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ite materials show high strength and stiffness [14, 15]. The invention of
1. Introduction the airplane and the corresponding industry have increased the demand

for the development of high strength and lightweight materials [17]. By

As composite materials have the capability of developing light- the enhancement of the stiffness and strength of materials, it is possible

weight materials with tunable properties [1-3] for high-performance ap- to use reduced the dimensions and mass for a particular load bearing

plications, they have attracted attention of researchers in recent decades application. In aircraft and automobile industry, the reduction of the re-

[4-7]. Composite materials are defined as two or more components that quired size can provide some advantages, including the fuel efficiency

are chemically distinct and their interfaces are clearly separated. The improvement and an increase in payload. The increase in the efficiency

matrix can be either metals, ceramics, or polymers [8-11]. The compos- of fuel consumption of engines is highly desirable due to global oil re-
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source depletion [19]. As most light metallic materials and alloys can-
not offer both high stiffness and strength to a structure, metal matrix
composites (MMCs) have been developed in which the metal matrix
provides the ductility and strength while the reinforcing component pro-
vides the strength and/or stiffness. The reinforcing material can be either
particles, whiskers, or fibers of a high stiffness metal or ceramic. Some
properties of metal matrix composites such as low thermal expansion
coefficient and high thermal conductivity can be achieved, which make
them good candidates for applications in the electronic packaging field.
Nowadays, MMCs are extensively used in the aerospace and automobile
industry [22].

Carbon nanotubes (CNTs) are composed of rolled-up sheets of
graphene in cylindrical form often in the nanometer range, which shows
remarkable thermal, electrical, and mechanical, characteristics. CNTs
exhibit almost one hundred times tensile strength (~150 GPa) and ap-
proximately six times elastic modulus (~1 TPa) than do high strength
steels depending on their diameter, length, orientation, and chirality
[25]. The use of lightweight CNTs as nano-reinforcement for compos-
ite materials is highly promising. The aim of using carbon nanotubes
is to incorporate their remarkable physical and mechanical properties
into the bulk of engineering materials [22, 28]. Carbon nanotubes have
been used for the reinforcement of metal, ceramics, and polymer ma-
trices. Among these materials, polymer/CNTs composites have been
extensively prepared via interfacial covalent functionalization, solution
evaporation having significant energy sonication, repeated stirring, and
surfactant-assisted processing. On the other hand, metal/ceramic rein-
forced with CNT has not been investigated widely. To disperse carbon
nanotubes in the matrix uniformly, several synthesis methods have been
employed for the production of carbon nanotube/ceramic or metal ma-
trix composites such as hot extrusion, spark plasma hot pressing, sinter-
ing (SPS), and in situ synthesis [31].

Carbon nanotubes are also promising reinforcements for aluminum
that has recently emerged. The poor dispersion of carbon nanotubes and
agglomeration in metallic matrices are major difficulties in achieving
the reinforcing effect of CNTs in metallic matrices successfully [23, 32].
Different processing methods have been investigated to solve this prob-
lem. In this paper, various preparation methods for CNT-reinforced Al
composites have been reviewed.

2. Carbon nanotubes (CNTs)

The most important and abundant element in nature is carbon, and
its pure forms are diamond and graphite. CNTs were first discovered by
Iijima in 1991 [33], and by the discovery of the fullerenes and graphene,
these materials have attracted attention from researchers. The CNT is
in the form of a cylinder consisting of rolled-up graphene sheets with
a regular hexagon structure, which can have a diameter of several folds
smaller than its length. In the structure of an ideal CNT, graphene sheets
consisting of hexagonal-structured carbon atoms are rolled up and create
a hollow, tube-like structure. Carbon nanotubes are divided into two cat-
egories of single-walled carbon nanotube (SWCNT) and multi-walled
carbon nanotube (MWCNT) that is based on the number of graphite
sheets incorporating in their structure. In the MWCNTs structure, there
are a number of concentric tubes of graphene being fitted on each other
[34]. The range of MWNTs and SWNTs diameters is between 2 nm to
100 nm and 0.7nm to 2 nm, respectively, but the length of these nano-
tubes can vary from several millimeters to micrometers [35]. As a result
of properties such as remarkable chemical stability, good absorbability,
specific surface area, and unique electronic structure, carbon nanotubes
are considered as promising materials as catalyst carriers. Moreover,
CNT s are reported to have the capability to be utilized as a support for
dispersion of functional materials for the improvement of some proper-

ties like structure, activity, surface area, and conductivity [36].

As a result of the practical lack of scattering mechanisms, which
increase the mobility of the carrier along the tubes, carbon nanotubes
exhibit a very high electrical conductivity [37]. Furthermore, through
changing the nanotube diameter or helicity, the electronic characteris-
tics of single-walled nanotubes can be altered from semiconductor to
metallic behavior or vice versa [38]. Therefore, they are being studied
for high-speed electronic applications. In nanocomputing and nanoelec-
tronics usage, CNTs can facilitate heat dissipation due to the high ther-
mal conductivity (about 3000 W/ mK) and are comparable to diamond
[39]. Through increasing mechanical integrity and electrical connectiv-
ity, CNTs would improve the cycle life in lithium-ion batteries for cell-
phones and computers. An interesting application of carbon nanotubes is
producing light. This is due to the recombination of holes and electrons
across the semiconductor gap, resulting in the emission of infrared radi-
ation, which is near to the optical windows related to optical fibers [40].

3. Metal matrix composites (MMCs)

Metal matrix composites (MMC) are composed of a metal matrix
and reinforcing components [41, 42]. Reinforcing components are in-
corporated into the matrix in the form of small fibers, continuous fibers,
whiskers, and particles. In the case of MMCs, the reinforcement can be
used in the form of particles, small fibers or whiskers, and continuous
fibers or sheets [43, 44].

Metal matrix composites that are discontinuously reinforced with
particle, whiskers, or short fibers, are of great importance. One reason
is the cost of production, which is an essential factor for large volume
production. MMCs can be prepared by conventional metallurgical pro-
cesses, including powder metallurgy [45] or casting [46], and they can
be processed by conventional secondary techniques such as extrusion
forging [47], and rolling [48]. They can be used in higher temperatures
compared to unreinforced metals, and they exhibit improved strength,
modulus wear resistance, and thermal stability. They possess relatively
isotropic characteristics in comparison with the composites reinforced
by fibers [49].

The metal matrix can be different metals such as Cu [50, 51], Ti,
Al, Mg, their alloys, and intermetallic compounds. Due to excellent
strength, low density, high toughness, and resistance to corrosion, Al
alloys, are considered as important materials for aerospace applications
[35, 52]. In the automotive, aerospace, and sports industries in where
both lightweight and mechanical properties such as high strength and
stiffness are desired, carbon nanotube reinforced metals are capable of
revolutionizing these industries [53].

4. Aluminum matrix composites (AMCs)

In aluminum Matrix Composites, the matrix is Al or Al alloy, and the
reinforcing component is embedded in this metal matrix [54]. This rein-
forcement is commonly non-metallic and usually a ceramic material like
ALQ,, SiC, CNTs, and etc. [55-60]. The type of reinforcements and their
volume fraction in the matrix alters the properties of AMCs. AMCs have
some advantages in comparison with unreinforced materials, including
improved stiffness, higher strength, controlled coefficient of thermal ex-
pansion, enhanced high-temperature behavior, reduced density, higher
abrasion and wear resistance, enhanced electrical properties, and en-
hanced damping capabilities [61-63].

A significant increase in the elastic modulus of unreinforced Al from
70 GPa to 240GPa can be observed by adding 60 vol. % continuous
Al fiber. Moreover, reinforcing pure Al with 60 vol. % alumina fiber
can reduce the expansion coefficient (24 ppm/°C to 7 ppm/°C. Also, it
has been shown that adding 9 vol% Si and 20 vol.% SiCp to Al has the
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potential of having wear resistance comparable to that of grey cast iron
[64]. Overall, through the incorporation of suitable reinforcing com-
ponents with appropriate volume fraction, it is possible to enhance the
technological properties of Al and its alloys greatly. Aluminum matrix
composites present such superior combination of characteristics that
common monolithic materials are not able to compete [65]. Aluminum
matrix composites have been utilized in various functional, structural,
and non-structural engineering applications owing to their good per-
formance, and environmental and economic advantages [66]. Lower
airborne emissions, lower fuel consumption, and less noise is the key
advantages of aluminum matrix composites for utilization in the trans-
portation sector. AMCs are becoming inevitable material in the trans-
port industry because of ever-increasing environmental concerns and
improved fuel consumption efficiency [67].

Based on the form of reinforcing components aluminum matrix
composites can be categorized into four different types: (I) Mono fil-
ament-reinforced AMCs (MFAMCs) (II) Continuous fiber-reinforced
AMCs (CFAMCs) (IIT) Whisker-or short fiber-reinforced AMCs (SFA-
MCs) (IV) (PAMCs) [68]. Particle incorporating in AMCs are generally
equiaxed ceramic materials having an aspect ratio smaller than 5 [69].
For structural and wear resistance applications, the amount of ceramic
components is less than 30 vol. %, while the volume fraction can reach
to 70% for applications in electronic packaging fields. In comparison
with other types of AMCs, PAMCs exhibit lower mechanical properties;
however, compared to pure Al or Al alloys have better properties. The
aspect ratio of reinforcing components is greater than five in SFAMCs,
but they are non-continuous. AMCs, including short alumina fibers, is
one of the most and first popular Aluminum composites developed to
be used in pistons. In CFAMCs, the reinforcing components can be alu-
mina, SiC or carbon continuous fibers having a diameter lower than 20
um. These continuous fibers can either be braided, woven, or parallel
before undergoing the production process of composites [70]. MFAMCs
are composites consisting of fibers with a large diameter of 100 to 150
pum that are prepared via chemical vapor deposition (CVD) of B or SiC
into a W wire core or carbon fiber. In comparison with multifilaments,
monofilaments have lower bending flexibility [71].

Production of aluminum matrix composites at an industrial scale
is carried out through two main processes. (1) Liquid state processes,
(II) Solid-state processes. Solid-state processes include physical vapor
deposition, diffusion bonding, and powder mixing and consolidation
(PM processing). In-situ processing, spray deposition, infiltration pro-
cess, and stir casting are categorized under liquid state processes [64].

A 100% increase in the tensile strength with the incorporation of 10
volume percent of carbon nanotube was first reported by Kuzumaki et al.
[72]. Researchers have tried to increase the amount of carbon nanotube
up to 6.5 vol.% in AI/CNT composite using the powder metallurgy route
[73] and secondary processes such as hot deformation and SPS [74].
The incorporation of 5 vol.% CNT was shown to increase the tensile
strength to 129% [75]. In contrast, a reduction of hardness by the incor-
poration of 5 volume percent was observed by Salas et al. [76] using in a
shock-wave consolidation. The reduction of properties is a result of the
agglomeration of carbon nanotubes in the Al phase and weak interfacial
adhesion of the two phases. Laha et al. [77, 78] studied the effect of add-
ing 10 wt% CNT to aluminum coating through thermal spraying meth-
ods, and their results showed that CNTs improved the elastic modulus
by 78%, hardness by 72%, and decreased ductility by 46%. The elastic
modulus of the sprayed AI/CNT composite coating sintered at 673 K
was proposed to increase by 80%, which was reported to be a result of a
decrease in porosity and residual stress [79].

5. Strengthening mechanisms in carbon nanotube-rein-
forced composites

Fibrous reinforcing components such as carbon nanotubes are used
to enhance the tensile strength elastic modulus of the matrix. These im-
provements are a result of the higher strength and stiffness of carbon
nanotubes in comparison with the metal matrix. Researchers have tried
to understand the mechanisms incorporating in the strengthening of fi-
ber-reinforced composites. The model applied to study CNT composites
is the shear lag models [80] related to all conventional composites rein-
forced with fibers and is presented below:

f - Z‘Emf

L= 1)

where o, is the stress transferred to fibers through the interface of
the matrix and the reinforcement and has a relation with the shear stress
() between the two phases. D, and l/ are the diameter and length of
carbon nanotubes, respectively. The larger aspect ratio of CNTs leads to
the larger load transfer to the reinforcement and hence higher reinforc-
ing efficiency is achieved. o, equals to the fracture strength of carbon
nanotubes for a critical length /c. The fracture strength of the composite
when /</_is calculated by:

gfrac = VfO'meC (ZLZC) + Y, afrac ®))

AV/CNT composites synthesized via ball milling and extrusion were
shown to follow this relation well [18]. An undesirable reaction that can
occur in metal matrix nanotube composites is the formation of carbide at
the interface of metal and CNTs. Thus, the shear strength of the formed
phase affects transferring the stress to carbon nanotubes. If the applied
stress is higher than the shear strength, fiber pulls out occurs due to the
carbide layer fracture [81]. The relation derived for the strength in the
presence of a carbide interfacial layer by Coleman et al. [82] is given as:

o, = (1 + 2b/D) [ashear l/D - (1 + Zb/D)am] Vi +0m 3)

where the interface shear strength is denoted by o, . D and b are the
diameter of carbon nanotubes and the width of the carbide layer, respec-
tively. It has been reported that the strength measured experimentally
(83.1 MPa) is much less than that calculated using this relation (226
MPa). This is a result of different factors that are not taken into account
in this model, including the clustering of carbon nanotubes, uniformi-
ty of the interfacial carbide phase, and porosity [77]. For example, the
carbon nanotube elongated clusters has been observed through the mi-
crostructural study of Cu/carbon nanotubes composites synthesized via
spark plasma sintering of mechanically alloyed powders post-processed
by cold rolling [83].

In the case of AI/CNT, the strengthening mechanisms are proposed
to be the generation of dislocations due to the mismatch between ther-
mal expansion of the matrix and reinforcement as well as precipitation
hardening through the Orowan looping mechanism. However, these
mechanisms have not been observed yet. To achieve the strengths near
the theoretical strength, it is important to disperse CNTs uniformly in
the matrix [12].

Elastic modulus enhancement is due to the high tensile modulus of
carbon nanotubes (350-970 GPa). Most of the models that have also
been developed for polymer/carbon nanotubes are applicable for metal
matrices [84].
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Fig. 1. Dispersion of CNTs in Al through ultrasonication.

6. CNT-reinforced AMCs processing techniques
6.1. Powder metallurgy

One of the widely-used synthesis methods of MMCs is powder met-
allurgy, which involves cold pressing of powders and subsequent sinter-
ing, or hot pressing [85]. Various techniques are used for the preparation
of the metal matrix composites in the form of particles or whiskers.
The first stage in the preparation of MMCs via powder metallurgy is
the blending of particles and the matrix powder to achieve a homoge-
neous distribution. After blending, the powder mixture is cold-pressed
(is called green body) and reaches to 80% of theoretical density. In or-
der to remove the moisture of the powder surface, the prepared green
body is degassed in a sealed container. Finally, the compacted powder
undergoes sintering process under isostatic or uniaxial pressure to pre-
pare fully compact composites [86]. One of the challenges in prepara-
tion of these composites is the dispersion of CNTs in the metal matrix.
The improvement of properties could be achieved only when there is
a uniformly distribution of CNTs. If such dispersion is not obtained,
agglomerated particles and the micro-pores will be formed throughout
the microstructure. In order to alleviate this issue, a variety of methods
has been developed for the effective dispersion of CNTs in the matrix
including ball milling, ultrasonication, application of surfactants, and
metallization [24, 87].

6.1.1. Ball milling

In ball milling process, metal powders undergo repeated fracture and
welding by several hard balls in the milling container. This method can
be used for the dispersion of CNTs in the metallic matrix [88]. The metal
powders and CNTs are entrapped between the container wall and balls or
balls themselves resulting in the separation of the nanotubes, destruction
of the agglomerates, and dispersion of CNTs among the metal particles.
The dispersion degree depends significantly on milling time. By the in-
crease of the milling time, the agglomeration is reduced and the metal
particles change from round shape to flattened shape in which CNTs are
embedded [89].

6.1.2. Ultrasonication

Ultrasonication is a technique in which high frequency ultrasound

Load
Load

A 4

Relatively Fully
Powdef\. pressed pressed

—) —)

Sintering

Heat

—

Fig. 2. Schematic illustration of cold pressing and sintering.

waves are applied to disperse CNTs in an organic solvents or aqueous
surfactants. To reduce the hydrophobicity of CNTs, their surfaces are
modified by polymer adsorbates and surfactants to enhance their solubi-
lization in water. Through ultrasonication, the collapse of micro-bubbles
produced during the process creates a high local shear stress at the CNT
bundles end and when a gap or a gas bubble is formed, surfactants are
absorbed on CNTs. The surfactant-coated carbon nanotubes is produced
by unzipping process along the longitudinal axis [90]. Fig. 1 illustrates
dispersion of CNTs in Al through sonication followed by ball milling
process.

6.1.3. Application of surfactants

A way of the surface modification and prevention of agglomeration
and rebinding of CNTs is using surfactants. Generally, the surfactants
have two parts in their structure: a hydrophobic and a hydrophilic part.

The reactive agents produce steric or electrostatic repulsion between
CNTs particles and reduce their surface energy leading to the improve-
ment of the suspensions metastability. According to the head group
charges, the surfactants are anionic, cationic, and nonionic or zwitter-
ionic [91].

6.1.4. Metallization

The CNTs surface can be coated with some metals including W, Ni,
Mo, Co, and Cu in order to prevent the agglomeration of the reinforce-
ment, enhance the interfacial adhesion between the matrix and the rein-
forcement, and inhibit the reaction between them [92].

The other important factor affecting the properties of the composites
produced by powder metallurgy is the sintering process. The samples
can be sintered either above or below the matrix solidus temperature
[93]. Different sintering processes employed for the preparation of Al/
CNT nanocomposites are described below:

6.1.5. Cold press and sintering

The schematic illustration of cold pressing and sintering is shown in
Fig. 2. George et al. [12] prepared Al and CNT powder mixture via ball
milling followed by the compaction of the milled powder in a circular
die applying120 KN load. The sintering process of the billets was car-
ried out in an N, environment. According to the results, the mechanical
properties of carbon nanotube reinforced aluminum, e.g. Young’s mod-
ulus were enhanced [94].

Sivananthan et al. [13] prepared the powder mixture of MWCNT
and Al via ball milling with 10 steel balls with a 15 mm diameter for
10 h at room temperature. Then, by applying a pressure under increased
temperature, the powder mixture was converted to the green body and
sintered for 1 h at 600 °C in an Ar atmosphere. They indicated that the
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Heating

Fig. 3. Schematic illustration of the hot extrusion process.

Al physical properties were improved by the addition of carbon nano-
tubes. However, the thermal and electrical conductivities decreased by
the addition of 0.5 to 3 wt. % carbon nanotubes. The results showed that
the incorporation of CNTs does not improve the electrical and thermal
conductivities of the Al matrix. Therefore, AI/CNT composites may not
be suitable for applications requiring conductive properties, and they
might be employed for thermal and electrical resistive applications.

6.1.6. Hot extrusion

Esawi et al. [16] mixed up 5 wt.% carbon nanotubes filler using a
ball mill. To consolidate the ball-milled powder mixture, the mixture
was cold-compacted and sintered by hot extrusion. The hot extrusion
process is illustrated in Fig. 3. They investigated the effect of the car-
bon nanotubes content on the mechanical characteristics of the nano-
composites. The results revealed that stiffness enhanced up to 23% and
tensile strength enhancements up to 50% in comparison with pure Al
In the nanocomposites with Swt. % carbon nanotube, the formation of
the carbide phase was recorded. In the composites with CNT content
higher than 2 wt. %, the dispersion of the reinforcement was difficult,

Table 1.
Synthesis methods of aluminium/CNTs composites and their properties

Pressure

Graphite punch Pulsed DC
power supply

Powder

Vacuum chamber

Graphite die

Fig. 4. Schematic illustration of the SPS process.

and hence, the expected enhancement in mechanical characteristics with
increasing of the carbon nanotubes content in the matrix was not fully
understood.

Choi et al. [18] produced A/MWNTSs composites via ball-milling
and hot extrusion. The efficiency of reinforcing by carbon nanotubes fol-
lows the discontinuous fibers volume fraction rule in the grain size less
than 70 nm. The research asserted that it is possible to produce large-
scale AI/CNTs composites with uniaxially aligned carbon nanotubes via
a conventional powder metallurgy method. The strengthening efficiency
follows the discontinuous fibers volume fraction rule for composites
possessing grain sizes of 200 nm and 72 nm, and nanotubes are able to
effectively transfer loads.

6.1.7. Spark plasma sintering (SPS)

Kwon et al. [20] synthesized AI/CNTs composites using SPS, fol-
lowed by hot extrusion. The SPS process is shown schematically in Fig.
4. The results indicated that the tensile strength improved by adding car-
bon nanotubes to Al without reducing the elongation. They proposed
that the existence of carbon nanotubes in the boundary layer influenc-
es the mechanical properties, which results in effective stress transfer
among CNTs and Al matrix due to the aluminum carbide formation and

Method CNT content Density (g/cm®) Mechanical properties” Ref.
Cold press and sintering 2vol. % - TS: 138 MPa [12]
Cold press and sintering 3wt. % 2.6 H:75.5HV [13]
. . TS: 250 MPa
Ball milling and hot extrusion Swt. % - . [16]
Indentation modulus: 74 GPa
Ball milling and hot extrusi 4vol. % TS: 440 MPa [18]
all miuling an Xtrusion vol. -
& and ot extrusio oL YS: 300 MPa
SPS and hot extrusion 1 vol. % 2.642 T8: 207.5 MPa [20]
- ' EL: 21.4 %
TS: 174 MPa
SPS and hot extrusion Swt. % - YS: 96 MPa [21]
H: 50 HV
. CS: 415.3 MPa
SPS and extrusion 2.5wt. % 2.59 [23]
H:99.1 HV5
SPS 5wt % 2.58 TS: 130 MPa [24]
X TS: 440 MPa
Flake PM and hot extrusion 2 vol. % - [26]
E: 90 GPa
TS: 477 MPa
FSP (4-pass FSP) 1wt. % 2.733 YS: 385 MPa [27]
El: 8%
FSP 6 vol. % T8: 190 MPa [29]
Y El: 10%
SD Swt. % - TS: 300 MPa [30]

“TS: Tensile Strength, YS: Yield Strength, CS: Compressive Strength, El

: Elongation, E: Young’s modulus, H: Hardness
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Fig. 5. Schematic illustration of flake
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well-aligned carbon nanotubes along the direction of extrusion.

In another research, 0 to 2 wt. % MWCNTs were added to the Al
matrix through the mixing of the reinforcement and matrix powders in
a roller mill. The mixture was then sintered by SPS, and subsequent
hot extrusion and a fully compact carbon nanotube-reinforced aluminum
were achieved. The composite mechanical properties with a low amount
of CNTs (0.5 wt. %) at room temperature showed a significant increase
in comparison with pure Al without increasing the cost. With increasing
the amount of CNTs in the composite, the mechanical properties reduced
as a result of the agglomeration of carbon nanotubes and the lack of
sufficient bonding at the interface [21].

Wau et al. [24] also employed spark plasma sintering for the prepara-
tion of MWNTs- reinforced Al composites containing 0 to 5 wt.% car-
bon nanotubes. According to the results, thermal conductivity increased
by the addition of up to 1 wt. % CNTs compared to the pure Al. Ther-
mal conductivity reached a maximum of 199 W/m/K for the composites
containing 0.5 wt.% CNTs. This composition of the Al composites also
showed the maximum tensile strength of 130 MPa. They summarized
that CNT-reinforced Al composites prepared by SPS method are promis-
ing materials for applications requiring high thermal conductivity.

CNTs (2.5 wt.%) and Al powders were ball-milled and consolidated
through a spark plasma extrusion (SPE) process by Morsi et al. [23].
The advantages of SPE compared to SPS is the possibility of preparing
materials with extended geometries and providing bulk deformation in-
fluenced by an electric current which provides unique properties in ma-
terials. Because CNTs have strengthening effects in Al and decrease the
Al crystal size, aluminum/CNT composites had enhanced compressive
strength (10%) and hardness (33%).

6.1.8. Flake powder metallurgy (flake PM)

The steps of flake powder metallurgy route are illustrated in Fig. 5.
To disperse carbon nanotubes uniformly in aluminum matrix, the flake
powder metallurgy (flake PM) strategy was used by Jiang et al. [26]. To
disperse the reinforcement in the matrix uniformly, CNTs were adsorbed
onto the surface of aluminum nanoflake through slurry blending and
the prepared composite powders were consolidated via hot extrusion.
In flake processing, the Al spherical powders changes to nanoflakes,
and their surface is modified by polyvinyl alcohol hydrosol; thus, high

CNTs

Fig. 7. Schematic illustration of the rolling process.

surface and geometrical compatibilities between aluminum and CNTs
powders are achieved. Therefore, the achievement of a homogeneous
and less-agglomerated distribution of carbon nanotubes is possible via
direct slurry blending. As carbon nanotubes are not exposed to high-en-
ergy physical forces such as ball milling, the structural integrity of car-
bon nanotubes is well maintained in the composite. Therefore, in this
study, ductile CNT-reinforced composites with the plasticity of 6% and
tensile strength of 435 MPa was produced, which is greater than values
obtained from other conventional routes.

Rikhtegar et al. [95] also used the flake PM route for the modification
of CNTs dispersion in Al powder. They used short fibers and long fibers
of CNTs-COOH with 1.5wt. %CNTs to reinforce and strengthen the Al
powders with particle sizes of <20 um and <45 pm and with a large
aspect ratio of 125 and 50, respectively. The influence of different vari-
ables of the process, including speed and time of rotation in ball milling,
Al nanoflake production, the carboxyl agent, and chemical modification
by polyvinyl alcohol on the wall of carbon nanotubes as well as morpho-
logical changes of the components were studied.

They reported that in this method, hydrogen bonding is formed be-
tween —COOH groups of carbon nanotubes and the -OH groups of PVA,
and consequently, a good dispersion of reinforcement in the Al matrix
was observed for both short and long carbon nanotubes.

6.2. Friction stir processing (FSP)

Liu et al. [27] applied powder metallurgy and subsequent friction stir
processing (FSP) (Fig. 6). Investigation of the microstructure indicated
that carbon nanotubes were well dispersed in the Al-based composites.
The smaller grain size of aluminum was achieved due to the tendency
of carbon nanotubes to be located along grain boundaries. The carbon
nanotubes retained their layered structure despite shortening and the for-
mation of Al,C, in the matrix. It was shown that during the FSP process,
there was no severe damage to nanotubes. The composites containing 1
wt. % and 3 wt. % nanotubes showed an increase in the yield strength
about 23.9% and 45.0%, respectively, compared to pure Al.

In other work, A/MWCNTs composites with various contents of
CNTs were synthesized using friction stir processing. The investigation
showed good dispersion of CNTs in the Al matrix through friction stir
processing. Hardness and tensile tests indicated that the hardness and
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tensile strength of AUMWCNTs composites slightly increased with the
increase of the nanotube content; however, the reduction in elongation
was observed. For the specimen containing 6 vol. % CNTs, ultimate
tensile strength reached a maximum of 190.2 MPa, which was two times
higher than that of pure Al. The ductility of the nanocomposites de-
creased with the increase of the carbon nanotube content [29].

For homogeneous incorporation of a high volume fraction (>50%) of
CNTs in the Al matrix, Izadi et al. [96] used multi-pass FSP. TEM and
SEM investigations showed that CNTs were dispersed uniformly after
three passes; however, the tubular shape of CNTs was destroyed by the
thermo-mechanical cycles. The microhardness of the samples increased
significantly compared to non-reinforced samples due to the influence
of the reinforcing component on grain refinement and strengthening of
the matrix.

Moreover, TEM analysis indicated that after 3 passes, CNTs were
mostly transformed into turbostratic and polyaromatic structures along
with Al,C,. They concluded that two passes preserve the structure of
multi-walled CNTs while for uniform distribution of the reinforcement,
three passes are required, but the reinforcement stability was not pre-
served.

6.3. Spread dispersion (SD)/ rolling process

X Liao et al. [30] prepared AI/CNTs composite using a spread disper-
sion (SD) technique. The SD procedure was the repeated pressing and
rolling for the preparation of aluminum/carbon nanotubes nanocompos-
ites. This technique was first utilized by Yasuna et al. [8—11] in 1997.
The rolling process is depicted schematically in Fig. 7. This technique
consists of the stacking of several metal sheets and the subsequent press-
ing and rolling in order to bond the layers and produce a bulk form from
multilayers.

In this study, the researchers applied this method for the dispersion
of carbon nanotubes in the Al matrix. It was reported that ultra-fine
grain size about 20 nm was formed, the ductility decreased and tensile
strength of the nanocomposites increased by 66% over pure aluminum.
This improvement was due to stronger AI/CNT bonding, eliminated
porosity, the disappearance of the CNT-free zones, and segregation of
clustered CNTs.

Samadzadeh et al. [97] synthesized Al/ MWCNTSs composites using
the roll bonding process. According to the results, using the solution dis-
persion route in comparison with the spread route leads to the decrease
of Al sheets bond strength. Furthermore, the sheets bond strength re-
duced by the incorporation of carbon nanotubes at a specific reduction of
thickness. At higher thickness reductions, the bond strength improved in
the sheet with and without carbon nanotubes, and the increase in the en-
try temperature enhanced bond strength; however, the increase in bond
strength was higher in pure Al compared to the reinforced composites.
Different synthesis methods of aluminum/CNTs composites and the ef-
fect on their mechanical properties are summarized in Table 1.

7. Conclusions and future insights

In this review, the processing techniques applied for the synthesis of
aluminum/CNTs composites and mechanical properties enhancement,
including hardness, toughness, and wear resistance, were discussed.
According to previous research reports, a very effective factor in the
improvement of the mechanical properties of theses Al-based nanocom-
posites is CNTs distribution in the metal matrix. Therefore, the prepa-
ration conditions and methods are required to be optimized in order to
have good dispersion of the reinforcement, enhanced interfacial prop-
erties between the two phases, reduction of Al matrix cold working,
and subsequently less damage to nanotubes. In addition, other existing

challenges are carbon nanotube distribution at micro level in the case of
bulk manufacturing, the influence of carbon nanotube alignment, uni-
form dispersion at high concentration of CNTs. Overall, new methods
or modifications of conventional methods are required to develop to op-
timize these factors.
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