
Available online at www.jourcc.com

Journal homepage: www.JOURCC.com

Journal of Composites and Compounds 1 (2019) 27-30

Determination of Hg2+ by diphenylcarbazone compound in polymer film
Asghar Kazemzadeha*, Houman Kazemzadehb 

a Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
b Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran

1. Introduction

One of the most popular poisonous elements in aquatic ecosystems 
is mercury (Hg2+) in a way that even a low amount of this element can 
significantly affect human health [1-8]. This is due to the Hg2+ accu-
mulation in the human body from the food chain which causes serious 
damages to the brain, lungs, central nervous system, kidney, and the 
development of the fetus [9-14]. Unfortunately, the emission of mercury 
by humans is increasing [15, 16]. This increasing trend in environmental 
pollution is considered a global concern. For addressing this issue, a 
reliable and rapid method is needed to determine the mercury trace [17].

In this respect, a variety of sensitive analytical methods can be used 
to determine Hg2+ selectively such as inductively coupled plasma-atom-
ic emission spectrometry (ICP-AES), inductively coupled plasma mass 
spectrometry (ICP-MS) [18, 19], cold-vapor atomic fluorescence spec-
troscopy (CVAFS) [20], and cold-vapor atomic absorption spectroscopy 
(CVAAS) [21-23]. Although these traditional techniques are sensitive 
with high accuracy, the measurement instruments are sophisticated, ex-
pensive, with high costs of operation, and the sample preparation process 
is complicated. These factors make these methods time-consuming for 
a large number of samples and are not unsuitable for routine monitoring 
in the field. Besides, during the collection, samples may be altered. Con-
sequently, the design of an inexpensive, fast technique for the detection 
of Hg2+ is desired. Currently, some techniques are employed for field 
application and miniaturization including fluorimetry and colorimetry 
[24-31]. However, their application is still limited due to the interfer-
ence of other metal ions and sophisticated synthesis of probe materials 

[32, 33]. Voltammetric methods which are electrochemical techniques 
have a high potential for the determination of Hg2+ in the field compared 
to other methods [34, 35]. This is because of possessing some inher-
ent characteristics, including selectivity and sensitivity, miniaturization, 
cost-effectiveness, and rapid analysis time [36].

So far, in spite of the increasing interest in the development of a 
time-saving, easy-to-operate, low-cost, and reliable technique for the 
determination of Hg2+ in the field, only a few numbers of studies have 
addressed the optical sensors (fluorescent and colorimetric) [25, 37, 38]. 
Some studies have been worked on the determination of Hg2+ through 
voltammetric methods, but they are fragmentary and incompletely [39-
41]. To the best knowledge of the authors, none of the previous studies 
have focused particularly on the determination of Hg2+ through voltam-
metric techniques. Moreover, the application of nanomaterials in these 
methods has been recently gained increasing attention. This research 
focuses on the preparation of a highly sensitive sensor for determining 
Hg2+ concentration by incorporating the indicator dye, diphenylcarba-
zone compound, into a polymer film.
 

2. Experiment Procedure

2.1. Materials

To prepare a standard solution of mercury chloride (HgCl2, 0.1 M), 
2.715 g of HgCl2 dissolved in 100 ml distilled water in a standard flask. 
Diphenylcarbazone compound 0.02% solution was prepared by dissolv-
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ing the C2H5OH dye solution with a 2.00% concentration in a 100 ml 
volumetric flask. 2.264 g NH4Cl was dissolved in 100 ml distilled water 
to prepare NH4Cl solution with 0.4 M concentration and 2.14 g NaBrO3 
was dissolved in distilled water in a volumetric flask (250 ml) to obtain 
NaBrO3 solution with 0.06 M concentration. For the preparation of poly-
vinyl alcohol and Thiourea solutions, 0.7 g and 1g of the reagents were 
dissolved in 100 ml of distilled water, respectively.  

2.2. Methods

2.2.1. Sensor Preparation

For de-esterification of the acetyl group and the increase in the mem-
brane porosity, the hydrolysis of acetyl cellulose was carried out. The 
transparent films were immersed in KOH (0.1 mol.l-1) for 24 hours. Sub-
sequently, the specimens were washed with distilled water followed by 
the treatment with a mixture of polyvinyl alcohol (0.70 % (w/v)) and 
thiourea (1.00 % (w/v)) solution for 48 hours at room temperature. Then, 
the polymer membrane was treated with a solution of diphenylcarbazone 
compound (0.020 % (w/v)) at room temperature and stirred for about 20 
hours. At the next step, the film was washed by rinsing with distilled wa-
ter to the extent that no absorbance was observed at the dye wavelength. 
The drying process of the film was carried out at 45 °C for 15 minutes. 

2.2.2. Spectrophotometric Measurements

Shimadzu 2100 ultraviolet-visible (UV-Vis) spectrophotometer and 
a thermostated cell were used to measure the UV-Vis spectra at the con-

trolled temperature of 25 ºC ± 0.1.

3. Results and Discussion

The reaction between the activated cellulose film and the diphenyl-
carbazone compound is illustrated in Fig. 1. There is an amino group in 
the structure of the diphenylcarbazone compound, therefore, by special 
treatments, the molecules of the dye can be linked to cellulose acetate. 
According to Kostov et al. [42], just the dyes that have amino groups in 
their structure are able to be linked to cellulose acetate. With the help of 
thiourea, it is possible to link dyes with or without amino groups in their 
structure to cellulose acetate polymer.

As a result of the high activity of the carrier, the interaction of the 
carrier compounds having the low molecular weight and a free para-po-
sition in their structure is possible. 

Therefore, indicators with a free para-position or hydroxyl group in 
their molecule can be employed. In addition, to link the molecules of dye 
to the cellulose acetate membrane, thiourea acts as a bridge. This results 
in the covalent bonding between the indicator and the polymer film [43]. 
BrO3- can oxidize diphenylcarbazone compound in the presence of Hg2+ 
in an acidic environment (pH ~ 4.5) [44].

3.1. UV-Vis Spectrum of Functionalized Cellulose Acetate

The UV-Vis spectrum of the treated cellulose acetate was obtained 
by measuring the intensity at a different wavelength and plotted against 
wavelength. The UV-Vis spectrum of the diphenylcarbazone-function-
alized film obtained is shown in Fig. 2. As illustrated, the maximum 
absorption appeared at 480 nm. Thus, the spectrophotometric measure-
ments were carried out at 480 nm. 

3.2. The Effect of pH on the Adsorption of Hg2+

The acidity of the solution affects the Hg2+ determination sensitivi-
ty of the diphenylcarbazone compound. The adsorption plot versus pH 
for the functionalized polymer film is shown in Fig. 3. The pH value 
was adjusted with sodium hydroxide or hydrochloric acid at an Hg2+ 
concentration of 1.0×10-5 mol/mL and the amount of adsorbed Hg was 
measured by spectroscopy. The adsorption of Hg2+ decreases for a pH 
value of lower than 5. Decreasing the pH of the solution reduces the 
adsorption of the diphenylcarbazone compound. However, in neutral 
solutions, the interfering of other heavy ions increases and they produce 
colored compositions with diphenylcarbazone compound. When acidity 
increases, the diphenylcarbazone-mercury complex formed on the poly-
mer film gradually decomposes and decolorizes [45, 46]. Therefore the 
determination measurement was carried out at pH = 5.

3.3. Determination of Micro-amounts of Hg2+ by UV-Vis Spectroscopy

Fig. 3. Adsorption of Hg2+ in different pH values.

Fig. 1. The possible reaction between the activated membrane and diphenylcar-
bazone compound.

Fig. 2. UV-Vis spectrum of the polymer film functionalized with diphenylcarba-
zone compound.

Table 1.
Determination of Hg2+ concentration

The standard 
amount of Hg2+ (ng)

The measured amount 
of Hg2+ by the proposed 

method (ng)
Mean ± SD

10 9 12 11 10.6 ± 0.1

20 22 18 23 21 ± 0.1

25 23 26 27 25.3 ± 0.1
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The signal intensity of UV-Vis spectroscopy of the specimen was in-
vestigated at 480 nm for different Hg2+ concentrations in the range of 0 to 
25 ng/mL to obtain the calibration curve. The calibration curve obtained 
is linear from 0 to 25 ng as shown in Fig. 4. Three measurements for 
each absorption value for each solution were carried out and the mean 
value was reported. By employing the plotted calibration curve, the de-
termination of unknown concentrations of mercury was performed. The 
results of measurements with the prepared sample are summarized in 
Table 1. The error of the measurements was within ±6% for samples 
10 to 25 ng.

3.4. Adsorption Isotherm of Hg2+ on the Functionalized Cellulose 
Acetate Film

Fig. 5 illustrates the optical characteristics of the immobilized di-
phenylcarbazone compound on the cellulose acetate film for different 
concentrations of Hg2+. To evaluate the binding capacity of the function-
alized polymer film, a rebinding experiment was carried out by using 
0.2 g of the polymer film in 25 mL phosphate buffer solution of HgCl2 
(pH ~ 4). The suspension was stirred at 25 °C for 30 minutes and the 
absorption amount in the range of 0 to 200 μg/25mL was measured. 
After the exposure to the solution, the polymer film was removed from 
the solution and the concentration of remaining Hg2+ was analyzed. The 
mercury amount adsorbed on the surface of the functionalized polymer 
was calculated by Eq. (1):
Q = Ci - Ce          (1)

where Ce and Ci denote the equilibrium and initial concentrations of 
Hg2+ (25 μg/mL), respectively [47]. Fig. 4 shows the obtained results of 
the adsorbed Hg2+. It is evident that with increasing the concentration of 
Hg2+ in solutions from 0 to 150 μg/25mL, the amount of Hg2+ adsorbed 
by the functionalized cellulose acetate increased linearly. According to 
the adsorption curve, the functionalized cellulose acetate film has the 
maximum adsorption capacity of Hg2+ equal to 3.41 × 10-3 mmol/g.

4. Conclusions

One of the most popular poisonous elements in aquatic ecosystems is 
mercury and the design of a reliable and rapid method for determination 
of mercury is needed. In this research, an optical sensor was prepared 
by the functionalization of hydrolyzed cellulose acetate by diphenylcar-
bazone. 

The UV-Vis spectra of the polymer film showed a peak at 480 nm. 
The maximum adsorption was achieved at pH = 5 and by the decrease 
in pH, the adsorption decreased. Using the calibration curve, the error 
in determining the concentration of Hg2+ was around 6 %. The film ex-
hibited the capability of the adsorption capacity in a wide range of Hg2+ 
concentration.
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