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ABSTRACT
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1. Introduction

Thermal systems are generally designed based on three objectives:
enhancing system thermal efficiency [1-3], ensuring safety, and in-
creasing service lifespan [4]. Selecting suitable working conditions,
and the choice of materials, e.g. thermal systems, engine design, tool
manufacturing, electronic devices, and biomechanics instruments are
the important designing parameters [5, 6]. Advanced ceramics with in-
teresting thermomechanical properties are proven promising materials
for the harsh condition applications of high temperatures or corrosive
media. These materials have wide applications in aerospace, thermal
systems, automotive technology, and manufacturing processes [7—10].

* Corresponding author: F. Sadegh Moghanlou; E-mail: shahedi@uma.ac.ir
DOR: 20.1001.1.26765837.2020.2.2.5.3
https://doi.org/10.29252/jcc.2.1.5

Ceramics are generally brittle and this is problematic in the case of im-
pact or thermal shock. This issue needs to be considered with all as-
pects to avoid undesirable problems. Obtaining detail information about
the physical characteristics of a designed device is a problematic issue,
and in some cases, it seems to be impossible. Numerical simulation is
a reliable method that provides detailed information at any point of the
investigated case. The ability of the numerical methods has been verified
in various fields of engineering, including biomechanics [11], energy
[12—14], optics [15] micro, and nanotechnology [16, 17].

Comsol Multiphysics, as a commercial software package, provides
a user-friendly environment to investigate a wide range of physical phe-
nomena. The various embedded modules cover a wide range of physical
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Table 1.
Temperature-dependent thermal properties of some advanced ceramics.

Material ZrB,

TiB, [25-27] TiC

Heat capacity (J/Kg.K) ~ 0.704+2.52x 107 xT —80.2xT ™

(28]
Density (Kg/m®) 6080 [30]
Thermal conductivity
(W/m.K) 60.316+0.0041x7 [30]

976+0.21x (T —273)—426x 1077

(0.04317 +10.05)x10°*

803+5.744x10° T
-5.427x10° T-23.685%10°/T* [29)

77.3 +(8270x 100> 273)) 4930 [31]
x(410+ (T —273))"

9.8x10° T +23.994 [32]

analyses. The physical governing equations are designed to be solved
using the finite element method. Numerous researches using Comsol
have shown its ability to provide reliable results.

The present review article explores the heat transfer aspect of ad-
vanced ceramics using Comsol Multiphysics. By employing this soft-
ware, it is possible to combine different active or passive methods to
enhance heat transfer in thermal devices. In the active methods, external
energy serves to increase the heat transfer rate. In the passive methods,
variation in geometry or properties of applied materials augments the
heat transfer [18, 19]. This review describes numerical simulations by
Comsol Multiphysics covering various fields of heat exchangers, cutting
tools, solar and energy systems, optical and manufacturing processes.
The governing equations for each application are introduced and the re-
sults of the numerical simulation are presented.

2. Laser drilling

Among the various methods of fabrications, laser drilling of ceram-
ics offers several advantages such as fast manufacturing rate, precise
production, easy handling, high productivity, and low cost [20,21]. In
this method, a high-intensity beam is concentrated on the subjected point
to melt and vaporize the applied materials [22]. The transfer process
in the heat-affected zone is an essential parameter since improper tem-
perature distribution and consequent thermal stresses may cause damage
to the products [23, 24]. Local excessive thermal stress in the heating
zone may result in surface and subsurface cracks. The detail information
about the cutting process is needed to achieve a precise final product.
Numerical simulations give detailed information about the heat transfer
mechanism, temperature distribution, and phase change during ablation.
It is also possible to insert the solid mechanic equations to acquire re-
sulted thermal stresses, elastic and plastic strains, and the points capable
of cracks formation.

The governing equations about the laser drilling process are as fol-
low:

Time-dependent energy conversion equation:

or
pCpgzv.(kVT)+Q 1)

where p (kg/m’) is density, C,(J/kg.K) is heat capacity, and k
(W/m.K) represents thermal conductivity. O (W/m?) belongs to the heat
source inside the computational domain.

In numerical simulations, finding suitable temperature-dependent
properties is very important. Some of the temperature-dependent ther-
mal properties of several advanced ceramics are given in Table 1.

To simulate the thermal stresses and strains, the following equations
are needed:

(o) - E{a}AT

1-v 2)

where {0} (Pa) is thermal stress, F {a} (Pa) represents Young’s
modulus, A7 (°C) denotes temperature difference, and V is Pois-
son’s ratio.

The thermal strain vector is defined as:

{g’h } ={a}AT (3)

The heating effect of the applied laser can be used as a boundary

source or boundary heat flux. The commonly used laser power is as [24]:
2

7
P =P, exp(——
s Oexp( W2) (4)

where P_is the i(r)1tensity of applied laser power (W/m?), P, is the peak
power value,  (m) is the radial distance from the beam center, and the
W, (W/m?) belongs to the radius, in which the amplitude is 1/¢*.

The heat transfer to the surrounding occurs via all boundaries. Two
mechanisms of convection and radiation dissipate the heat from the hot
surfaces to the ambient. The convective heat transfer is introduced as
Newton cooling law:

q. =hAAT )
where ¢, (W) denotes convective heat transfer, 4 (m?) is the heat
transfer area, and A7 (°C) is the temperature difference between the

hot surface and ambient fluid. The radiation heat loss is as:

q,=e0A(,*-T,," ©)

where ¢ (W) is radiative heat transfer to the sur-
roundings, & is the emissivity factor, and
o (5.6704x10’*(mZVK +) is Steffen-Boltzmann constant.

Bharatish et al. [24] evaluated the thermal residual stresses during

the laser drilling of a workpiece made of alumina (Al,O,). Some factors,
e.g. laser power, frequency, hole diameter, and the scanning speed, were
investigated. A series of time-dependent numerical simulations were

performed to obtain the temperature distribution and predict the ther-

Specimen

Heat-afected zone

Non-circular
hole

Fig. 1. Schematic of the heat-affected zone in the laser-drilled hole.
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mal stresses. The governing equations of transient heat transfer as well
as stress-strain equations were solved using Comsol Multiphysics soft-
ware. The results of simulations were used as validation for Raman ther-
mal residual stresses. The captured scanning probe microscopy (SEM)
images also confirmed that the cracks occurred at the heat-affected zone.
The schematic of the hole and heat affected zone is shown in Fig. 1. Note
that the laser-drilled hole is not circular.

Jia et al. [33] performed some experiments to investigate the mi-
cro-hole drilling in an Al,O, ceramic. They used combined laser pulses
of'a millisecond, assisted a nanosecond (ns) pulse train, and reported that
the used energy for drilling was decreased by order of magnitude. They
simulated the drilling process using Comsol Multiphysics and showed
that the elliptical keyhole ablated by nanosecond pulse train did not af-
fect the circularity of the obtained hole.

Samant et al. [34] proposed a mathematical model to predict ma-
chined depth in laser cutting of silicon nitride (Si;N,) ceramic. They
solved the heat transfer equation to obtain temperature distribution
and considered the decomposition of the sample, evaporation because
of high heat fluxes, and recoil pressure provoked expulsion of molten
material. They reported a reasonable agreement between experimental
data and presented a model for most of the cases. The discrepancy, in
some cases, was attributed to errors in the measurement of experimental
samples depth.

The machining of magnesia (MgO) using pulsed Nd: YAG laser was
simulated by Samant and Dahotre [35]. A mathematical model was pro-
posed and the governing equations were solved using Comsol Multiph-
ysics and finally, the results were compared with the experimental data.

The laser drilling of SiC ceramics was investigated by Samant et
al. [36]. They claimed that the model is capable of providing required
drilling pulses for a given depth of the sample. They also predicted the
maximum needed recoil pressure for the melt pool during the drilling.

Wang et al. [37] reviewed the laser drilling of ceramics and referred
to some researches performed using Ansys and Comsol. They concluded
that the numerical simulations provide important parameters that are in-
volved in the fabrication of high-quality products during the laser drill-
ing of ceramics.

3. Heat exchangers

The application of ceramics as heat exchanger material has attracted
more attention in media with high temperatures. Large deformations,
oxidation danger, and metallurgical problems confine the application of
metals at media with high temperatures or corrosive behavior [38, 39].
Ceramics generally have lower thermal conductivities compared to met-
als; however, some groups of ceramics such as ZrB,, TiB,, SiC, Si,N,,
AIN, and BeO show astonishing thermal conductivities. The application
of these materials in the cooling of thermals systems, especially elec-
trical processors, and optic systems have shown attractive heat transfer
enhancement. An exploded view of AIN-made micro heat exchanger is
shown in Fig. 2.

Fend et al. [41] performed some computations to simulate a gas/gas
heat exchanger made of SiC at high working temperatures. They solved
the continuity and momentum equations for fluid flows and the energy
equation for both solid domain and fluid flow. The obtained results of the
numerical simulation were in reasonable agreement with experimental
data. Nekahi et al. [42] investigated the heat transfer and thermal ef-
fectiveness of a micro heat exchanger made of TiB,~SiC ceramic. The
governing equations of fluid flow and heat transfer were discretized by
the Galerkin method and solved using Comsol Multiphysics software.
They compared their results by a micro heat exchanger made of alumi-
na. They reported a 15.5% heat transfer enhancement using TiB,-SiC
ceramic instead of AlL,O,. This enhancement was attributed to the higher

thermal conductivity of TiB,-SiC compared to ALO,.

The governing equations for the simulation of single-phase (no
phase change) heat exchangers are as follow:

Mass conservation equation for fluids:

op _
E + V(pV )=0 7)
Momentum equation for fluid flow:
VNV ——VP+V WV +(VV )T)—g (VV)I
a T s 3 ®)
Energy conservation equation for the ceramic part:
orT
pCpE:V.(kVT)+Q )
Energy conservation equation for fluid flow:
orT
PC, (W VIT)=V.(kVT)+Q (10)

Vajdi et al. [43] investigated a microchannel heat sink made by ZrB,
numerically. A conjugate heat transfer of solid domain and flow field
was considered for simulation, and the governing equations were solved
numerically by finite element method. They reported that at the high
heat flux of 3.6 MW/m?, the maximum temperature did not exceed 360
K. Fattahi et al. [40] simulated the fluid flow and heat transfer in a micro
heat exchanger made of AIN. Aluminum nitride has attractive proper-
ties such as remarkable thermal conductivity, high melting point, and
astonishing elastic modulus [44, 45]. As a result of the higher thermal
conductivity of AIN compared to ALLO,, 59% enhancement in the heat
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transfer was obtained.

4. Solar energy receivers

Ceramics are an inevitable part of energy harvesting systems nowa-
days. The thermoelectric refrigerators and generators [46, 47], and pho-
tovoltaic systems [48] benefit from the exclusive properties of ceramics.
The application of ceramics in solar systems attracts more attention
when the high-temperature conditions such as concentrated solar col-
lectors and solar furnaces are encountered. Numerical methods can pro-
vide the temperature distribution at each point of the solar system. The
obtained temperature gradients can be employed to evaluate consequent
thermal stresses.

Ren et al. [49] carried out numerical simulations using Comsol on
heat transfer of SiC made ceramic foam in a solar receiver. A schematic
of a ceramic foam solar receiver is shown in Fig. 3. Parameters such as
thermal conductivity effect, radiation distribution, and the time-depen-
dent response of the proposed receiver were investigated. They found
that the thicker the receiver dimension, the higher the efficiency of the
system. However, they reported that thickening the receiver structure
would increase the production costs. They also concluded that to avoid
thermal stress based damages, the standard deviation must be adjusted
to the highest possible value.

Wang et al. [50] investigated the thermal radiation in a solar receiver
made of SiC. They solved the governing equations for both ceramics
and fluid domains. They indicated the Nusselt number counter maps for
involved parameters such as solid-fluid thermal conductivity ratio and
conduction-radiation parameters. Fend et al. [51] investigated the ther-
mal performance of a honeycomb structure used in a solar tower. Silicon
carbide was considered as the material, and two numerical models of
single-channel and porous medium were investigated. An experimen-
tal set-up was made and used as validation for the numerical results. A
good agreement between experimental results and numerical simulation
showed the capability of the proposed models.
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1
Fig. 2. The exploded view of AIN-made micro heat exchanger. Reproduced with

permission [40].

5. Sintering processes

Heat transfer during the pressureless sintering of ceramics with low
thermal conductivity was simulated by Comsol Multiphysics [52]. The
sintered sample was a cylinder heated by convection and conduction
mechanisms from a heat source located nearby. The schematic of the
sample and furnace used by Salamon et al. [52] is shown in Fig. 4. They
reported that the final product was not fully dense, and 14% porosity was
obtained with no cracks. The heating rate was in the order of hundreds
per minute, and the simulations showed that by considering only the

“

Dish concentrator

solar -qininn
radiation

v, ",
»

2
4

Fig. 3. Scheme of a ceramic foam solar receiver.

conduction and convection heating mechanisms, the maximum tempera-
ture did not exceed 1200 °C during the sintering. The authors stated that
radiation heat transfer is dominant in the rapid sintering of ceramics.

Wei et al. [53] studied the spark plasma sintering (SPS) of ZrC by
Comsol Multiphysics. They obtained experimental data of the sintering
process and used them to validate the numerical simulations. The 3D
sample and die were modeled in a 2D axisymmetric domain to reduce
the simulation time. The sample fabricated by the spark plasma sinter-
ing showed higher relative density compared to the one obtained by hot
pressing (HP). The proposed numerical method could predict the grain
size and the consequent relative density, as shown in Fig. 5. Temperature
distribution in the sample, die, and punches is given in Fig. 6, which
shows the place of maximum temperature at the punches.

Wei et al. [54] studied the capability of SPS in producing net-shaped
samples such as ring-shaped or annular ones made of ultrahigh tem-
perature ceramics (UHTCs), which are more complex compared to a
solid cylinder or disk. Particular types of graphite die were introduced to
consolidate the ZrC powder in the desired shape, as shown in Fig. 7. The
numerical simulation by Comsol was used to predict the porosity of an
as-sintered annular sample verified by experimental results (Fig. 8). Von
Mises stress distribution at different time steps was also obtained. The
results showed that stress value at the specimen/mandrel interface was
greater than that at the die/specimen interface.

Numerical simulation of heat transfer during SPS of different
UHTCs was also investigated. Heat transfer mechanism and temperature
distribution during the consolidating of the ZrB, powder were studied by
Sakkaki et al. [55]. The studied sample was a disk, and heat generation
inside the sample was modeled by the Joule heating effect. Since ZrB,
is electrically conductive, they compared their results with the study of
Pavia et al. [56], who modeled the SPS of AL,O, as an electrical insulator

Fig. 4. Schematic of the sample and the furnace used by Salamon et al. Reproduced with permission [52].
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Fig. 7. (a) Exploded view, and (b) assembled form of the schematic of the SPS
facility for a ring-shaped sample sintering according to the ref [54].Reproduced
with permission [53].
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Reproduced with permission [53].

0.5 -300

o Porosity-Exp
0451 CREPRN —-=Porosity-Simu

o\ —— Hydrostatic Stress
\

1-250

0.4

035
1-200

031

sity

0.25 1-150

Poro:

021

-100

Mean Hydrostatic Stress (MPa)

015

0.1
=50

0.05

0 n n L L 0
500 1000 1500 2000 2500 3000
Processing Time (s)

Fig. 8. Comparison of numerical and experimental results of SPS modeling of
ZrC. Reproduced with permission [54].
ceramic.

Two sets of governing equations, i.e. electric charge, and energy
conservation equations were solved to find the temperature and electric
current distribution.

The direct electric (DC) Maxwell’s equation is as [57]:

VJ=V(cE)=V(-cVU)=0 (11
Where J(4 /m?), E(/,), UV )and o (5/,) are responsible
for the electric current density, the electric field, the electric potential,
and the electrical conductivity of the used materials, respectively.
Concerning the symmetrical shape of the simulated domain, Sakkaki
et al. [55] used the axisymmetric form of governing equations. They
used the energy conservation equation in the cylindrical form introduced

as:
C or _ lﬁ(rkr 6_T) +lﬁ(rkz or
? ot ror or’ zoz oz

where kr and kz belong to the thermal conductivity in » and z direc-

)+4, (12

tions, respectively. The heat generation as a result of Joule heating is
shown by g, which is defined as:

q,=JE (13)
They also used the cylindrical form of the electric current equation

as:

Loei) o _,,

r or oz (14)

where | and I_ indicate the electrical current densities per volume in
the » and z directions, respectively.
They used root-mean—square (RMS) voltage as [56]:
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Upis =
(15)

where U is the instantaneous voltage, and P is the AC voltage pe-

riod.

Sakkaki et al. [55] showed that the location of the maximum current
density and the maximum temperature are different. The maximum tem-
perature was located at the sample center, while the maximum current
density was at the spacer/punch interface due to its minimum area (Fig.
9). The same simulation was performed for TiC [58] and TiB, [59]. The
results showed that for samples with higher thermal conductivities, a
more uniform temperature distribution could be obtained, which has a
direct effect on the microstructure of the as-sintered sample.

6. Turbine blades

Gas turbine stator blades experience no centrifugal force and con-
sequent tensile stresses; therefore, ceramics can be good candidates for
manufacturing gas turbine stator blades [60]. Sadegh et al. [60] em-
ployed Comsol for heat transfer and thermal stress modeling in a gas
turbine stator blade made of ZrB,. Governing equations of heat transfer
and stress-strain were considered as equations 1-3. The convective heat
transfer coefficient was considered for inner cooling ducts. Since the
outer surface encounters hot gases, its effect was considered applying
the convective heat transfer coefficient.

The temperature distribution and displacement due to thermal stress-
es were defined as shown in Fig. 10. The results showed that the ZrB,-
made stator blade acquired considerably lower displacement but higher
stress compared to M152 superalloy (Table 2, Fig. 11). Employment of
UHTCs like TiB, and HfB, as the gas turbine stator blades were studied
by Vaferi et al. [27] and Nekahi et al. [61], respectively. Vaferi et al.
[27] analyzed the thermal stress in a TiB, made gas turbine stator blade
with Comsol and defined the fatigue possibility of the blade using the
Coulomb-Mohr theory. They reported that the blade could tolerate the
thermal stresses without failure with the safety factor of 2.4. Nekahi
et al. [61] also used Comsol for simulating the heat transfer and calcu-
lating the consequent thermal stresses. They compared the temperature
Table 2.

Comparison of maximum and minimum displacements for turbine blades made
of M152 superalloy and ZrB2 UHTC [61].

Maximum dis- Minimum dis-

Material
placement (mm) placement (mm)
M152 superalloy 227 0.15
ZrB, ceramic 1.37 0.13

and displacement distribution in the blades made of zirconium, titanium,
and hafnium diborides (Fig. 12). Employment of HfB, as turbine blade
material resulted in the lowest displacement and the highest thermal
stress values. It was also declared that all three UHTCs could tolerate the
applied stresses and no failure predicted based on the Coulomb-Mohr
theory.

7. Cutting tools

Ceramics, such as TiB, and WC, are widely used as cutting tools due
to their excellent hardness [62, 63]. Temperature control and cooling of a
cutting device play an essential role in the productivity and quality of the
machined surface [63]. Modeling and measuring temperature distribu-
tion in cutting tools have attracted much attention lately [4, 64]. Vajdi et
al. [62] fabricated a novel TiB,-based composite using SiC and metallic
Ti as reinforcements and measured the thermal properties of fabricated
material. Comsol-assisted numerical simulation was applied to deter-
mine the temperature distribution in the tool, especially the maximum
temperature of the tool tip. They used the heat diffusion equation (Eq. 1)
for the solid parts and convection-radiation equation, equations 5 and 6,
for heat losses from the walls. The geometry of the cutting tool and the
obtained maximum temperature versus time for three different ceramics
is demonstrated in Fig. 13. They concluded that the novel TiB,~SiC-Ti
(TST) composite showed better thermal performance than WC made
common tools.

Heat transfer in the cutting tools made of different diborides and
the effect of SiC addition on the performance of ceramic cutting tools
were studied by Sadegh et al. [63]. They conducted a numerical study by
Comsol and showed that SiC addition to monolithic ceramics improved
their thermal performance. As shown in Fig. 14, the maximum tem-
perature of the cutting tool during a 50-second engagement reduced by
adding 20 vol% SiC to the monolithic diborides. The tool transfers the
generated heat to the surroundings by radiation, convection, and conduc-
tion. To determine the dominant heat transfer mechanism, the authors
analyzed each heat transfer mechanism and its portion in the total heat
dissipation. The results showed that the most important heat dissipation
mechanism was radiation and then conduction to the holder (Fig. 15).

The modeling of the effect of thermal contact resistance (TCR) on
the thermal performance of a WC-made cutting tool was performed
by Sakkaki et al. [4] employing Comsol Multiphysics. TCR plays an
essential role in the heat flow and acts as a barrier; therefore, TCR re-
duction can ease the heat flow. They showed that an ideal case with no
TCR could reduce the maximum temperature considerably, although it
was almost impossible due to its high fabrication cost. Moreover, usual
methods such as applying silicone or metal foils were proposed, and
their effect on heat flow was simulated numerically. In Fig. 16, the effect

of different cases on maximum temperature and heat conduction versus
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cutting time is shown.

One of the proposed methods to protect the cutting tools from high
temperatures is coating their surfaces. Heat transfer and temperature
distribution modeling of a coated carbide turning cutting tool was mod-
eled by Ferreira et al. [65]. They used the heat generation at the tool tip
according to the results of Brito et al. [64] and obtained the temperature
contours in the tool utilizing Comsol Multiphysics. The effect of using
TiN and Al O, as coating materials and their thickness on the thermal
performance of the tool was studied. The results showed that Al,O,
could protect the WC made cutting tool more than TiN coating as a result
of its lower thermal conductivity in comparison with TiN.

8. Summary

Numerical simulations are able to provide the detailed information
about the physical behavior of the advanced ceramics in various engi-
neering fields. Comsol Multiphysics, as a numerical simulation pack is
a powerful software, which covers a wide range of physical phenome-
na and provide reliable results. In the present paper, a comprehensive
review of numerical studies utilizing Comsol Multiphysics about the
heat transfer behavior of some advanced ceramics was carried out. The
advantages of advanced ceramics were discussed. Their applications in
various fields of engineering products and processes were explained.
The performed simulations in laser drilling, heat exchangers, cutting
tools, sintering processes, solar systems, and other thermal devices were
reviewed. The basic governing equations for each case were given, and
some obtained results were depicted. This review article covered the ca-
pability of the Comsol Multiphysics to provide reliable results.
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