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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

This paper examines recent developments in machine learning (ML) techniques for 
optimizing and predicting the flexural and buckling behavior of composite structures, 
including those made from concrete, fiber-reinforced polymers (FRP), wood, and 
metals. To enhance the understanding of structural system performance and data-
driven modeling, various ML techniques are demonstrated and reviewed throughout 
the paper, including artificial neural networks (ANN), deep learning, and support 
vector machines (SVM). The paper also provides examples of how ML applications 
can reduce testing costs while improving design accuracy and fostering innovation in 
civil, materials, and mechanical engineering. 
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1. Introduction 

Increasing speed in manufacturing has led to an increased 
demand for materials with lower density, higher durability, 
stiffness, and strength, as well as reduced costs. As a versatile 
option, composite materials have emerged, which have the 
potential to offer these improvements in a variety of applications 
[1, 2]. Composites consist of a matrix phase combined with 
dispersed reinforcement, which may be in particle or fiber form. 
the use of synthetic or natural fibers has had widespread 
applications in mechanical engineering, aerospace, construction, 

biomedical, marine, and automotive sectors [2]. Computational 
analysis of composites faces challenges due to (i) the need to 
accurately model dissimilar material interfaces (e.g., 
metal/ceramic, metal/polymer, ceramic/polymer) and their 
interfacial interactions, and (ii) the virtually infinite design space 
of possible material combinations, which requires reliable material 
parameters to yield meaningful insights [3]. Artificial intelligence 
(AI), using machine learning (ML) and deep learning (DL) 
algorithms, enhances the aforementioned processes by analyzing 
large data sets [4]. Recent advances in ML enable data-driven 
damage detection and identification in structural systems. This 
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study proposes a novel method for three-dimensional (3D) 
delamination identification in sandwich composite structures, 
where damage is often difficult to detect and requires efficient 
inspection. The methodology integrates automated structural 
health monitoring (SHM) using ML, parameterizing damage as 
two- and three-dimensional ellipses and categorizing it into core, 
interface, and skin regions [5]. Sheet metal forming has long 
supported diverse manufacturing needs. Among forming 
techniques, sheet bending and stamping are particularly important. 
Springback, the elastic recovery after tooling removal due to 
residual stresses, must be predicted to achieve accurate forming. 
Recently, ML has been increasingly applied to sheet metal forming 
to improve decision-making, reduce defects, and enhance 
manufacturing quality. ML operations are usually categorized into 
supervised learning, unsupervised learning, or reinforcement 
learning. 

 
2. Types of composite structures 

Composite materials are created by combining two or more 
different materials to take advantage of their individual best 
properties. The complex failure modes of composites stem from 
their heterogeneity, which cannot always be detected through 
ordinary inspection. Types of composites include carbon-fiber 
reinforced composites, polymer-matrix composites, metal-matrix 
composites, and natural composites. Examples of natural 
composites include wood, sandwich panels, and ceramic-matrix 
composites [6, 7]. 

2.1. Concrete 

Concrete is one of the most widely used construction materials 
due to its high compressive strength and low tensile strength. 
However, due to this property, it is prone to cracking, which 
reduces the durability and lifespan of structures [8]. To mitigate 
this issue, innovative self-healing concrete technologies have been 
introduced as solutions that improve stability and reduce 
maintenance costs through the automatic repair of cracks. These 
technologies enhance the longevity and durability of concrete 
structures. In addition, an advanced strategy involving the 
incorporation of nanoparticles into fiber-reinforced polymers 
(FRP), combined with self-healing concrete systems, can further 
enhance structural resistance to environmental factors and improve 
durability [8]. 

2.2. Fiber-reinforced polymers (FRP) 

Nanoparticles can serve as effective additives in composite 
FRP materials (Fig. 1).  

 

Fig. 1. Types of composites [10]. 

They improve the bond between the fibers and the FRP matrix 
through effective chemical interactions (better adhesion), 
increased surface dryness, and enhanced mechanical bonding. 
Therefore, it is important to evaluate the performance of these 
nanoparticles under environmental conditions, such as humidity 
and ultraviolet (UV) radiation, to accurately assess the durability 
of the materials. The outcomes of this work will assist in the 
development of FRP materials with improved environmental 
stability and erosion resistance [9]. 

2.3. Composite wood products 

Engineered wood products (EWPs) are sustainable, high-
performance building materials made from the renewable resource 
of wood. these products offer increased durability and strength by 
improving undesirable natural properties such as knots, as well as 
dimensional stability and more consistent mechanical properties. 
These improvements result from controlled modifications of 
natural wood, which form the basis of engineered composite 
products. As a result, EWPs offer improved structural performance 
for high-demand applications where plain wood is not sufficient. 
Also, the increased use of EWPs has generated significant 
economic growth in the wood industry and is enabling a new 
marketing process [11]. 

2.4. Metal matrix composites (MMCs) 

Metal matrix composites (MMCs) are widely used in the 
aerospace, automotive, and sports industries due to their advanced 
mechanical properties [12]. These materials, especially particle-
reinforced ones, offer several advantages, including high strength, 
high tensile modulus, scalable production, and low cost. However, 
while stiff reinforcements increase strength, they may reduce 
resilience elements such as the stiffener, resulting in unstable 
strength-to-stiffness interactions (Fig. 2). Recent developments in 
nanocomposites (MMNCs), structurally modified foams, and self-
similar metals based on the stiffening method have led to improved 
stiffness, tensile strength, and rocket-like strength. These 
exceptional innovations have paved the way for a new generation 
of functional foams with adjustable and tunable structural 
performance properties [13]. 

 

Fig. 2. The schematic of MMC with different modern methods, a) hot-
pressed billets, b) in situ process [14]. 

2.5. Ceramic matrix composites (CMCs) 

ML plays a critical role in improving the performance of 
ceramic matrix composites (CMCs) in extreme environments. 
Machine-based predictive models allow for accurate prediction of 
strength and properties such as strain under extreme conditions 
such as high stress and significant motion loss. Algorithms such as 
random forest, neural network, and support vector machine reduce 
the time-consuming design and testing of materials and analyze the 
complex relationships among material structure, properties such as 
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metal volume or color, and operating conditions. In addition, ML 
will help to ultimately detect damage effects and improve product 
design, key factors in maintaining the mechanical and thermal 
resistance of ceramic materials in harsh conditions. Finally, ML 
has increased the precision and energy of research and 
technological development in the world of modern materials [15]. 

2.6. Sandwich structures 

Fiber sandwich structures with high corrosion resistance and 
high strength-to-weight ratio are suitable for applications in marine 
and industrial industries. In this design, thin layers are used on the 
surface of a lightweight core, the types of which are shown in Fig. 
3, with thermal insulation properties with two different thermal and 
insulation properties, with the main goal of reducing weight and 
strength being the main part of the engineering program.  

Using ML algorithms, it is possible to predict the nonlinear 
relationship between multi-component elements, including 
different materials and shapes, and loading, and reduce the analysis 
time. These methods help to increase the regularity of the 
structure's health during damage (such as impact) in FRP 
structures. Ultimately, combining the sandwich structure with ML 
provides a path to designing safer, lighter, and stronger structures 
[16]. 

 

Fig. 3. Sandwich composites with various core models [16]. 

2.7. Asphalt concrete 

The addition of industrial waste materials like limestone dust, 
silica ash, clay and fly ash to dry asphalt composites has improved 
their mechanical strength and strength properties. Various tests 
such as corrosion resistance, moisture sensitivity and internal 
strength have been well used to increase the productivity of these 
composites. In this area, ML through big data analysis has shown 
great skill in predicting the effects of materials on improving 
material performance and has enabled more suitable material 
formulations. These approaches not only reduce environmental 
problems associated with failure to prevent waste transfer but also 
increase the durability of asphalt. For example, the use of 
limestone powder and fly ash has been well documented to 
increase the paving quality of asphalt [17]. 

2.8. Syntactic foams 

Synthetic foams are composite materials consisting of hollow 
microspheres in metallic, nucleophilic, and ceramic matrices. 
These foams have low density, high strength-to-weight ratios, and 
closed-cell structures that provide excellent hydrostatic pressure 
strength, impact resistance, and buoyancy. Glass microspheres are 
commonly added to the matrix to provide a lighter structure. 
Specifically, the addition of glass microspheres (3M, K20; ~60μm, 
0.2g / cm3) helps improve resin fluid adhesion, viscosity, and shape 
retention during material processing [7]. 

 

3. Composite structure  

3.1. Effective composites in civil engineering 

FRP bars are greatly used in civil engineering due to their high 
compressive strength, low weight, and corrosion resistance. The 
common types of fiber-reinforced polymers include AFRP, BFRP, 
HFRP, GFRP, SFCB, and CFRP. While carbon fiber-reinforced 
polymers (CFRP) are more costly compared to the others, their 
strong performance in strengthening critical structures is well 
established. Glass fiber-reinforced polymers (GFRP) are also 
widely used due to large-scale production, variable costs, and 
efficient handling processes. BFRP bars made from silt soil are 
similarly strong to GFRP and represent a more sustainable option. 
Hybrid fiber-reinforced polymer bars (HFRP) combine carbon 
fibers with either silt or glass fibers, making them robust for use in 
hot and humid conditions. AFRP bars have limited applications 
due to their susceptibility to moisture and reduced durability [18]. 

3.2. Machine learning in composite structures 

Machine learning is increasingly being used in materials 
development and manufacturing to improve accuracy and 
efficiency while reducing the cost of modeling complex material 
behaviors. Machine learning algorithms can be categorized into 
three main types based on learning objectives and data: 
reinforcement learning, unsupervised learning, and supervised 
learning each with its own advantages. Among these, artificial 
neural network (ANN)-based modeling plays a critical role in 
forecasting material performance based on experimental or 
simulated data. combining ANNs with other ML techniques can 
help overcome their limitations and increase the overall reliability 
of modeling, as ANNs effectively capture nonlinear relationships 
[19]. 

 
4. Machine learning techniques for bending and 
buckling behaviors of composite structures  

Recent advances in ML have addressed the limitations of 
traditional design approaches for FRP‑strengthened RC members, 
enabling accurate prediction of mechanical behavior using models 
such as neural networks (NNs), support vector machines (SVM), 
and ensemble learning algorithms including random forest (RF) 
and XGBoost. In laminated and fiber‑reinforced composites, the 
buckling stability improves with layer stacking, while 
antisymmetric and thermally nonuniform laminates show higher 
critical buckling loads [18, 25]. Analytical frameworks such as 
Hamilton’s principle remain effective for beam buckling problems 
[26]. Graphene platelet (GPL) and carbon nanotube 
(CNT)‑reinforced nanocomposites have also been analyzed for 
buckling and vibration behavior, demonstrating the influence of 
reinforcement patterns and material gradation [27]. Supervised 
ML algorithms including ANNs, SVM, K‑nearest neighbors 
(KNN), and decision trees have shown promising accuracy in 
modeling bending, springback, and buckling responses. Among 
these, multilayer perceptron NNs offer superior prediction 
capability in complex nonlinear problems such as sheet metal air 
bending and punch displacement estimation. The result of these 
technologies is the integration of neural network-based predictions 
with finite element analysis (FEA) simulations, which provides a 
data-driven and efficient path to evaluate and optimize the flexural 
performance and stability of advanced composite structures [19].  
Table 1 compares various applications and performance 
characteristics in machine learning.
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Table 1 
Comparison of several applications and behaviors in ML. 

Application Description Ref. 
Buckling Prediction Development of machine learning models 

Accurate prediction of buckling behavior 
Composite plates with different types of cuts and fiber orientations 
Advances in ANNs 

[20] 

Flexural Strength Assessment Machine learning techniques 
Accurate prediction of critical buckling load  
Thin-wall composite structures with diverse hole shapes 
Thin layers under mechanical and thermal loads  
Enable efficient assessment of structural resilience 

[21] 

Data-Driven Design Optimization Machine Learning Accelerates Civil Engineering 
ML Enables Data-Driven Prediction 
Structural Health Monitoring and Efficient Decision Making in Various Subdomains 
Reduces Experimental Needs and Increases Project Sustainability 

[22] 

Real-Time Monitoring and Maintenance ML with Internet of Things (IoT) sensor data analysis 
Structural health monitoring of civil engineering infrastructure 
Damage detection 
Material strength prediction 
structural integrity assessment under different conditions 

[23] 

Functionally Graded Composites Porous functionally graded composites   
Nature-inspired porosity 
Structural structures with improved mechanical properties and lightness 
Modeling with the help of artificial intelligence and machine learning 
Support for mechanical analysis and design 
Improved buckling, vibration and bending performance 

[24] 

 
5. Conclusion 

In the presented set of studies, ML has well demonstrated the 
role of world-building in improving the accuracy of predicting the 
performance of composite structures in the face of compression 
and flexural cracking problems.  

Various algorithms like ANN, random forests and SVM have 
increased the predictive power in areas such as fracture behavior, 
critical force and stiffness to about 90%. Also, multi-stage ML 
models reduce computational time from hours to milliseconds, 
while maintaining an accuracy comparable to full finite element 
simulation (FEA).  

In other areas, ML has enabled immediate safety assessment as 
an advanced technology in defect detection and health monitoring 
of composite structures. In particular, incorporating ML into 
structural optimization and architectural design processes will 
enable the construction of stronger, more economical, and lighter 
structures.  

Based on the above, improving ML models based on physical 
concepts and creating standardized datasets can help increase the 
reliability of predictions and industrial application of composite 
materials and related technologies in construction.  

Overall, future research should focus on strengthening the link 
between data-driven ML results and empirical physical concepts 
so that sustainable materials and structures, which are of great 
concern to the world today, can meet global construction needs. 
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