

Available Online at www.jourcc.comJournal homepage: www.JOURCC.com

CrossMark

Journal of Composites and Compounds

Takayanagi model and Monte Carlo simulation for predicting the Young's modulus of PVC/AgNP nanocomposites: Towards self-disinfecting materials to reduce SARS-CoV-2 transmission in healthcare settings

Mohammad Hassan Shahavi *

Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT), Amol, Iran

ABSTRACT

Poly (vinyl chloride) (PVC) is widely utilized in medical tools and structure applications owing to its biocompatibility, stability, and cost-efficiency. Nevertheless, conventional PVC is susceptible to microbial attachment, indicating the need for a self-disinfecting material. The present study analyzed PVC nanocomposites bio-filled with 0–0.5 wt% silver nanoparticles (AgNPs) to investigate their mechanical behavior using the Takayanagi model and Monte Carlo simulation approach. The Takayanagi model calculates the effective Young's modulus based on a series-parallel arrangement of polymer matrices and the filler, while Monte Carlo simulation simulates uncertainties in the mechanical properties of PVC and AgNPs. Model predictions agreed with experimental data closely, with Young's modulus decreasing as the nanoparticle content increased. Monte Carlo generated confidence intervals further confirming the efficacy of the approach. Evaluation outcomes indicate that the Takayanagi model in combination with stochastic simulations accurately predicts the mechanical properties of PVC/AgNP nanocomposites, which supports design of self-disinfection materials for healthcare applications in which both antimicrobial activity and mechanical performance is required.

©2024 UGPH

Peer review under responsibility of UGPH.

ARTICLE INFORMATION

Article History:

Received 05 January 2024

Received in revised form 17 March 2024

Accepted 26 March 2024

Keywords:

Poly (vinyl chloride) (PVC)

Silver nanoparticles (AgNPs)

Nanocomposites

Young's modulus

Takayanagi model

Monte Carlo simulation

1. Introduction

For over 30 years, poly (vinyl chloride) (PVC) has been used in the medical field. It remains among the most widely used materials because of its ability to resist microbial growth, ease of cleaning, suitability for sterilization, and its use in single-use applications, which can help reduce healthcare-associated infections [1, 2]. PVC has also been commonplace in bottles, electrical cables, household appliances, pipelines, and food packaging films [3]. PVC's extensive range of technological applications across fields (healthcare and packaging) is driven by its unique properties, including flexibility, transparency, chemical resistance, biocompatibility, mechanical strength, processability, cost-effectiveness, market availability, and recyclability [4].

To avoid thermal decomposition of the composite during manufacturing, which can compromise the mechanical properties of biomedical devices and structural components, stabilizers and processing additives are important [5, 6]. Although virgin PVC exhibits some bacteriostatic activity against certain strains, both stabilized and plasticized PVC lack sufficient antimicrobial

activity to prevent biofilm formation [7, 8]. Through the leaching of phthalate ester plasticizers, surface microcracks, and UV-induced flaws, enhanced activity has made additive-containing PVC more prone to microbial colonization [9]. Because the material builds up biofilms through multilayered bacterial colonies embedded in extracellular polysaccharides, it is important to add biocides to PVC formulations [10].

Even with ongoing discussions and the continuing concern about the potential health effects of stabilizers and processing additives under both short- and long-term exposure, PVC continues to be a beneficial material. Its attributes of biocompatibility, chemical stability, resistance to sterilants, and cost have made it among the most common polymers used in medicine. Thus, PVC is a common component of many clinical devices, such as flexible blood bags, urine ostomy pouches, tubing systems, inhalation and oxygen masks, and various types of personal protective equipment [11, 12]. Since late 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its variants have caused large-scale health crises and significant strain on healthcare systems worldwide [13]. These viruses are

* Corresponding author: Mohammad Hassan Shahavi, Email: m.shahavi@ausmt.ac.ir

<https://doi.org/10.61882/jcc.6.1.5> This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>)

highly contagious and are transmitted mainly through droplets or aerosols [14, 15]. Importantly, research has shown that SARS-CoV-2 can remain infectious for up to 24 hours on polymeric surfaces [16]. Therefore, the development of self-disinfecting polyvinyl chloride (PVC) is significant for the production of structural and medical products (e.g., wall guards, handrails, and similar items) which could help lessen epidemiological risk in hospital and clinical environments [17, 18].

Surface modification and the addition of inorganic agents with intrinsic bactericidal and fungicidal properties are the primary methods for imparting self-disinfecting properties to PVC [19]. Alternatively, blending with cationic polymers or applying cationic functional groups through cationization has been shown to promote the antimicrobial performance of PVC [20]. The benefit of incorporating the antimicrobial agent into the polymer matrix is compatibility with conventional polymer processing (e.g., extrusion, injection molding) and longer-lasting antimicrobial activity beyond surface treatment. However, high concentrations of antimicrobial additives are often needed to achieve bactericidal (not bacteriostatic) performance. To overcome this, polymer nanocomposites have emerged that feature polymeric matrices containing nanoscale antimicrobial agents. With the emergence of COVID-19, self-sanitizing PVC materials are becoming increasingly relevant for reducing secondary infections through surfaces in healthcare environments, where surface contamination leads to hand contact and ultimately virus spread [21, 22].

Common examples of organic antimicrobial agents studied include the addition of natural essential oils, such as clove oil [23], eugenol [24], *trachyspermum copticum*, *mentha pulegium*, *satureja hortensis* [25], geraniol, *cuminum cyminum* [26], *ziziphora clinopodioides*, and tarragon [27], which exhibit antibiofilm activity against microorganisms and are used in food, medicine, and various industries due to their antioxidant, antibacterial, and anti-inflammatory properties [28]. Common examples of inorganic antimicrobial agents studied extensively in the production of antimicrobial materials include silver (Ag), copper (Cu), titanium dioxide (TiO_2), zinc oxide (ZnO), cuprous oxide (Cu_2O), and cupric oxide (CuO) [29-35]. Antimicrobial activity is often due to reactive oxygen species (ROS) and the release of metal ions, which cause irreversible damage to viruses, bacteria, and fungal cells [36-38]. Research suggests that silver nanoparticles (AgNPs) or silver-based nanomaterials are better than other agents in polymeric nanocomposites [39-45], some of which were able to inactivate SARS-CoV-2 [46]. While a couple of studies have documented the potential for self-disinfecting behavior of PVC/AgNP nanocomposites [47], no reports have been made on the antiviral activity against SARS-CoV-2. Additionally, it should be noted that in most of these studies, neither Ag nor PVC was used in the melt blending of PVC and AgNPs [48-50].

Da Silva et al. processed PVC nanocomposites with AgNPs using melt processing and, presumably due to the well-documented antimicrobial effect of AgNPs in polymeric systems, demonstrated that ca. 0.1-0.5 wt% AgNPs resulted in an effective reduction in Young's modulus and ultimate tensile strength of PVC in the nanocomposite. Presumably, the microstructural defects introduced by processing did not affect the impact strength. In addition, the authors reported that the yellowness index (YI) was higher and the optical bandgap was lower than those of neat PVC. Interestingly, PVC/AgNP nanocomposites (0.3 wt% and higher) exhibited virucidal activity against SARS-CoV-2 B.1.1.28 within 48 hours, indicating potential use for hospital furniture and equipment that require self-disinfecting properties to reduce secondary transmission of COVID-19 [51]. In the present research, we modeled the Young's modulus of PVC with AgNPs using the Takayanagi model, based

on the experimental measurements of Da Silver et al. [51]. We compared the theoretical predictions of the Takayanagi model with experimental data and found good agreement between the model and the measurements.

Lastly, we performed a Monte Carlo simulation to model uncertainties in the material properties of both the matrix and the filler, specifically the moduli of PVC (E_m) and AgNPs (E_f). This method provides estimates of the uncertainty and confidence intervals for the predicted composite modulus. Overall, this provided us with a better understanding of the nanocomposite's mechanical properties.

2. Materials and methods

The mechanical properties of polymer nanocomposites depend strongly on the properties of the matrix and the dispersed nanoparticles, as well as on their distribution and interactions. In this research, the Young's modulus of PVC containing AgNPs is analyzed using the Takayanagi model, which treats the composite as a series-parallel combination of matrix and filler phases.

2.1. Takayanagi model

As a specialized model, Takayanagi predicts the effective modulus of a two-phase composite by combining both the matrix and filler contributions in a weighted series-parallel structure [52]. The effective Young's modulus E_c of a composite is given by matrix modulus E_m , filler modulus E_f , and connectivity (or efficiency) of filler networks b , is:

$$E_c = E_m(1 - b) + \frac{b}{(1 - b) + b \frac{E_f}{E_m}} \quad (1)$$

In this study, the parameter b can be correlated to the volume fraction of the nanoparticles (V_f) as follows:

$$b = \sqrt{V_f} \quad (2)$$

2.2. Monte Carlo simulation

To address uncertainties in the mechanical properties of both the matrix and filler, a Monte Carlo simulation was used. Specifically, E_m and E_f are treated as random variables with defined mean values and standard deviations to represent experimental or material variability.

For each weight fraction of nanoparticles, 10000 random samples of E_m and E_f are generated, and for each sample, E_c is calculated using the Takayanagi model.

The subsequent distribution of E_c provides estimates of the mean, standard deviation, and confidence intervals for the modulus prediction, enabling robust assessment of composite mechanical behavior. Thus, the combination of the Takayanagi model and Monte Carlo simulation enables the prediction of the Young's modulus of PVC/AgNPs composites with reasonable accuracy, in agreement with experimental results.

3. Results and discussion

Da Silva and colleagues measured the Young's modulus (a measure of stiffness) of PVC/AgNP nanocomposites in the laboratory. Young's modulus was measured in the study for PVC and PVC/silver nanoparticle (AgNP) nanocomposites using a uniaxial tensile test, as described in ASTM D1708. Sample preparation consisted of hot-pressing one mm-thick films for 3 minutes at 190°C under 6 tons of pressure, followed by cutting the

samples into microtensile specimens. Uniaxial tensile testing of samples was performed on an Instron Universal Testing Machine equipped with a 50 kN load cell at a crosshead speed of 1.5 mm/min. Young's modulus was derived from the initial linear portion of the stress-strain curve.

Values reported in this study reflect the mean of 3 to 6 replicates. Statistical significance of the reported values was determined using a one-way ANOVA with Tukey's post hoc test (95% confidence level, $p < 0.05$). This mechanical testing standardization protocol established a reliable means for comparing stiffness between pure PVC and nanocomposite polymers containing 0.1, 0.3, and 0.5 wt% AgNPs [51].

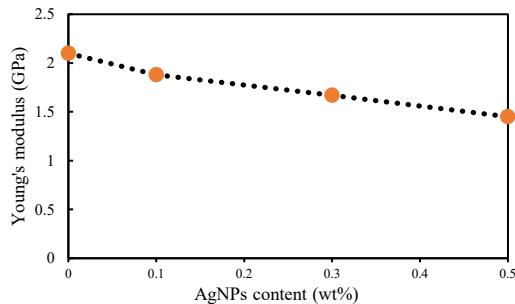
In this work, the mechanical properties of PVC reinforced with AgNPs were modeled using the Takayanagi model, and the predictions were compared with the experimental measurements reported by Da Silver et al. The studied weight fraction range of AgNPs was 0-0.5 wt%.

3.1. Takayanagi model predictions

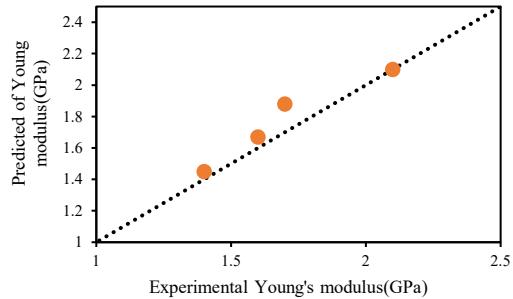
Using the Takayanagi model, the effective Young's modulus of the composites was calculated at each nanoparticle loading. The parameter b was assumed to be the square root of the volume fraction ($b = \sqrt{V_f}$) [53], as is commonly done for random dispersions of fillers.

Fig. 1 shows the effect of AgNP contents on the effective Young's modulus of the composite materials. The data show that Young's modulus decreases with AgNP content. This behavior is in line with the series-dominant result from the Takayanagi model that accounts for the effect of the soft polymer matrix and the stiff

filler partially produced in a series-parallel arrangement. This result is confirmed by Da Silver et al. [51].


3.2. Comparison with experimental data

In Fig. 2, the predicted modulus values are compared with experimental measurements [51].


The Takayanagi model captures the general trend of the experimental data and shows appropriate agreement, particularly for low filler loadings. Minor departures from higher weight fractions are expected due to particle aggregation, imperfect dispersion, and interfacial phenomena not accounted for in the relatively simple Takayanagi model. Overall, the coefficient variation is 3%.

3.3. Monte Carlo simulation

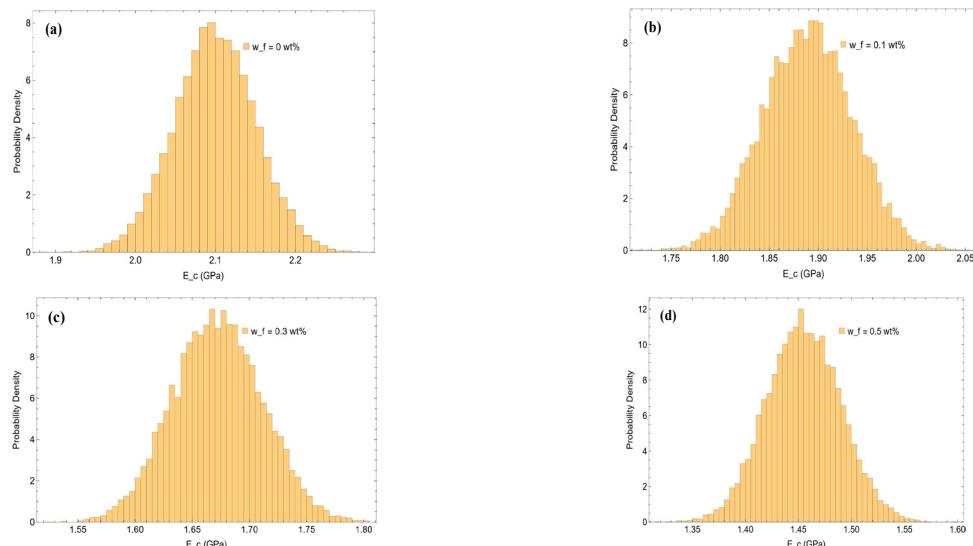

A Monte Carlo simulation was conducted to account for uncertainties in the mechanical properties of the PVC matrix (E_m) and the silver nanoparticles (E_f), based on engineering data. E_m and E_f are considered to be normally-distributed random variables with mean values of 2.1 GPa and 70 GPa, respectively, and standard deviations of 0.05 GPa for E_m and 5 GPa for E_f . For each weight fraction, 10,000 E_c samples were computed. The mean predicted modulus, along with error bars for the standard deviation, is shown in Fig. 3. Monte Carlo results show the ranges of predicted composite moduli resulting from material property variability. The predicted distributions were relatively narrow, indicating that the model is robust and small uncertainties in E_m and E_f lead to limited variation in E_c .

Fig. 1. The effect of AgNPs on the Young's modulus of PVC nanocomposite.

Fig. 2. Comparison of predicted values of Young's modulus with the experimental ones [51].

Fig. 3. Estimated probability density function of the effective composite modulus E_c at (a) 0, (b) 0.1, (c) 0.3, (d) 0.5 wt% AgNPs.

4. Conclusion

Using the Takayanagi model in conjunction with a Monte Carlo simulation enables a detailed study of the overall mechanical behavior of PVC/AgNPs composites. The Takayanagi model can reasonably predict the overall change in Young's modulus with increasing filler content, while the Monte Carlo component provides a quantifiable framework to account for uncertainties in material properties. So, this approach allows composite design to progress to the next level, as the predicted modulus and its associated confidence intervals can be derived from the uncertainties in constituent properties.

Thus, the study concludes that the Takayanagi model, including a Monte Carlo simulation, can be a valuable tool for predicting and assessing the mechanical properties of metallic nanoparticles reinforced polymer nanocomposites.

Author contributions

Mohammad Hassan Shahavi: Conceptualization, Methodology, Investigation, Writing – original draft, Writing – review & editing.

Funding

No funding was received for this study.

Conflict of interest

The author declares no conflict of interest.

Data availability

No data is available.

REFERENCES

- [1] X. Zhao, J.M. Courtney, Update on medical plasticised PVC, Smithers Rapra Shrewsbury, UK2009.
- [2] G. Wypych, Handbook of polymers, Elsevier2022.
- [3] M. Schiller, PVC additives: performance, chemistry, developments, and sustainability, Carl Hanser Verlag GmbH Co KG2022.
- [4] C. Mijangos, I. Calafel, A. Santamaría, Poly(vinyl chloride), a historical polymer still evolving, *Polymer* 266 (2023) 125610.
- [5] M. Saadatmorad, M.H. Shahavi, A. Gholipour, Damage Detection in Laminated Composite Beams Reinforced with Nano-particles Using Covariance of Vibration Mode Shape and Wavelet Transform, *Journal of Vibration Engineering & Technologies* 12(3) (2024) 2865-2875.
- [6] M.H. Shahavi, N. Ayrilmis, Advancements in Energy Storage: Exploring the Impact of Graphene Composites, *Journal of Composites and Compounds* 5(16) (2023) 208-209.
- [7] M. Munoz, A. El-khoury, C. Eren Cimenci, M. Gonzalez-Gomez, R.A. Hunter, D. Lomboni, F. Variola, B.H. Rotstein, L.L.R. Vono, L.M. Rossi, A.M. Edwards, E.I. Alarcon, Riboflavin Surface Modification of Poly(vinyl chloride) for Light-Triggered Control of Bacterial Biofilm and Virus Inactivation, *ACS Applied Materials & Interfaces* 13(27) (2021) 32251-32262.
- [8] Y. Xie, B. Yu, Y. Zhang, Y. Wang, P. Li, Q. Zhang, S. Duan, X. Ding, F. J. Xu, Antibacterial plasticizers based on bio-based engineering elastomers for medical PVC: synthesis, characterization and properties, *Polymer Chemistry* 12(8) (2021) 1114-1124.
- [9] C. Czekaj, J.I. Kroschwitz, H.F. Mark, Encyclopedia of Polymer Science and Technology: Set, Wiley-Interscience [Imprint]2004.
- [10] P. Ferreira, P. Alves, P. Coimbra, M. Gil, Improving polymeric surfaces for biomedical applications: a review, *Journal of Coatings Technology and Research* 12(3) (2015) 463-475.
- [11] R. Zhong, H. Wang, X. Wu, Y. Cao, Z. He, Y. He, J. Liu, In vitro investigation of the effect of plasticizers on the blood compatibility of medical grade plasticized poly (vinyl chloride), *Journal of Materials Science: Materials in Medicine* 24(8) (2013) 1985-1992.
- [12] K. Lewandowski, K. Skórczewska, A brief review of poly (vinyl chloride)(PVC) recycling, *Polymers* 14(15) (2022) 3035.
- [13] K. Tao, P.L. Tzou, J. Nouhin, R.K. Gupta, T. de Oliveira, S.L. Kosakovsky Pond, D. Fera, R.W. Shafer, The biological and clinical significance of emerging SARS-CoV-2 variants, *Nature Reviews Genetics* 22(12) (2021) 757-773.
- [14] J. Howard, A. Huang, Z. Li, Z. Tufekci, V. Zdimal, H.-M. van der Westhuizen, A. von Delft, A. Price, L. Fridman, L.-H. Tang, Face masks against COVID-19: an evidence review, (2020).
- [15] H. Li, S.-M. Liu, X.-H. Yu, S.-L. Tang, C.-K. Tang, Coronavirus disease 2019 (COVID-19): current status and future perspectives, *International journal of antimicrobial agents* 55(5) (2020) 105951.
- [16] N. Van Doremalen, T. Bushmaker, D.H. Morris, M.G. Holbrook, A. Gamble, B.N. Williamson, A. Tamin, J.L. Harcourt, N.J. Thornburg, S.I. Gerber, Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1, *New England journal of medicine* 382(16) (2020) 1564-1567.
- [17] C. Balagna, S. Perero, E. Percivalle, E.V. Nepita, M. Ferraris, Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating, *Open Ceramics* 1 (2020) 100006.
- [18] J. Hasan, Y. Xu, T. Yarlagadda, M. Schuetz, K. Spann, P.K. Yarlagadda, Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications, *ACS Biomaterials Science & Engineering* 6(6) (2020) 3608-3618.
- [19] A. Behboudi, Y. Jafarzadeh, R. Yegani, Enhancement of antifouling and antibacterial properties of PVC hollow fiber ultrafiltration membranes using pristine and modified silver nanoparticles, *Journal of Environmental Chemical Engineering* 6(2) (2018) 1764-1773.
- [20] M. Palencia, T.A. Lerma, N. Afanasjeva, Antibacterial cationic poly (vinyl chloride) as an approach for in situ pathogen-inactivation by surface contact with biomedical materials, *European Polymer Journal* 115 (2019) 212-220.
- [21] M. Marqués, J.L. Domingo, Contamination of inert surfaces by SARS-CoV-2: Persistence, stability and infectivity. A review, *Environmental research* 193 (2021) 110559.
- [22] G. Correia, L. Rodrigues, M. Afonso, M. Mota, J. Oliveira, R. Soares, A.L. Tomás, A. Reichel, P.M. Silva, J.J. Costa, SARS-CoV-2 air and surface contamination in residential settings, *Scientific Reports* 12(1) (2022) 18058.
- [23] M.H. Shahavi, M. Hosseini, M. Jahanshahi, R.L. Meyer, G.N. Darzi, Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method, *Desalination and Water Treatment* 57(39) (2016) 18379-18390.
- [24] M.R. Youssefi, R. Alipour, Z. Fakouri, M.H. Shahavi, N.T. Nasrabad, M.A. Tabari, G. Crescenzo, C. Zizzadore, G. Centoducati, Dietary Supplementation with Eugenol Nanoemulsion Alleviates the Negative Effects of Experimental Coccidiosis on Broiler Chicken's Health and Growth Performance, *Molecules* 28(5) (2023) 2200.
- [25] M.H. Damani, R. Partovi, M.H. Shahavi, M. Azizkhani, Nanoemulsions of *Trachyspermum copticum*, *Mentha pulegium* and *Satureja hortensis* essential oils: formulation, physicochemical properties, antimicrobial and antioxidant efficiency, *Journal of Food Measurement and Characterization* 16(3) (2022) 1807-1819.
- [26] T. Fallah Aski, F. Tooryan, M. Azizkhani, M.H. Shahavi, Study of the Effect of Cuminum Cyminum Nanoemulsion on the Microbial and Organoleptic Properties of Chicken Fillet at 4 °C, *Journal of Veterinary Research* 76(2) (2021) 192-204.
- [27] M. Azizkhani, F. Jafari Kiasari, F. Tooryan, M.H. Shahavi, R. Partovi, Preparation and evaluation of food-grade nanoemulsion of tarragon (*Artemisia dracunculus* L.) essential oil: antioxidant and antibacterial properties, *J. Food Sci. Technol.* 58(4) (2021) 1341-1348.
- [28] M. Gholami, M. Hosseini, M.H. Shahavi, M. Jahanshahi, Process optimization of corn starch nanoparticles containing linalyl acetate: characterization and antibacterial properties, *International Journal of Industrial Chemistry* 14(2) (2023) 142304 (1-11).
- [29] A. Sedighi, M. Montazer, N. Hemmatinejad, Copper nanoparticles on bleached cotton fabric: in situ synthesis and characterization, *Cellulose* 21(3) (2014) 2119-2123.
- [30] K. Gold, B. Slay, M. Knackstedt, A.K. Gaharwar, Antimicrobial activity of metal and metal-oxide based nanoparticles, *Advanced Therapeutics* 1(3) (2018) 1700033.
- [31] D.C. Vodnar, L. Mitrea, L.F. Călinoiu, K. Szabo, B.E. Ștefănescu, Removal of bacteria, viruses, and other microbial entities by means of nanoparticles, *Advanced nanostructures for environmental health*, Elsevier2020, pp. 465-491.
- [32] M. Zandi, H. Almasi, N. Dardmeh, Evaluation of nanocomposite packaging containing TiO2 and ZnO on shelf life and quality changes of apple and grape, *Innovative Food Technologies* 8(1) (2020) 63-82.
- [33] S. Pirsia, M. Zandi, H. Almasi, S. Hasanlu, Selective Hydrogen Peroxide Gas Sensor Based on Nanosized Polypyrrole Modified by CuO Nanoparticles, *Sensor Lett.* 13(7) (2015) 578-583.
- [34] M. Khalili, A. Razmjou, R. Shafiei, M.H. Shahavi, M.-C. Li, Y. Orooji, High durability of food due to the flow cytometry proved antibacterial and antifouling properties of TiO2 decorated nanocomposite films, *Food Chem. Toxicol.* 168 (2022) 113291.
- [35] A. Soleymani Lashkenrai, M. Najafi, M. Peyravi, M. Jahanshahi, M.T.H. Mosavian, A. Amiri, M.H. Shahavi, Direct filtration procedure to attain antibacterial TFC membrane: A facile developing route of membrane surface properties and fouling resistance, *Chem. Eng. Res. Des.* 149 (2019) 158-168.

[36] L.Y. Tan, L.T. Sin, S.T. Bee, C.T. Ratnam, K.K. Woo, T.T. Tee, A.R. Rahmat, A review of antimicrobial fabric containing nanostructures metal-based compound, *Journal of Vinyl and Additive Technology* 25(S1) (2019) E3-E27.

[37] J. Zhou, Z. Hu, F. Zabihi, Z. Chen, M. Zhu, Progress and perspective of antiviral protective material, *Advanced Fiber Materials* 2(3) (2020) 123-139.

[38] S. Sukhtezari, H. Almasi, S. Pirsia, M. Zandi, M. Pirouzifard, Development of bacterial cellulose based slow-release active films by incorporation of *Scrophularia striata* Boiss. extract, *Carbohydr. Polym.* 156 (2017) 340-350.

[39] W. Pongnop, K. Sombatsompop, A. Kositchaiyong, N. Sombatsompop, Effects of incorporating technique and silver colloid content on antibacterial performance for thermoplastic films, *Journal of Applied Polymer Science* 122(5) (2011) 3456-3465.

[40] K.B. Narayanan, S.S. Han, Dual-crosslinked poly (vinyl alcohol)/sodium alginate/silver nanocomposite beads—A promising antimicrobial material, *Food chemistry* 234 (2017) 103-110.

[41] W.L. Oliani, D.F. Parra, L.G.H. Komatsu, N. Lincopan, V.K. Rangari, A.B. Lugao, Fabrication of polypropylene/silver nanocomposites for biocidal applications, *Materials Science and Engineering: C* 75 (2017) 845-853.

[42] S. Ahmed, M. Keniry, V. Padilla, N. Anaya-Barbosa, M.N. Javed, R. Gilkerson, K. Gomez, A. Ashraf, A.S. Narula, K. Lozano, Development of pullulan/chitosan/salvianolic acid ternary fibrous membranes and their potential for chemotherapeutic applications, *International Journal of Biological Macromolecules* 250 (2023) 126187.

[43] K. Kraśniewska, S. Galus, M. Gniewosz, Biopolymers-based materials containing silver nanoparticles as active packaging for food applications—a review, *International Journal of Molecular Sciences* 21(3) (2020) 698.

[44] L.d.O. Morais, E.V. Macedo, J.M. Granjeiro, I.F. Delgado, Critical evaluation of migration studies of silver nanoparticles present in food packaging: A systematic review, *Critical Reviews in Food Science and Nutrition* 60(18) (2020) 3083-3102.

[45] M. Rahimi, E.B. Noruzi, E. Sheykhsaran, B. Ebadi, Z. Kariminezhad, M. Molaparast, M.G. Mehrabani, B. Mehramouz, M. Yousefi, R. Ahmadi, Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings, *Carbohydrate polymers* 231 (2020) 115696.

[46] M. Assis, L.K. Ribeiro, M.O. Goncalves, L.H. Staffa, R.S. Paiva, L.R. Lima, D. Coelho, L.F. Almeida, L.N. Moraes, I.L. Rosa, Polypropylene modified with Ag-based semiconductors as a potential material against SARS-CoV-2 and other pathogens, *ACS Applied Polymer Materials* 4(10) (2022) 7102-7114.

[47] D. Zampino, T. Ferreri, C. Puglisi, M. Mancuso, R. Zaccone, R. Scaffaro, D. Bennardo, PVC silver zeolite composites with antimicrobial properties, *Journal of materials science* 46(20) (2011) 6734-6743.

[48] S. Azlin-Hasim, M.C. Cruz-Romero, M.A. Morris, S.C. Padmanabhan, E. Cummins, J.P. Kerr, The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets, *Food and Bioprocess Technology* 9(10) (2016) 1661-1673.

[49] A.A. El-Sayed, A.M. Khalil, M. El-Shahat, N.Y. Khaireldin, S.T. Rabie, Antimicrobial activity of PVC-pyrazolone-silver nanocomposites, *Journal of Macromolecular Science, Part A* 53(6) (2016) 346-353.

[50] L.R. Braga, L.M. Pérez, M.d.V. Soazo, F. Machado, Evaluation of the antimicrobial, antioxidant and physicochemical properties of Poly (Vinyl chloride) films containing quercetin and silver nanoparticles, *Lwt* 101 (2019) 491-498.

[51] D.J. da Silva, G.B. Gramcianinov, P.Z. Jorge, V.B. Malaquias, A.A. Mori, M.H. Hirata, S.A. Lopes, L.A. Bueno, M. Champeau, D.J. Carastan, PVC containing silver nanoparticles with antimicrobial properties effective against SARS-CoV-2, *Frontiers in Chemistry* 11 (2023) 1083399.

[52] M. Takayanagi, S. Uemura, S. Minami, Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer, *Journal of Polymer Science Part C: Polymer Symposia*, Wiley Online Library, 1964, pp. 113-122.

[53] Y. Zare, K.Y. Rhee, Expansion of Takayanagi model by interphase characteristics and filler size to approximate the tensile modulus of halloysite-nanotube-filled system, *Journal of Materials Research and Technology* 16 (2022) 1628-1636.