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ABSTRACT

ARTICLE INFORMATION

This paper examines recent developments in machine learning (ML) techniques for
optimizing and predicting the flexural and buckling behavior of composite structures,
including those made from concrete, fiber-reinforced polymers (FRP), wood, and
metals. To enhance the understanding of structural system performance and data-
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driven modeling, various ML techniques are demonstrated and reviewed throughout

the paper, including artificial neural networks (ANN), deep learning, and support
vector machines (SVM). The paper also provides examples of how ML applications
can reduce testing costs while improving design accuracy and fostering innovation in

civil, materials, and mechanical engineering.
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1. Introduction

Increasing speed in manufacturing has led to an increased
demand for materials with lower density, higher durability,
stiffness, and strength, as well as reduced costs. As a versatile
option, composite materials have emerged, which have the
potential to offer these improvements in a variety of applications
[1, 2]. Composites consist of a matrix phase combined with
dispersed reinforcement, which may be in particle or fiber form.
the use of synthetic or natural fibers has had widespread
applications in mechanical engineering, aerospace, construction,
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biomedical, marine, and automotive sectors [2]. Computational
analysis of composites faces challenges due to (i) the need to
accurately model dissimilar material interfaces (e.g.,
metal/ceramic, metal/polymer, ceramic/polymer) and their
interfacial interactions, and (ii) the virtually infinite design space
of possible material combinations, which requires reliable material
parameters to yield meaningful insights [3]. Artificial intelligence
(Al), using machine learning (ML) and deep learning (DL)
algorithms, enhances the aforementioned processes by analyzing
large data sets [4]. Recent advances in ML enable data-driven
damage detection and identification in structural systems. This
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study proposes a novel method for three-dimensional (3D)
delamination identification in sandwich composite structures,
where damage is often difficult to detect and requires efficient
inspection. The methodology integrates automated structural
health monitoring (SHM) using ML, parameterizing damage as
two- and three-dimensional ellipses and categorizing it into core,
interface, and skin regions [5]. Sheet metal forming has long
supported diverse manufacturing needs. Among forming
techniques, sheet bending and stamping are particularly important.
Springback, the elastic recovery after tooling removal due to
residual stresses, must be predicted to achieve accurate forming.
Recently, ML has been increasingly applied to sheet metal forming
to improve decision-making, reduce defects, and enhance
manufacturing quality. ML operations are usually categorized into
supervised learning, unsupervised learning, or reinforcement
learning.

2. Types of composite structures

Composite materials are created by combining two or more
different materials to take advantage of their individual best
properties. The complex failure modes of composites stem from
their heterogeneity, which cannot always be detected through
ordinary inspection. Types of composites include carbon-fiber
reinforced composites, polymer-matrix composites, metal-matrix
composites, and natural composites. Examples of natural
composites include wood, sandwich panels, and ceramic-matrix
composites [6, 7].

2.1. Concrete

Concrete is one of the most widely used construction materials
due to its high compressive strength and low tensile strength.
However, due to this property, it is prone to cracking, which
reduces the durability and lifespan of structures [8]. To mitigate
this issue, innovative self-healing concrete technologies have been
introduced as solutions that improve stability and reduce
maintenance costs through the automatic repair of cracks. These
technologies enhance the longevity and durability of concrete
structures. In addition, an advanced strategy involving the
incorporation of nanoparticles into fiber-reinforced polymers
(FRP), combined with self-healing concrete systems, can further
enhance structural resistance to environmental factors and improve
durability [8].

2.2. Fiber-reinforced polymers (FRP)

Nanoparticles can serve as effective additives in composite

FRP materials (Fig. 1).
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Fig. 1. Types of composites [10].

They improve the bond between the fibers and the FRP matrix
through effective chemical interactions (better adhesion),
increased surface dryness, and enhanced mechanical bonding.
Therefore, it is important to evaluate the performance of these
nanoparticles under environmental conditions, such as humidity
and ultraviolet (UV) radiation, to accurately assess the durability
of the materials. The outcomes of this work will assist in the
development of FRP materials with improved environmental
stability and erosion resistance [9].

2.3. Composite wood products

Engineered wood products (EWPs) are sustainable, high-
performance building materials made from the renewable resource
of wood. these products offer increased durability and strength by
improving undesirable natural properties such as knots, as well as
dimensional stability and more consistent mechanical properties.
These improvements result from controlled modifications of
natural wood, which form the basis of engineered composite
products. As a result, EWPs offer improved structural performance
for high-demand applications where plain wood is not sufficient.
Also, the increased use of EWPs has generated significant
economic growth in the wood industry and is enabling a new
marketing process [11].

2.4. Metal matrix composites (MMCs)

Metal matrix composites (MMCs) are widely used in the
aerospace, automotive, and sports industries due to their advanced
mechanical properties [12]. These materials, especially particle-
reinforced ones, offer several advantages, including high strength,
high tensile modulus, scalable production, and low cost. However,
while stiff reinforcements increase strength, they may reduce
resilience elements such as the stiffener, resulting in unstable
strength-to-stiffness interactions (Fig. 2). Recent developments in
nanocomposites (MMNCs), structurally modified foams, and self-
similar metals based on the stiffening method have led to improved
stiffness, tensile strength, and rocket-like strength. These
exceptional innovations have paved the way for a new generation
of functional foams with adjustable and tunable structural
performance properties [13].
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Fig. 2. The schematic of MMC with different modern methods, a) hot-
pressed billets, b) in situ process [14].
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2.5. Ceramic matrix composites (CMCs)

ML plays a critical role in improving the performance of
ceramic matrix composites (CMCs) in extreme environments.
Machine-based predictive models allow for accurate prediction of
strength and properties such as strain under extreme conditions
such as high stress and significant motion loss. Algorithms such as
random forest, neural network, and support vector machine reduce
the time-consuming design and testing of materials and analyze the
complex relationships among material structure, properties such as
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metal volume or color, and operating conditions. In addition, ML
will help to ultimately detect damage effects and improve product
design, key factors in maintaining the mechanical and thermal
resistance of ceramic materials in harsh conditions. Finally, ML
has increased the precision and energy of research and
technological development in the world of modern materials [15].

2.6. Sandwich structures

Fiber sandwich structures with high corrosion resistance and
high strength-to-weight ratio are suitable for applications in marine
and industrial industries. In this design, thin layers are used on the
surface of a lightweight core, the types of which are shown in Fig.
3, with thermal insulation properties with two different thermal and
insulation properties, with the main goal of reducing weight and
strength being the main part of the engineering program.

Using ML algorithms, it is possible to predict the nonlinear
relationship between multi-component elements, including
different materials and shapes, and loading, and reduce the analysis
time. These methods help to increase the regularity of the
structure's health during damage (such as impact) in FRP
structures. Ultimately, combining the sandwich structure with ML
provides a path to designing safer, lighter, and stronger structures
[16].

Cellular polymer Core

Wood core

Metallic foam core Tubular core

Fig. 3. Sandwich composites with various core models [16].

2.7. Asphalt concrete

The addition of industrial waste materials like limestone dust,
silica ash, clay and fly ash to dry asphalt composites has improved
their mechanical strength and strength properties. Various tests
such as corrosion resistance, moisture sensitivity and internal
strength have been well used to increase the productivity of these
composites. In this area, ML through big data analysis has shown
great skill in predicting the effects of materials on improving
material performance and has enabled more suitable material
formulations. These approaches not only reduce environmental
problems associated with failure to prevent waste transfer but also
increase the durability of asphalt. For example, the use of
limestone powder and fly ash has been well documented to
increase the paving quality of asphalt [17].

2.8. Syntactic foams

Synthetic foams are composite materials consisting of hollow
microspheres in metallic, nucleophilic, and ceramic matrices.
These foams have low density, high strength-to-weight ratios, and
closed-cell structures that provide excellent hydrostatic pressure
strength, impact resistance, and buoyancy. Glass microspheres are
commonly added to the matrix to provide a lighter structure.
Specifically, the addition of glass microspheres (3M, K20; ~60um,
0.2g / cm®) helps improve resin fluid adhesion, viscosity, and shape
retention during material processing [7].

3. Composite structure

3.1. Effective composites in civil engineering

FRP bars are greatly used in civil engineering due to their high
compressive strength, low weight, and corrosion resistance. The
common types of fiber-reinforced polymers include AFRP, BFRP,
HFRP, GFRP, SFCB, and CFRP. While carbon fiber-reinforced
polymers (CFRP) are more costly compared to the others, their
strong performance in strengthening critical structures is well
established. Glass fiber-reinforced polymers (GFRP) are also
widely used due to large-scale production, variable costs, and
efficient handling processes. BFRP bars made from silt soil are
similarly strong to GFRP and represent a more sustainable option.
Hybrid fiber-reinforced polymer bars (HFRP) combine carbon
fibers with either silt or glass fibers, making them robust for use in
hot and humid conditions. AFRP bars have limited applications
due to their susceptibility to moisture and reduced durability [18].

3.2. Machine learning in composite structures

Machine learning is increasingly being used in materials
development and manufacturing to improve accuracy and
efficiency while reducing the cost of modeling complex material
behaviors. Machine learning algorithms can be categorized into
three main types based on learning objectives and data:
reinforcement learning, unsupervised learning, and supervised
learning each with its own advantages. Among these, artificial
neural network (ANN)-based modeling plays a critical role in
forecasting material performance based on experimental or
simulated data. combining ANNs with other ML techniques can
help overcome their limitations and increase the overall reliability
of modeling, as ANNs effectively capture nonlinear relationships
[19].

4. Machine learning techniques for bending and
buckling behaviors of composite structures

Recent advances in ML have addressed the limitations of
traditional design approaches for FRP-strengthened RC members,
enabling accurate prediction of mechanical behavior using models
such as neural networks (NNs), support vector machines (SVM),
and ensemble learning algorithms including random forest (RF)
and XGBoost. In laminated and fiber-reinforced composites, the
buckling stability improves with layer stacking, while
antisymmetric and thermally nonuniform laminates show higher
critical buckling loads [18, 25]. Analytical frameworks such as
Hamilton’s principle remain effective for beam buckling problems
[26]. Graphene platelet (GPL) and carbon nanotube
(CNT)-reinforced nanocomposites have also been analyzed for
buckling and vibration behavior, demonstrating the influence of
reinforcement patterns and material gradation [27]. Supervised
ML algorithms including ANNs, SVM, K-nearest neighbors
(KNN), and decision trees have shown promising accuracy in
modeling bending, springback, and buckling responses. Among
these, multilayer perceptron NNs offer superior prediction
capability in complex nonlinear problems such as sheet metal air
bending and punch displacement estimation. The result of these
technologies is the integration of neural network-based predictions
with finite element analysis (FEA) simulations, which provides a
data-driven and efficient path to evaluate and optimize the flexural
performance and stability of advanced composite structures [19].
Table 1 compares various applications and performance
characteristics in machine learning.
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Table 1
Comparison of several applications and behaviors in ML.

Application Description Ref.

Buckling Prediction Development of machine learning models [20]
Accurate prediction of buckling behavior
Composite plates with different types of cuts and fiber orientations
Advances in ANNs

Flexural Strength Assessment Machine learning techniques [21]
Accurate prediction of critical buckling load
Thin-wall composite structures with diverse hole shapes
Thin layers under mechanical and thermal loads
Enable efficient assessment of structural resilience

Data-Driven Design Optimization Machine Learning Accelerates Civil Engineering [22]
ML Enables Data-Driven Prediction
Structural Health Monitoring and Efficient Decision Making in Various Subdomains
Reduces Experimental Needs and Increases Project Sustainability

Real-Time Monitoring and Maintenance ML with Internet of Things (IoT) sensor data analysis [23]
Structural health monitoring of civil engineering infrastructure
Damage detection
Material strength prediction
structural integrity assessment under different conditions

Functionally Graded Composites Porous functionally graded composites [24]

Nature-inspired porosity

Structural structures with improved mechanical properties and lightness
Modeling with the help of artificial intelligence and machine learning
Support for mechanical analysis and design

Improved buckling, vibration and bending performance

5. Conclusion

In the presented set of studies, ML has well demonstrated the
role of world-building in improving the accuracy of predicting the
performance of composite structures in the face of compression
and flexural cracking problems.

Various algorithms like ANN, random forests and SVM have
increased the predictive power in areas such as fracture behavior,
critical force and stiffness to about 90%. Also, multi-stage ML
models reduce computational time from hours to milliseconds,
while maintaining an accuracy comparable to full finite element
simulation (FEA).

In other areas, ML has enabled immediate safety assessment as
an advanced technology in defect detection and health monitoring
of composite structures. In particular, incorporating ML into
structural optimization and architectural design processes will
enable the construction of stronger, more economical, and lighter
structures.

Based on the above, improving ML models based on physical
concepts and creating standardized datasets can help increase the
reliability of predictions and industrial application of composite
materials and related technologies in construction.

Overall, future research should focus on strengthening the link
between data-driven ML results and empirical physical concepts
so that sustainable materials and structures, which are of great
concern to the world today, can meet global construction needs.
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