect on the development of crops. 
A new series of hydrogels consisting of methylcellulose, polyacryl-
amide, and montmorillonite were synthesized by Bortolin et al. [45]. 
They reported that the incorporation of clay led to some improvements 

in the properties of the materials. Adsorption–desorption investigation 
of urea demonstrated that the hydrogel composite that included mont-
morillonite released urea in a more controlled rate (around 200 times 
slower release rate compared to conventional pure urea) in comparison 
with the neat hydrogel. The results show the excellent potential of clay, 
especially montmorillonite, to produce novel fertilizers with controlled- 
or slower release.

4. Polymer/Clay Nanocomposites for Fertilizers

Due to being easily obtained, having higher efficiency, and resistance 
to environmental effects, systems based on polymers are more common-
ly used for various applications [46]. Besides, polymer-based products 
are used in different physical states as carriers such as melts, hydrogels, 
solutions, and powders. As biodegradable polymers can be degraded by 
microorganisms activity, they have some advantage over conventional 
polymeric systems leading to having greater control over the release of 
active component [47].

Nanocomposites based on polymer and low clay loading are new 
materials for the controlled release of materials [48, 49]. This group of 
nanocomposites consists of a polymeric matrix in which layered na-
no-scaled silicate is dispersed. The clay minerals are the general type of 
2:1 layer- or phyllo-silicates including synthetic mica, saponite, mont-
morillonite, etc. In these minerals, silicate layers of 1 nm thickness and 
10–2000 nm length are stacked [50-52]. It has been reported that the 
combination of polymer and clay could demonstrate greater control rate 
for the release of materials and could provide a firm network through 
strengthening the lattice structure [53].

4.1. Chitosan/Clay Nanocomposites

By partial deacetylation of chitin (abundantly found in the exoskele-
ton of water animals such as shrimp, crab, etc.), chitosan polysaccharide 
is derived [54]. Chitosan is considered as a naturally abundant material 
due to being naturally regenerating resource; moreover, it is degradable 
and non-toxic. Owing to the mentioned properties, this polysaccharide 
has gained considerable attention in various applications such as agri-
cultural applications [54-59]. Chitosan has been used as a coating for 
compound fertilizers such as potassium, phosphorus, and nitrogen com-
pounds [60]. Incorporation of layered silicates such as montmorillonite 
in the polymer could improve some properties such as the adsorption ca-
pacity for chemical compounds as well as water. Santos et al. [61] devel-
oped chitosan and montmorillonite clay microspheres containing potas-
sium using a coagulation route. They reported that the incorporation of 
montmorillonite into chitosan resulted in enhanced sorption properties 
compared to the neat chitosan microspheres. Souza et al. [62] monitored 
the performance of microspheres based on chitosan/clay hybrid for the 
release of potassium nitrate in lettuce cultivation. Based on the obtained 
results, soils that were treated with the nanocomposites exhibited higher 
electrical conductivity and moisture. Additionally, in comparison with 
conventional fertilization, a gradual and homogenous release was ob-
served. According to the statistical analysis, the nanocomposite micro-
spheres exhibited an efficient, controlled release of nitrogen.

Messa et al. [63] developed microparticles of chitosan and montmo-
rillonite for prolonged potassium nitrate release as an efficient fertilizer. 
The results indicated that the prepared microparticles could maintain 
higher potassium content in the soil for up to several weeks. They pro-
posed that the chitosan/clay microparticles are good candidates for agri-
cultural applications due to their release efficiency.

4.2. Alginate/Clay Nanocomposites

Alginate is a linear polysaccharide consisting of β-D mannuronic 

Fig. 6. Comparison between the controlled-release system and the conventional 
systems.
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acid moieties and 1–4 linked α-L-guluronic in different compositions 
that is obtained from brown seaweed [64]. By incorporation of Ca2+ ions 
in an aqueous solution, alginate can be ionically crosslinked. As a result 
of this mild gelation capability, alginate is widely utilized as fertilizing 
systems with the controlled-release [64, 65]. On the other hand, the so-
dium alginate matrix is easily destructed by monovalent cations with 
poor mechanical properties. Moreover, controlled-release behavior is 
not always observed in sodium alginate hydrogels. A burst release of 
nutrients at the first stage is exhibited and then the remaining nutrients 
are released slowly [66]. He et al. [67] used sodium bentonite and algi-
nate composites to encapsulate Raoultella planticola Rs-2 to prepare a 
slow-release biofertilizer with high efficiency and minimized production 
costs. After six months of storage, around 88.9% of Rs-2 in dried ben-
tonite/alginate microcapsules survived. The efficient amount of alginate 
for the production of desirable composite microcapsules was remark-
ably lower compared to alginate alone. Release rate, biodegradability, 
and swelling decreased with increasing the content of bentonite and en-
hanced with the increment of NaAlg content. An initial burst in release 
curves of bacteria was observed for all the composite microcapsules; 
then a gradual increase occurred indicating that the release model was 
the first-order release. Therefore, the low-cost encapsulated microcap-
sules could be offered as promising slow-release fertilizers in farmlands. 
In another research, Singh et al. [68] synthesized starch–alginate beads 
by the incorporation of bentonite and kaolin for modification of the thi-
ram fungicide release as well as minimizing the environmental contam-
ination. Kaolin and bentonite were employed as adsorbent materials in 
the bead composition. According to the results, the addition of benton-
ite and kaolin to starch–alginate beads led to the controlled release of 
thiram. In comparison with the kaolin-based beads, the bentonite-based 
composition demonstrated a slower release rate. 

4.3. Cellulose and their derivative

The most abundantly found biopolymer on earth is cellulose, which 
is the main constituent of plant-based materials such as hemp, wood, and 
cotton [69]. This linear polysaccharide is composed of β (1-4) linked 
D-glucose units (several hundred to thousands). There are multiple 
hydroxyl groups on the glucose units, which can react with different 
reagents either fully or partially to form other derivatives including cel-
lulose esters and cellulose ethers [70].

As a result of film-forming ability, biodegradability, and renewabil-
ity, the application of cellulose and its derivatives as carriers for fertil-
izing substances has attracted attention [45, 71-74]. The primarily used 
cellulose derivative for fertilizer coating is ethylene cellulose (EC), 
which is a biodegradable, hydrophobic, and inert material. Pérez et al. 
[75] sprayed EC ethanol solution (5%) onto urea-lignin particles in a 
Wurster fluidized bed at 60 °C. Different coating thicknesses of EC were 
applied on the particles and the nitrogen-release rates were measured by 
water leaching experiments. The observations showed that EC coating 
could inhibit water diffusion and decrease the nitrogen release rate.

Ni et al. [76] developed a slow-release nitrogen fertilizer system 
based on natural attapulgite clay, EC film, and sodium carboxymeth-
ylcellulose/hydroxyethylcellulose hydrogel. They reported that the pre-
pared fertilizer system could effectively decrease the loss of nutrients, 
enhance the efficiency of water consumption, and increase the time of 
irrigation cycles in drought-prone environments.

4.4. Acrylamide/clay nanocomposites

Most superabsorbents are produced using synthetic hydrophilic 
polymers including polyacrylic acid or polyacrylic acid-poly acrylamide 
copolymer; however, they suffer from poor degradability in soil and ac-
cumulation over time [77].

Verma et al. [78] synthesized nanoclay/polymer composite based on 

in-situ polymerized acrylic acid-acrylamide and modified nanoclay for 
the availability of phosphorus for wheat as a test crop. They reported 
that the amount of phosphorus uptake enhanced from 3.32 mg kg-1 to 
8.71 mg kg-1 for the treatment by conventional diammonium phosphate 
fertilizer and nanoclay/polymer composite treatment in Alfisol, respec-
tively. The amount of increase in the case of Inceptisol was from 4.45 to 
9.78 mg kg-1. The percentage of soil phosphorus fixation at the flowering 
stage decreased from 50 to 0 and from 60 to 19 in Inceptisol and Alfisol, 
respectively. Moreover, fertilizer phosphorus use efficiency improved 
by loading phosphorus into the nanoclay-polymer composite. Thus, the 
modified nanoclay/polymer composite exhibited promising properties as 
a fertilizer carrier to decrease production cost and enhance nutrient use 
efficiency, particularly for phosphorus because its availability in soil is 
very low.

Rashidzadeh et al. [79] developed a slow-released system for ni-
trogen, phosphorus, and potassium (NPK) fertilizer encapsulated in a 
superabsorbent nanocomposite. NPK was encapsulated by in-situ po-
lymerization of acrylamide, acrylic acid, and sodium alginate in the 
presence of montmorillonite clay. According to the results, the incor-
poration of montmorillonite led to the release of the nutrients in a more 
controlled way compared to neat superabsorbent. Because of good water 
retention capacity and good slow-release property, this system could be 
offered as a potential fertilizer carrier for agricultural applications.

5. Conclusions and future insights

It can be concluded that a significant part of the growing research 
fields is focused on polymer/clay nanocomposites for various challeng-
ing applications. More importantly, by the continuous increase in popu-
lation, there is an ever-increasing food demand worldwide; therefore, it 
is necessary to increase crop productivity is to provide sufficient food for 
people. On the one hand, crop productivity could be achieved by using 
fertilizers. On the other hand, overusing fertilizers can cause some dam-
age to environments and human health. Hence, to enhance the efficien-
cy of fertilizing, slow-release fertilizers have attracted much attention. 
Polymer/clay nanocomposites exhibit promising properties to be used as 
superabsorbent and slow-release fertilizing systems [80].

In this regard, there will be further growth in the application of clays 
in different fields, especially in industrial and environmental applica-
tions. The significant technological importance of these composites is 
due to their tailoring characteristics including size, shape, hydrophilic-
ity, and elementary building unit combinations. Various types of these 
minerals and their composites have not yet been widely investigated 
to develop new high-performance polymer composites. Therefore, the 
properties of these composites will be tailored to expand their potential 
applications. 
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