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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

Carbon-based nanocomposites are a new type of multifunctional materials that 
combine mechanical, electrical, and thermal properties in a unique and useful manner 
and have allowed the use of these materials to change technology. The latest trends 
indicate that there are many significant advancements occurring in the development of 
carbon nanotube-enhanced polymer nanocomposite materials. Carbon-based nano 
composites offer superior performance compared to other types of conventional 
materials. There is an ongoing direction toward developing innovative design and 
manufacturing techniques for carbon-based nanocomposites, through sustained 
investment into new product development, research, and development of next 
generation multi-functional carbon-based nanocomposite products for cutting-edge 
application technologies. 
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1. Introduction 

Nanocomposite material comprises many phases, with at least 
one, two, or three dimensions in the nanoscale range. Minimizing 
material dimensions to the nanoscale creates phase interfaces that 
are essential for the evolution of material properties [1, 2]. The 
ratio of surface area to volume of reinforced material utilized in 
nanocomposite preparation is directly related to the 
comprehension of the structure-property relationship [3-5]. 

Nanocomposites represent a category of materials currently 
utilized across various sectors, including nanoelectronics and 
energy storage, owing to their remarkable electrical, mechanical, 
and chemical capabilities. These materials have fundamentally 
transformed the realm of "functional materials" and can thus be 
regarded as the materials of the 21st century, with ongoing study 
of novel paths occurring often [2, 6, 7].  

Among various nanocomposites, carbon-based 
nanocomposites (CNCs ) have garnered significant attention over 
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the past two decades owing to their structure-dependent electrical 
characteristics, low density, and extensive specific surface area [8, 
9].  

CNCs are made from multiple carbonaceous materials, i.e. 
graphite, nanotubes, C60, and contain many different types of 
matrix materials that reinforce many different types of materials 
such as metal oxides, sulfides, nitrides [10]. the extensive charge 
transfer capacities of adsorbing agents allow CNC's based upon 
Carbon Nanotubes (CNT's) to offer significant opportunities for 
utilization in many diverse applications including electrochemical 
supercapacitors, gas sensors, biological sensors, electromagnetic 
absorbers and photovoltaic cells, as well as in the biomedical 
industry [11, 12]. Consequently, they are regarded as promising 
materials for enhancing the creation of extremely sensitive, 
selective, and efficient drug delivery systems, drug release 
mechanisms, and excellent tissue regeneration capabilities. 
Current research aims to develop ultra-sensitive biosensors 
utilizing the exceptional conductivity and quenching properties of 
them for drug delivery systems, as well as to create practical 
nanomaterial electron-conducting substrates with outstanding 
biocompatibility for tissue regeneration [13, 14]. Moreover, 
Carbon-based materials were found to be very effective in the 
removal of nitric oxide, hydrogen sulfide, heavy metals, dyes, 
pharmaceutical products and other contaminants from the 
environment [15]. Fig. 1 illustrates a map of recent research about 

carbon-based nanocomposites for several applications (data 
extracted from Scopus from 2020 to 2024).  

The purpose of this review investigates carbon-based 
nanocomposites, their integration with other nanomaterials, and 
their applications in energy storage, sensing, and biological fields, 
along with a selective summary of recent studies. Initially, several 
carbon nanomaterials, including CNTs, graphene, carbon dots 
(CDs), and carbon-based nanocomposites including other recently 
identified nanomaterials, are examined. Subsequently, according 
to the specific themes that are presently the focus of extensive 
investigation. 

 
2. Fundamentals of carbon-based nanomaterials 

Carbon-based nanomaterials are highly versatile and have 
unique atomic structures, properties, and conductivities that make 
them attractive for use in multiple industries.  

They can be used in the following industries: energy generation 
and storage, catalysis, electronics, industrial, and biomedical 
applications. The most commonly used carbon-based 
nanomaterials are carbon nanotubes (CNTs), graphene, carbon 
nanofibers (CNFs), carbon nanodots (CNDs), nanodiamonds, and 
hybrid hierarchical nanostructures. The most common carbon 
nanostructures are shown in Fig. 2 .

 

Fig. 1. Carbon-based nanocomposites for multifunctional applications. 

 

Fig. 2. Carbon-based nanomaterials. 
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2.1. Carbon nanotubes (CNTs) 

Carbon nanotubes are distinctive tubular formations with a 
nanometer diameter and a substantial length-to-diameter ratio. 
Nanotubes can have anywhere from one to hundreds of concentric 
carbon shells, with each shell being about 0.34 nm apart [16]. 

Graphene sheets are twisted into cylindrical shapes to make 
CNTs. The smallest CNTs are only one nanometer in diameter  
[17]. Carbon nanotube (CNT) types are generally classified into 
three main types, single-wall, double-wall, and multi-wall; they 
can differ in respect to length, diameter, density, and mechanical 
properties. Therefore, this affects them for use in specific 
applications [18].  

Various methods to synthesize CNTs including laser ablation, 
carbon high-pressure disproportionation, chemical vapour 
deposition (CVD) [55]. The CVD process is the dominant 
technique, particularly because of the advantages offered through 
high production potential relative to other CNTS' synthesis 
techniques. The carbon nanotube produced by this approach 
exhibits a significant length and improved morphological 
properties [19].  

As nanotubes have evolved through advancements in 
manufacturing and characterization methods, the emerging 
applications of nanotubes have. Subsequently, theories 
surrounding the higher yield strength and elastic modulus to be 
obtained from nanotubes led researchers to speculate about 
utilizing nanotubes in improved composite materials with 
improved mechanical properties [20, 21]. Nanotubes are well-
suited for use in electron field emission due to their extremely 
small size, strength, and excellent conductivity and stability as well 
as their capacity to be used in flat panel displays [22].  

Multiwall nanotubes have been employed to electrocatalysis 
the oxygen reduction reaction, which is crucial for fuel cells [23]. 
Electrochemically Li-intercalated SWNT materials exhibited 
significant irreversible capacity and voltage hysteresis, presenting 
an advantage for their application as battery electrodes [24]. CNTs 
have high surface areas and drug loading capacity, making them 
ideal for drug delivery. Their nanometric scale, functionalization 
options, and drug delivery capabilities are attracting attention. 
Current CNTs have defects that prevent their usage in 

pharmaceuticals, which must be overcome. The main reason is that 
they are not biodegradable and may be poisonous over time [25]. 

2.2. Graphene and graphene oxide 

Graphene is the material that is constructed from carbon atoms 
that are chemically bound together by a process known as sp2 
hybridization. These atoms are arranged in a pattern of hexagons, 
which gives the material a honeycomb-like shape [26]. As a result 
of its conventional two-dimensional structure, it exhibits a variety 
of remarkable and distinctive properties, including the fact that it 
is the most conductive, lightest, strongest, and most transparent 
substance of its type [27].  

On the other hand, graphene oxide (GO) is a substance that 
garners significant interest among the scientific community owing 
to its distinctive physical and chemical properties. The 
characteristics can be adjusted by altering the oxidation level, the 
dimensions and morphology of the flakes, and the chemical 
functionalization, rendering it a versatile material with significant 
promise for many applications [28]. 

 Graphene-based material has good electrical, thermal, and 
mechanical. properties, making it a promising contender for use in 
energy storage, biosensors, biomedical engineering, hydrogen 
storage, displays, and solar cells [29-31].  

Schematic representation of the primary graphene production 
methods is shown in Fig. 3, these methods can be categorized as 
follows: (a) cleavage that is micromechanical in nature (b) the 
process of anodic bonding (c) the process of using light to remove 
unwanted material from the skin (d) the process of exfoliation 
when in the liquid phase(e) SiC is a material that can grow. The 
gold and gray spheres in the diagram are used to symbolize silicon 
(Si) and carbon (C) atoms. When the temperature (T) is increased, 
the silicon atoms (Si) evaporate, as indicated by the arrows. This 
process results in the formation of graphene sheets on a surface 
that is rich in carbon. (f) The process of segregating or precipitating 
from a metal substrate that contains carbon (g) the process of 
depositing chemicals through the use of vapor (h) the technique of 
epitaxy using a molecular beam (i) The production of chemicals 
through synthesis, with benzene being utilized as the building 
block [32]. 

 

Fig. 3. The main techniques for production of graphene [32]. 
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2.3. Carbon nanofibers (CNFs) 

Carbon nanofibers (CNFs) are defined as vapor-grown 
nanoscale fibrils with diameters between approximately 50 and 
200 nm [33]. CNFs relate to the covalent carbon nanomaterial 
(CNM) family and exhibit conductivity and stability akin to CNTs. 
The arrangement of graphene sheets in different configurations 
differentiates CNFs from CNTs, leading to a greater number of 
edge sites on the exterior surfaces of CNFs compared to CNTs. 
This may facilitate the electron transport of an electroactive 
analyte [34]. 

CNFs can be generated through vapor phase growth via 
chemical vapor deposition or by carbonizing pre-synthesized 
polymer nanofibers. Both procedures provide a simpler synthesis 
of CNFs in contrast to CNTs. The synthesis procedures 
considerably influence their structure and properties. Carbon 
nanofibers, due to their graphitic structure, provide distinctive 
features like exceptional corrosion resistance, mechanical strength 
, and thermal and electrical conductivities [35]. 

2.4. Carbon dots and nanodiamonds  

Carbon dots (CDs) denote a category of carbon-based 
nanoparticles categorized into distinct subgroups according to their 
crystallinity and shape. CDs provide adjustable physical, chemical, 
and optical characteristics that can be regulated by straightforward 
one-pot synthesis methods. Moreover, their non-toxicity, 
biocompatibility, chemical and physical responsiveness, resistance 
to photo- and chemical-bleaching, and affordability facilitate a 
variety of applications [36]. Common CDs are classified as a type 
of 0D carbon-dominated nanomaterial, typically measuring less 
than 20 nm, comprising a sp2/sp3 carbon framework and many 
functional groups/polymer chains [37]. 

2.5. Fullerenes  

The exploration of carbon nanostructures commenced with the 
identification of fullerenes. Fullerenes are closed hollow structures 
composed of sp2-hybridized carbon atoms organized into 12 
pentagons and a variable number of hexagons, contingent upon the 
overall carbon atom count. Numerous other fullerenes have been 
identified, such as C20, C70, and larger variants; nonetheless, C60 
remains the most extensively researched to date [38]. C60, exhibits 
icosahedral symmetry (Ih) and consists of 20 hexagons derived 
from a graphene sheet, folded to form 12 pentagons, thereby 
adhering to Euler's formula, with all carbon atoms being equivalent 
and exhibiting near-sp2 hybridization. At normal temperature, C60 
crystallizes in a face-centered cubic structure, with a unit cell 
parameter of 14.2 Å [39, 40]. 

 
3. Design and fabrication of carbon-based 
nanocomposites 

New carbon-based nanocomposite technology has been 
developed for use in polymers, metals, and ceramic matrices. The 
successful application of nanocomposite technology is related to 
both the strategic design of the architecture of the nanocomposite 
and the use of nanomaterials within the nanocomposite [41]. 

Research on the fabrication techniques used to produce 
polymer-matrix composites will depend on the type of polymer 
used in their manufacture; however, it can generally be recognized 
that the methods for producing such composites include solution 
mixing, in situ polymerization and the use of covalently bonded 
grafts; metal-matrix composites can also employ carbon-based 
materials to increase both the electrical conductivity and tensile 

strength of their respective matrices; and ceramic-based composite 
matrices can utilize additional carbon based materials to modify 
the overall structural properties of the composite matrices. The 
principal benefit of these synergistic interactions between carbon-
based nanomaterials and the various types of matrix materials is 
that they allow for the production of advanced functional 
composite materials for multifunctional applications [42, 43]. 

3.1. Polymer-matrix carbon nanocomposites 

In recent decades, the demand for advanced materials has 
surged significantly. In several industries, materials with superior 
mechanical, electrical, and thermal qualities are strongly 
advocated. The utilization of tidy materials was significantly 
limited due to their often-inadequate amalgamation of intrinsic 
features. Conversely, composite materials possess the capability to 
fulfill emerging requirements. Polymer-matrix composites 
reinforced with CNTs demonstrate exceptional physical properties 
[44]. Recent research has focused intensely on the synthesis, 
characterization, and use of polymer–carbon nanotube composites, 
motivated by an increasing acknowledgment of the distinctive 
mechanical, thermal, electrical, and other material properties of 
carbon nanotubes [45, 46]. Substantial efforts have been 
undertaken in the synthesis of these nanocomposites by 
incorporating either SWNT or MWNT carbon nanotubes into 
diverse polymer matrices. For instance, carbon nanotubes have 
been integrated into matrices of conjugated polymers, such as 
poly(phenylenevinylene) (PPV) and its derivatives, to create 
composites with notable optoelectronic properties. Carbon 
nanotubes have been utilized as fillers in epoxy resin to leverage 
their exceptional mechanical properties. Solution-phase 
processing is a widely employed technique for dispersing carbon 
nanotubes and subsequently fabricating nanocomposites. 
Nonetheless, carbon nanotubes are insoluble and aggregated, 
posing a considerable obstacle for their uniform dispersion in 
polymer matrices. Successful methods for dispersion encompass 
the sonication of carbon nanotubes with polymers, including PPV 
derivatives, poly(vinylpyrrolidone), and starch, as well as the in-
situ polymerization of monomers alongside carbon nanotubes [47].  

Numerous potential applications of polymer-carbon nanotube 
composite materials have been suggested and investigated (Fig. 4) 
[48]. 

 

Fig. 4. Application of polymer-matrix carbon nanocomposites [49]. 

3.2. Metal-matrix carbon nanocomposites  

The goal of developing lightweight metal matrix composites 
(MMCs) with superior performance for structural applications has 
been undertaken among composite materials. MMCs are 
recognized for their capacity to preserve the advantageous 
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characteristics of metals while maintaining the strength and 
stiffness constraints inherent in monolithic metals [50]. 

Reinforcement materials are essential for MMCs. 
Traditionally, they consisted of carbon ,ceramic, or other high-
stiffness particles, whiskers, small fibers, or continuous fibers [51, 
52]. To achieve lightweight, high-strength MMCs, it is essential to 
utilize high-strength and lightweight reinforcement elements [53]. 
Carbon compounds, including graphite, carbon fibers, CNTs, and 
graphene, are particularly notable. Graphene is regarded as the 
most robust material globally. It possesses remarkable attributes: 
outstanding electrical characteristics, high thermal conductivity, 
elevated Young’s modulus, and significant tensile strength [54, 
55]. Since its discovery by Geim et al [56] , numerous studies have 
been conducted on the application of graphene as a reinforcement 
in polymers and metal matrices. A variety of graphene-based 
polymer composites have been documented. In addition, one-
dimensional carbon nanotubes and two-dimensional graphene 
nanosheets with unique thermal, mechanical, and electrical 
capabilities. Recent nanotechnology breakthroughs allow the 
fabrication of sophisticated metal matrix nanocomposites for 
functional devices and structural engineering [57]. Moreover, 
Carbon fibers (CFs) reinforced MMCs have been investigated for 
heat sink applications to balance machinability and thermo-
mechanical characteristics. Only 30% carbon fiber reinforcing 
reduced aluminum and copper CTE, according to Lalet et al.[58]. 
Additionally, S. E. Shin et al. [50] present a novel model for 
predicting the strength and stiffness of MMNCs, grounded in a 
quantitative analysis of efficiency metrics that significantly 
highlights the interface characteristics. To validate the model, they 
choose MWCNT and FLG as reinforcements and titanium (Ti) and 
aluminum (Al) as the matrix to enhance bonding strength in the 
MMNCs. 

3.3. Ceramic-matrix carbon nanocomposites 

Nanotubes appear to be promising materials for reinforcement 
in composites, especially in ceramic-matrix composites. Many 
researchers have sought to utilize CNT to improve the mechanical 
properties of composites. Ceramic materials enhanced with CNT 
appear to be effective toughening agents, resulting in reduced 
brittleness and composites exhibiting much superior fracture 
toughness compared to the original ceramics [59-61]. Numerous 
techniques are employed to synthesize CNTs, including arc 
discharge with or without metal, laser vaporization of a metal-
graphite composite target, carbon monoxide disproportionation, 
and catalytic breakdown of hydrocarbons on tiny metallic catalysts 
(Cu, Ni, Co, Fe)[62]. Nonetheless, spark plasma sintering (SPS), 
as an innovative and effective consolidation method, is utilized for 
the complete densification of high-temperature ceramic systems. 
In these binary nanocomposites, CNTs are incorporated into 
ceramic matrices to significantly enhance their suboptimal 
characteristics, and SPS is utilized to create totally dense compacts 
[63]. Purification is typically necessary due to the production of 
several carbon forms in addition to CNTs. Furthermore ,it is crucial 
to ensure a uniform dispersion of CNTs within the ceramic powder 
in order to create a CNTs–ceramic composite from the prepared 
CNTs [64]. 

 
4. Recent trends of carbon nanocomposites in energy 
applications 

Recent trends in carbon nanocomposites for energy 
applications emphasize the advancement of graphene-based 
materials, especially three-dimensional graphene structures and 
their integration with carbon nanotubes [65]. Through the 

application of these types of nanocomposite structures, there is 
increased available charge and enhanced cycling stability for all of 
the applications of energy which include electromagnetic 
equipment: fuel cells, lithium-ion batteries, supercapacitors and 
dye-sensitized solar cells. Yet the challenges associated with scale-
up production as well as the necessity for a more thorough 
understanding of the basic principles of operation will be important 
to solve [66, 67]. Fig. 5 illustrates carbon nanocomposites for 
energy storage application. 

 

Fig. 5. Carbon nanocomposites for energy storage application [68]. 

Carbon materials are used in energy storage due to their low 
cost, light weight, and easy recovery. Carbon materials are 
essential in capacitors, such as activated carbon/porous 
carbon/graphene for capacitive-type cathodes, 
graphite/graphene/disordered carbon/N-doped carbon nanotubes 
for battery-type anodes, and graphite oxide for gel electrolyte 
fillers [69, 70]. The capacitor cathode needs several active carbon 
sites for reversible anion adsorption/desorption. The battery-type 
anode needs extended interlayer spacing for reversible 
insertion/extraction of massive Na+, K+, or Zn2+ ions. Additionally, 
oxygen-containing functional groups on carbon increase 
capacitance and interlayer separation, improving K diffusion [71]. 
Carbon-based nanocomposites have emerged as the most 
promising materials in nanoscience and technology in recent years. 
A variety of techniques have been employed to fabricate carbon-
supported nanocomposites, particularly sol–gel, microwave-
assisted, sonochemical, electrochemical, and hydrothermal 
processes. The electrochemical approach is promising due to 
various advantages, including reduced production time, uniform 
and desirable layer thickness, and enhanced stability [72]. Over the 
past decade, carbon composites have significantly influenced the 
domain of transdisciplinary research and technology. Due to its 
environmentally friendly and cost-effective nature, along with 
exceptional chemical, mechanical, electrical, and surface qualities, 
carbon composite electrodes are widely utilized in energy storage 
applications [73].  

Carbon oxide and carbon sulfide nanocomposites have 
garnered significant attention as anode materials for lithium and 
sodium ion batteries. These composites are intriguing as they 
frequently exhibit a synergistic effect in comparison to their 
individual components. Carbon nanotubes are frequently 
employed as the matrix owing to their superior conductivity, 
tensile strength, and chemical stability under battery conditions. 
Metal oxides and sulfides are frequently employed as active 
material fillers due to their substantial capacity. Extensive research 
indicates that advancing the fabrication of nanocomposites through 
strategic structural design can significantly enhance performance 
[74, 75]. Moreover, CNTs, possessing a large specific surface area 
(albeit comparatively lower than activated carbons), and 
characterized by a well-defined hollow core, are appealing 
electrode materials for supercapacitors. Carbon nanotubes (CNTs) 
have been utilized as electrodes or conductive additives in 
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composite electrodes with activated carbons (ACs), conjugated 
polymers, or metal oxides. In comparison to ACs, CNTs exhibit 
superior electrical conductivity, microporosity, and electrolyte 
accessibility [76]. Recent developments in nickel-based 
supercapacitors have concentrated on their composites with carbon 
nanomaterials. These composites exhibit better electrical 
conductivity, increased surface area, and superior electrochemical 
performance by resolving significant challenges associated with 
cycling stability and low energy density. Fig. 1 illustrates the 
benefits of supercapacitors and the characteristics of carbon 
nanomaterials utilized as supercapacitor electrodes. Fig. 6 
illustrates various types of nickel materials and carbon 
nanostructures used in supercapacitors [77].  

Different forms of carbon-based composite electrodes, 
including CAs, CNFs, fullerenes, SWCNTs, MWCNTs, and GR, 
have been shown to serve as effective candidates for fuel cell 
catalysts. The capacity to customize the properties of these 
intriguing materials, particularly their electrical attributes, to meet 
the distinct demands of each application holds significant potential 
for advancements in this innovative field [72]. Furthermore, the 
elevated electronic conductivity of these materials poses a 
limitation for their utilization in Methanol Fuel Cells (PEMs), 
where it is disadvantageous. Recent review articles focusing on the 
application of carbonaceous materials in fuel cells, particularly 
graphene oxide, are limited [26,27,28]. You et al. [78] examine the 
utilization of CNTs, fullerene, graphene, carbon nanofibers, 
aerogel, nanocoils, carbon black, and mesoporous carbon as 
additives in electrodes and membranes for fuel cells is inherently 
overly broad. Conversely, the reviews by Panday et al. [79] are 

limited to the utilization of GO fillers as a polymer electrolyte 
membranes (PEM). Table 1. demonstrates summary of research on 
carbon nanocomposites for energy storage applications conducted 
from 2020 to 2024. 

 
5. Advanced application of carbon nanocomposites 
sensors and biosensors 

Carbon nanomaterials and their nanocomposites, have been 
extensively incorporated with various sensing electrode materials 
for biomarker detection across diverse experimental conditions 
[98]. Electrochemical sensors and biosensors have garnered 
significant interest for the precise detection of diverse biological 
and pharmacological substances.  

Following the discovery of carbon-based nanomaterials, such 
as carbon nanotubes, graphene, and C60, there has been significant 
interest in their application for developing high-performance 
electrochemical sensor platforms, owing to their remarkable 
electronic, mechanical, thermal, and catalytic properties. 
Electrochemical sensors based on carbon nanomaterials have been 
utilized for the detection of several analytes, exhibiting fast 
electron transfer kinetics [98, 99]. Schedin et al. demonstrated the 
first graphene-based gas sensor in 2007 [100] , demonstrating 
micrometre-sized graphene sensors that can detect individual gas 
molecules that attach to or detach from the graphene surface. They 
found that adsorbed molecules modify graphene's local carrier 
concentration one electron at a time, causing step-like resistance 
changes.  

 

Fig. 6. Benefits of supercapacitors and the characteristics of carbon nanomaterials as supercapacitor electrodes [77]. 

Table 1 
Summary of research on carbon nanocomposites for energy storage applications. 

Nanocomposite Method Applications Ref. 
S/C nanocomposite Novel facile route Lithium-ion batteries [80] 
MoO2@CNT nanocomposite Electrical explosion Lithium–sulfur batteries [81] 
RGO–CNT nanocomposite Simple one-step protocol Lithium-ion batteries [82] 
P-CD/G nanocomposites Biomass-derived method All-Solid-State Flexible Al–Air Batteries [83] 
CuSi2P3@Graphene nanocomposite High-energy ball milling Lithium-ion batteries [84] 
f-CNT/PANI nanocomposite In-situ polymerization Zinc-ion batteries and zinc-ion hybrid supercapacitors [85] 
COF/CNT nanocomposite Facile strategy of functional coated separator Lithium–sulfur batteries [86] 
PVDF/CNTs-PT @ Zn nanocomposite A phase transfer method Zinc-Ion Batteries [87] 
GNP-CNT-ZrO2 nanocomposite Simple hydrothermal method Lithium-ion batteries [88] 
titania/graphene nanocomposite Sol–gel  Li-ion batteries [89] 
SWCNT/ZnO nanocomposite Attaching carbon dots (CDs) Photoresponsive supercapacitor [90] 
Nickel ferrite@MWCNTs nanocomposite Sol–gel  Supercapacitor [91] 
mSiO 2 @rGO nanocomposite Sol–gel  Superior lithium-ion capacitor [92] 
NiO/CNT nanocomposite H2O2-assisted microwave irradiation supercapacitor [93] 
NiFe@CNTs nanocomposite Catalytic pyrolysis of waste plastics Low-temperature solid oxide fuel cells [94] 
polymer/MWCNT nanocomposite Solution processing High-temperature PEM fuel cells [95] 
Fex-CNT@NHC nanocomposite Simple and robust preparation Alkaline fuel cellS [96] 
CNT-g-PAA@SnO2/PtRu nanocomposite Newly hierarchical quaternary direct methanol fuel cells [97] 

 

https://www.sciencedirect.com/topics/engineering/ball-milling
https://www.sciencedirect.com/topics/materials-science/hydrothermal-synthesis
https://www.sciencedirect.com/science/article/pii/S0167577X21008405
https://www.sciencedirect.com/science/article/pii/S0167577X21008405
https://www.sciencedirect.com/science/article/pii/S0167577X21008405
https://www.sciencedirect.com/science/article/pii/S0167577X21008405
https://www.sciencedirect.com/science/article/pii/S0167577X21008405
https://link.springer.com/article/10.1007/s12598-021-01788-z
https://link.springer.com/article/10.1007/s11581-020-03563-z
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Electronically, graphene is very low-noise, making it a 
promising material for chemical detectors and other applications 
that require local probes sensitive to external charge, magnetic 
field, or mechanical strain . 

The recent discovery of carbon nanotubes has garnered 
significant attention due to their size and structure-sensitive 
characteristics. The elevated electrical conductivity of these 
nanostructures facilitates the use of CNTs as electrode material, 
and in conjunction with their robust electrocatalytic activity, 
enables the mediation of electron transfer reactions[101, 102]. The 
capability of electron transfer between electroactive species and 
the electrode holds significant potential, particularly for the 
development of chemical sensors. According to Jacobs et al. [103], 
the distinctiveness of CNTs enhances electronic characteristics, 
increases the edge plane/basal plane ratio, and accelerates 
electrode kinetics. Consequently, CNT-based sensors typically 
exhibit superior sensitivity, reduced limits of detection (LOD), and 
accelerated electron transfer kinetics compared to conventional 
carbon electrodes. 

Moreover, carbon-based quantum dots, in contrast to other 
prevalent quantum dots, exhibit solubility in aqueous solutions and 
possess non-toxic characteristics. carbon quantum dots (CQDs) 
and graphene quantum dots (GQDs) -based nanocomposites (NCs) 
are distinguished by surface imperfections and superior optical 
characteristics, rendering them suitable for application as sensors 
for the identification and elimination of toxic contaminants, 
respectively. The LOD for GQD and CQDs is at nanomolar, 
picomolar, or even femtomolar concentrations, rendering them 
appropriate for precision sensor systems. Numerous types of 
sensors, such as chemiluminescence, photoluminescence, and 
electrochemiluminescence, exist, as shown in Fig. 7 [104]. 

 

Fig. 7. Numerous types of sensors [104]. 

In addition to zero-dimensional and two-dimensional carbon 
nanomaterials, one-dimensional carbon nanofibers have also 
emerged as potentially useful platforms for applications in the field 
of biosensing.  Non-enzymatic biosensors utilizing CNF 
nanocomposites are generally constructed with nanoparticles of 
platinum, copper, cobalt, nickel, copper oxide, cobalt oxide, and 
nickel oxide. Liu et al. [105] introduced a glucose biosensor 
utilizing Ni nanoparticle-embedded CNF electrodes by the 
integration of electrospinning and thermal processing. Due to the 
extensive surface area of CNF and the elevated electrocatalytic 
activity of Ni nanoparticles, the CNF/Ni electrode demonstrated 
exceptional electrocatalytic performance for glucose oxidation. 
Zhang et al. [106] demonstrated a nanocomposite of nano-cupric 
oxide (CuONPs) on a CNF surface for the development of a non-
enzymatic glucose biosensor. The conductive substrate of CNFs 
facilitates rapid electron transmission, allows CuONPs to 
distribute on their surface, and serves as a supporting matrix that 
inhibits the detachment of nanoparticles from the electrode 
surfaces. The findings of this work demonstrate that CuONPs 
serve as a potent electrocatalyst for glucose oxidation, hence 

improving the efficacy of the biosensor. According to research by 
K Murtada, et al. a sensitive and selective voltammetric eugenol 
measurement was performed on several samples using a modified 
glassy carbon electrode (CuSe/rGO/GCE). The decreased 
graphene oxide was covered with CuSe/rGO utilizing supercritical 
carbon dioxide. It reduces GO sheets to scatter CuSe nanoparticles 
due to its gas-like diffusivity, exceptionally low viscosity, and 
good penetration. Encapsulating with graphene holes prevents 
catalytically active NPs from aggregating. The synthesized 
CuSe/rGO composite modified GCEs. This sensor has a linear 
dynamic range of 1µg/kg to 82µg/kg, a LOD of 0.41µg/kg, and 
recoveries of 88.5% to 94.8% [107]. 

 
6. Biomedical applications of carbon 
nanocomposites 

Carbon nanomaterials have been extensively studied for 
biological applications due to their electrical conductivity, 
biocompatibility, and optical characteristics. CDs are carbon 
nanoparticles under 10 nm in size, characterized by exceptional 
photoluminescence properties, biocompatibility, low toxicity, and 
a notable quenching effect, enabling them to emit their own 
fluorescent signal, thus rendering them a compelling option for 
bioimaging and drug delivery applications [108]. Carbon 
nanocomposites, characterized by low toxicity and other 
advantages such as economical manufacture, excellent mechanical 
stability, robust biocompatibility, biodegradability, and 
antibacterial properties, have garnered significant interest from 
researchers [109]. 

Graphitic carbon nitride, characterized by a 2D nanosheet 
structure, possesses considerable potential as a functional element 
in nanocarriers due to its remarkable attributes, including elevated 
thermal and chemical durability, favorable biocompatibility, and 
enhanced tissue permeability. The vast surface area of graphitic 
carbon nitride facilitates effective drug encapsulation. A study 
exemplifying the advantageous features of graphitic carbon nitride 
involved the development of a pH-sensitive nanocarrier, 
comprising chitosan, agarose, graphitic carbon nitride, and 
curcumin, designed to deliver curcumin to breast cancer cells 
[110]. 

Moreover, CNT nanocomposite possesses intrinsic 
antimicrobial characteristics that function as antibacterial agents in 
wound healing, either to intermolecular interactions or the 
formation of reactive oxygen species (ROS). For instance, in a 
CNT@MoS2 NSs integrated PVA/sodium alginate (PSCMo) 
hydrogel, CNTs infused with MoS2 NSs markedly enhanced the 
nanozyme activities of MoS2 via NIR irradiation. In an 
antibacterial assessment, CNT@MoS2 nanosheets containing 20 
wt% CNT exhibited superior antibacterial efficacy, attributed to 
their optimal photothermal conversion capability and peroxidase-
like activity [111]. Hydrogel wound dressings utilizing various 
carbon nanomaterials have been persistently created, as illustrated 
in Fig. 8. (a) The chronology of the initial production of hydrogel 
wound dressings employing various carbon-based nanomaterials. 
(b) Depiction of multifunctional carbon-based nanocomposite 
hydrogels [112].  

In accordance with this study, more research has shown CNT-
based nanocomposites for medication delivery and phototherapy. 
CNTs demonstrate significant absorption in the near-infrared 
(NIR) spectrum, specifically between 750 nm and 1400 nm, and 
possess the capability to transform NIR light into localized thermal 
energy. Utilizing these features, a mesoporous silica (MS)-
modified CNT nano-platform was developed in one study [113]. 
Recent research indicates that optimizing the characteristics of 
CNTs enables both medication and gene delivery. A nanocarrier 
based on MWCNT/Fe3O4 was created for the simultaneous 
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delivery of medicines and genes [114]. In recent years, carbon 
nanomaterials have exhibited promise in tissue engineering, 
including scaffold design, mechanical support, cellular contact, 
and regeneration, due to their unique physicochemical 
characteristics. Investigations are being conducted to develop 
tissue-specific scaffolds for transplantation with carbon 
nanomaterials. This text discusses recent studies on tissue 
engineering utilizing carbon-based nanocomposites.  Carbon -
based nanocomposites have been researched for cell differentiation 
due to their unique structural and physiochemical features. The 
functional groups of carbon nanomaterial-based nanocomposites 
can easily be coupled with other biomaterials that stimulate cell 
differentiation, which was used to control stem-cell differentiation. 
CNT-modified polycaprolactone (PCL) nanofibers modulate 
numerous cell interactions [115]. Table 2 illustrates several recent 
research of carbon-based nanocomposite for biomedical 
applications. 

 
7. Conclusion 

In this review is investigated recent research trends and results 
that are focused on application of carbon-based nanocomposites 
multifunctional. Many of the carbon nanostructures (i.e., graphene, 
carbon nanotubes, carbon nanofibers) mentioned previously show 
a synergistic effect among other classes of materials, including 
metals, polymers and ceramics, to produce improvements in the 
electrical conductivity, mechanical strength, surface reactivity and 
functional stability of the final composite. The applications of 

carbon nanoparticles for battery and capacitor architectures will 
provide improvements in energy storage solutions by increasing 
the rate of charge transport, increasing the specific surface area and 
increasing the electrochemical stability. In addition, using carbon 
matrices integrated with an interpenetrating phase of redox-active 
materials have been shown to reduce the volume expansion 
experienced during cycling, improve cycling stability and increase 
scalability for the design of electrodes. Carbon-based 
nanocomposites are highly sensitive and may be tailored to 
improve their surface chemistry for compatibility with 
biomolecular recognition components, making them advantageous 
for use in the development of chemical and biological 
sensing/biosensing technologies.  

They have a low limit of detection, short response times and 
high selectivity toward chemical species and biomolecules. 
Applications include environmental monitoring, health diagnostics 
and wearable sensor technologies. When viewed from a structural 
and engineering point of view, carbon nanocomposites include a 
multitude of capabilities. These characteristics include higher 
mechanical strength, improved electrical conductivity, increased 
thermal stability, and resistance to corrosion. These characteristics 
make these materials especially useful in smart materials, 
structural health monitoring systems, as well as for next-generation 
functional coatings. All of the studies reviewed to date show that 
carbon nanocomposites can be developed as an extremely versatile 
and powerful material platform and can be designed rationally with 
new techniques to overcome performance limitations in a wide 
range of applications. 

 

Fig. 8. Multifunctional carbon-derived hydrogel dressings [112]. 

Table 2 
Several recent research of carbon-based nanocomposite for biomedical applications. 

Nanocomposite Application Result Ref. 
PHB-Chitosan/MWCNTs 
nanocomposite 

Tissue engineering PHB-Chitosan/MWCNTs nanocomposite coating increases MG-63 cell 
proliferation, viability, and alkaline phosphatase secretion. 

[116] 

HAP-MWCNT and HAP-GO NCs 
nanocomposites (MWCNTs, GO =0.5, 
1 and 2 wt%) 

Tissue engineering Adding CNTs did not affect desorption efficiency, while adding GO increased it 
over time for all NCs. 

[117] 

PP/n-HA/f-MWCNTs nanocomposites Orthopedics 
applications 

Tensile experiments showed that f-MWCNTs increase the tensile strength of 
PP/n-HA nanocomposites but lower their Young's modulus. 

[118] 

MZ/GNPs + CNTs composites Bone infection 
treatment 

The MTT with 0.5 and 1 wt % GNPs + CNTs did not cytotoxically affect MG63 
cells, while excessive GNPs + CNTs are toxic. I 

[119] 

CS/PVA/CS-g-CNO nanocomposite Tissue 
regeneration 

After 25 days, films degraded into simulated bodily fluid (SBF) losing 14%–
16% of their initial weight. Composites of CS-g-CNO degraded faster (weight 
loss and pH changes) due to greater hydrogen bonding SBF interaction. 

[120] 

NFP-MWCNT and NFB-MWCNT 
nanocomposite 

Wound-healing The results indicated that NFB-MWCNT and NFP-MWCNT cells healed well. 
The heteroatoms' differing electronegativity provides a surface charge that limits 
biofilm formation, and heals wounds. 

[121] 

CS-CQD-TiO2-GO nanocomposite Wound dressing Tensile strength and elongation testing demonstrated that the nanofibrous mat is 
flexible and strong enough for wound treatment. 

[122] 

ZnO/GO nanocomposite Wound healing The scaffolds' mechanical properties showed significant variations in tensile 
strength and toughness. In addition, ZnO/GO@CA revealed a cell viability 
advancement of 97.38 ± 3.9%. 

[123] 

GO /Au nanocomposite Chemo and 
photothermal 
therapy 

The increase in NIR-induced drug release and photothermal property suggests 
that the fGO@GNRs-DOX technique is suited for chemotherapy and 
photothermal therapy. 

[124] 
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