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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

Poly (vinyl chloride) (PVC) is widely utilized in medical tools and structure 
applications owing to its biocompatibility, stability, and cost-efficiency. Nevertheless, 
conventional PVC is susceptible to microbial attachment, indicating the need for a 
self-disinfecting material. The present study analyzed PVC nanocomposites bio-filled 
with 0–0.5 wt% silver nanoparticles (AgNPs) to investigate their mechanical behavior 
using the Takayanagi model and Monte Carlo simulation approach. The Takayanagi 
model calculates the effective Young’s modulus based on a series-parallel arrangement 
of polymer matrices and the filler, while Monte Carlo simulation simulates 
uncertainties in the mechanical properties of PVC and AgNPs. Model predictions 
agreed with experimental data closely, with Young’s modulus decreasing as the 
nanoparticle content increased. Monte Carlo generated confidence intervals further 
confirming the efficacy of the approach. Evaluation outcomes indicate that the 
Takayanagi model in combination with stochastic simulations accurately predicts the 
mechanical properties of PVC/AgNP nanocomposites, which supports design of self-
disinfection materials for healthcare applications in which both antimicrobial activity 
and mechanical performance is required. 
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1. Introduction 

For over 30 years, poly (vinyl chloride) (PVC) has been used 
in the medical field. It remains among the most widely used 
materials because of its ability to resist microbial growth, ease of 
cleaning, suitability for sterilization, and its use in single-use 
applications, which can help reduce healthcare-associated 
infections [1, 2]. PVC has also been commonplace in bottles, 
electrical cables, household appliances, pipelines, and food 
packaging films [3]. PVC's extensive range of technological 
applications across fields (healthcare and packaging) is driven by 
its unique properties, including flexibility, transparency, chemical 
resistance, biocompatibility, mechanical strength, processability, 
cost-effectiveness, market availability, and recyclability [4]. 

To avoid thermal decomposition of the composite during 
manufacturing, which can compromise the mechanical properties 
of biomedical devices and structural components, stabilizers and 
processing additives are important [5, 6]. Although virgin PVC 
exhibits some bacteriostatic activity against certain strains, both 
stabilized and plasticized PVC lack sufficient antimicrobial 

activity to prevent biofilm formation [7, 8]. Through the leaching 
of phthalate ester plasticizers, surface microcracks, and UV-
induced flaws, enhanced activity has made additive-containing 
PVC more prone to microbial colonization [9]. Because the 
material builds up biofilms through multilayered bacterial colonies 
embedded in extracellular polysaccharides, it is important to add 
biocides to PVC formulations [10]. 

Even with ongoing discussions and the continuing concern 
about the potential health effects of stabilizers and processing 
additives under both short- and long-term exposure, PVC 
continues to be a beneficial material. Its attributes of 
biocompatibility, chemical stability, resistance to sterilants, and 
cost have made it among the most common polymers used in 
medicine. Thus, PVC is a common component of many clinical 
devices, such as flexible blood bags, urine ostomy pouches, tubing 
systems, inhalation and oxygen masks, and various types of 
personal protective equipment [11, 12]. Since late 2019, Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and 
its variants have caused large-scale health crises and significant 
strain on healthcare systems worldwide [13]. These viruses are 
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highly contagious and are transmitted mainly through droplets or 
aerosols [14, 15]. Importantly, research has shown that SARS-
CoV-2 can remain infectious for up to 24 hours on polymeric 
surfaces [16]. Therefore, the development of self-disinfecting 
polyvinyl chloride (PVC) is significant for the production of 
structural and medical products (e.g., wall guards, handrails, and 
similar items) which could help lessen epidemiological risk in 
hospital and clinical environments [17, 18]. 

Surface modification and the addition of inorganic agents with 
intrinsic bactericidal and fungicidal properties are the primary 
methods for imparting self-disinfecting properties to PVC [19]. 
Alternatively, blending with cationic polymers or applying 
cationic functional groups through cationization has been shown 
to promote the antimicrobial performance of PVC [20]. The benefit 
of incorporating the antimicrobial agent into the polymer matrix is 
compatibility with conventional polymer processing (e.g., 
extrusion, injection molding) and longer-lasting antimicrobial 
activity beyond surface treatment. However, high concentrations 
of antimicrobial additives are often needed to achieve bactericidal 
(not bacteriostatic) performance. To overcome this, polymer 
nanocomposites have emerged that feature polymeric matrices 
containing nanoscale antimicrobial agents. With the emergence of 
COVID-19, self-sanitizing PVC materials are becoming 
increasingly relevant for reducing secondary infections through 
surfaces in healthcare environments, where surface contamination 
leads to hand contact and ultimately virus spread [21, 22]. 

Common examples of organic antimicrobial agents studied 
include the addition of natural essential oils, such as clove oil [23], 
eugenol [24], trachyspermum copticum, mentha pulegium, 
satureja hortensis [25], geraniol, cuminum cyminum [26], 
ziziphora clinopodioides, and tarragon [27], which exhibit 
antibiofilm activity against microorganisms and are used in food, 
medicine, and various industries due to their antioxidant, 
antibacterial, and anti-inflammatory properties [28]. Common 
examples of inorganic antimicrobial agents studied extensively in 
the production of antimicrobial materials include silver (Ag), 
copper (Cu), titanium dioxide (TiO2), zinc oxide (ZnO), cuprous 
oxide (Cu2O), and cupric oxide (CuO) [29-35]. Antimicrobial 
activity is often due to reactive oxygen species (ROS) and the 
release of metal ions, which cause irreversible damage to viruses, 
bacteria, and fungal cells [36-38]. Research suggests that silver 
nanoparticles (AgNPs) or silver-based nanomaterials are better 
than other agents in polymeric nanocomposites [39-45], some of 
which were able to inactivate SARS-CoV-2 [46]. While a couple 
of studies have documented the potential for self-disinfecting 
behavior of PVC/AgNP nanocomposites [47], no reports have 
been made on the antiviral activity against SARS-CoV-2. 
Additionally, it should be noted that in most of these studies, 
neither Ag nor PVC was used in the melt blending of PVC and 
AgNPs [48-50].  

Da Silva et al. processed PVC nanocomposites with AgNPs 
using melt processing and, presumably due to the well-
documented antimicrobial effect of AgNPs in polymeric systems, 
demonstrated that melting) ca. 0.1-0.5 wt% AgNPs resulted in an 
effective reduction in Young's modulus and ultimate tensile 
strength of PVC in the nanocomposite. Presumably, the 
microstructural defects introduced by processing did not affect the 
impact strength. In addition, the authors reported that the 
yellowness index (YI) was higher and the optical bandgap was 
lower than those of neat PVC. Interestingly, PVC/AgNP 
nanocomposites (0.3 wt% and higher) exhibited virucidal activity 
against SARS-CoV-2 B.1.1.28 within 48 hours, indicating 
potential use for hospital furniture and equipment that require self-
disinfecting properties to reduce secondary transmission of 
COVID-19 [51]. In the present research, we modeled the Young's 
modulus of PVC with AgNPs using the Takayanagi model, based 

on the experimental measurements of Da Silver et al. [51]. We 
compared the theoretical predictions of the Takayanagi model with 
experimental data and found good agreement between the model 
and the measurements.  

Lastly, we performed a Monte Carlo simulation to model 
uncertainties in the material properties of both the matrix and the 
filler, specifically the moduli of PVC (Em) and AgNPs (Ef). This 
method provides estimates of the uncertainty and confidence 
intervals for the predicted composite modulus. Overall, this 
provided us with a better understanding of the nanocomposite's 
mechanical properties. 

 
2. Materials and methods  

The mechanical properties of polymer nanocomposites depend 
strongly on the properties of the matrix and the dispersed 
nanoparticles, as well as on their distribution and interactions. In 
this research, the Young's modulus of PVC containing AgNPs is 
analyzed using the Takayanagi model, which treats the composite 
as a series-parallel combination of matrix and filler phases. 

2.1. Takayanagi model 

As a specialized model, Takayanagi predicts the effective 
modulus of a two-phase composite by combining both the matrix 
and filler contributions in a weighted series-parallel structure [52]. 
The effective Young's modulus Ec of a composite is given by 
matrix modulus Em, filler modulus Ef, and connectivity (or 
efficiency) of filler networks b, is: 

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑚𝑚(1− 𝑏𝑏) +
𝑏𝑏

(1 − 𝑏𝑏) + 𝑏𝑏
𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚

 (1) 

In this study, the parameter b can be correlated to the volume 
fraction of the nanoparticles (Vf) as follows: 

𝑏𝑏 = �𝑉𝑉𝑓𝑓 (2) 

2.2. Monte Carlo simulation 

To address uncertainties in the mechanical properties of both 
the matrix and filler, a Monte Carlo simulation was used. 
Specifically, Em and Ef are treated as random variables with 
defined mean values and standard deviations to represent 
experimental or material variability.  

For each weight fraction of nanoparticles, 10000 random 
samples of Em and Ef are generated, and for each sample, Ec is 
calculated using the Takayanagi model.  

The subsequent distribution of Ec provides estimates of the 
mean, standard deviation, and confidence intervals for the modulus 
prediction, enabling robust assessment of composite mechanical 
behavior. Thus, the combination of the Takayanagi model and 
Monte Carlo simulation enables the prediction of the Young's 
modulus of PVC/AgNPs composites with reasonable accuracy, in 
agreement with experimental results. 

 
3. Results and discussion  

Da Silva and colleagues measured the Young's modulus (a 
measure of stiffness) of PVC/AgNP nanocomposites in the 
laboratory. Young's modulus was measured in the study for PVC 
and PVC/silver nanoparticle (AgNP) nanocomposites using a 
uniaxial tensile test, as described in ASTM D1708. Sample 
preparation consisted of hot-pressing one mm-thick films for 3 
minutes at 190°C under 6 tons of pressure, followed by cutting the 
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samples into microtensile specimens. Uniaxial tensile testing of 
samples was performed on an Instron Universal Testing Machine 
equipped with a 50 kN load cell at a crosshead speed of 1.5 
mm/min. Young's modulus was derived from the initial linear 
portion of the stress-strain curve.  

Values reported in this study reflect the mean of 3 to 6 
replicates. Statistical significance of the reported values was 
determined using a one-way ANOVA with Tukey's post hoc test 
(95% confidence level, p < 0.05). This mechanical testing 
standardization protocol established a reliable means for 
comparing stiffness between pure PVC and nanocomposite 
polymers containing 0.1, 0.3, and 0.5 wt% AgNPs [51].  

In this work, the mechanical properties of PVC reinforced with 
AgNPs were modeled using the Takayanagi model, and the 
predictions were compared with the experimental measurements 
reported by Da Silver et al. The studied weight fraction range of 
AgNPs was 0-0.5 wt%. 

3.1. Takayanagi model predictions 

Using the Takayanagi model, the effective Young's modulus of 
the composites was calculated at each nanoparticle loading. The 
parameter b was assumed to be the square root of the volume 
fraction (𝑏𝑏 = �𝑉𝑉𝑓𝑓) [53], as is commonly done for random 
dispersions of fillers.  

Fig. 1 shows the effect of AgNP contents on the effective 
Young's modulus of the composite materials. The data show that 
Young's modulus decreases with AgNP content. This behavior is 
in line with the series-dominant result from the Takayanagi model 
that accounts for the effect of the soft polymer matrix and the stiff 

filler partially produced in a series-parallel arrangement. This 
result is confirmed by Da Silver et al. [51]. 

3.2. Comparison with experimental data 

In Fig. 2, the predicted modulus values are compared with 
experimental measurements [51].  

The Takayanagi model captures the general trend of the 
experimental data and shows appropriate agreement, particularly 
for low filler loadings. Minor departures from higher weight 
fractions are expected due to particle aggregation, imperfect 
dispersion, and interfacial phenomena not accounted for in the 
relatively simple Takayanagi model. Overall, the coefficient 
variation is 3%. 

3.3. Monte Carlo simulation 

A Monte Carlo simulation was conducted to account for 
uncertainties in the mechanical properties of the PVC matrix (Em) 
and the silver nanoparticles (Ef), based on engineering data. Em and 
Ef are considered to be normally-distributed random variables with 
mean values of 2.1 GPa and 70 GPa, respectively, and standard 
deviations of 0.05 GPa for Em and 5 GPa for Ef. For each weight 
fraction, 10,000 Ec samples were computed. The mean predicted 
modulus, along with error bars for the standard deviation, is shown 
in Fig. 3. Monte Carlo results show the ranges of predicted 
composite moduli resulting from material property variability. The 
predicted distributions were relatively narrow, indicating that the 
model is robust and small uncertainties in Em and Ef lead to limited 
variation in Ec.

  

Fig. 1. The effect of AgNPs on the Young's modulus of PVC 
nanocomposite. 

Fig. 2. Comparison of predicted values of Young's modulus with the 
experimental ones [51]. 

 

  

  
Fig. 3. Estimated probability density function of the effective composite modulus Ec at (a) 0, (b) 0.1, (c) 0.3, (d) 0.5 wt% AgNPs. 
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4. Conclusion 

Using the Takayanagi model in conjunction with a Monte 
Carlo simulation enables a detailed study of the overall mechanical 
behavior of PVC/AgNPs composites. The Takayanagi model can 
reasonably predict the overall change in Young's modulus with 
increasing filler content, while the Monte Carlo component 
provides a quantifiable framework to account for uncertainties in 
material properties. So, this approach allows composite design to 
progress to the next level, as the predicted modulus and its 
associated confidence intervals can be derived from the 
uncertainties in constituent properties.  

Thus, the study concludes that the Takayanagi model, 
including a Monte Carlo simulation, can be a valuable tool for 
predicting and assessing the mechanical properties of metallic 
nanoparticles reinforced polymer nanocomposites. 
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