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ABSTRACT

ARTICLE INFORMATION

Poly (vinyl chloride) (PVC) is widely utilized in medical tools and structure
applications owing to its biocompatibility, stability, and cost-efficiency. Nevertheless,
conventional PVC is susceptible to microbial attachment, indicating the need for a
self-disinfecting material. The present study analyzed PVC nanocomposites bio-filled
with 0-0.5 wt% silver nanoparticles (AgNPs) to investigate their mechanical behavior
using the Takayanagi model and Monte Carlo simulation approach. The Takayanagi
model calculates the effective Young’s modulus based on a series-parallel arrangement
of polymer matrices and the filler, while Monte Carlo simulation simulates
uncertainties in the mechanical properties of PVC and AgNPs. Model predictions
agreed with experimental data closely, with Young’s modulus decreasing as the
nanoparticle content increased. Monte Carlo generated confidence intervals further
confirming the efficacy of the approach. Evaluation outcomes indicate that the
Takayanagi model in combination with stochastic simulations accurately predicts the
mechanical properties of PVC/AgNP nanocomposites, which supports design of self-
disinfection materials for healthcare applications in which both antimicrobial activity
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and mechanical performance is required.
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1. Introduction

For over 30 years, poly (vinyl chloride) (PVC) has been used
in the medical field. It remains among the most widely used
materials because of its ability to resist microbial growth, ease of
cleaning, suitability for sterilization, and its use in single-use
applications, which can help reduce healthcare-associated
infections [1, 2]. PVC has also been commonplace in bottles,
electrical cables, household appliances, pipelines, and food
packaging films [3]. PVC's extensive range of technological
applications across fields (healthcare and packaging) is driven by
its unique properties, including flexibility, transparency, chemical
resistance, biocompatibility, mechanical strength, processability,
cost-effectiveness, market availability, and recyclability [4].

To avoid thermal decomposition of the composite during
manufacturing, which can compromise the mechanical properties
of biomedical devices and structural components, stabilizers and
processing additives are important [5, 6]. Although virgin PVC
exhibits some bacteriostatic activity against certain strains, both
stabilized and plasticized PVC lack sufficient antimicrobial

activity to prevent biofilm formation [7, 8]. Through the leaching
of phthalate ester plasticizers, surface microcracks, and UV-
induced flaws, enhanced activity has made additive-containing
PVC more prone to microbial colonization [9]. Because the
material builds up biofilms through multilayered bacterial colonies
embedded in extracellular polysaccharides, it is important to add
biocides to PVC formulations [10].

Even with ongoing discussions and the continuing concern
about the potential health effects of stabilizers and processing
additives under both short- and long-term exposure, PVC
continues to be a beneficial material. Its attributes of
biocompatibility, chemical stability, resistance to sterilants, and
cost have made it among the most common polymers used in
medicine. Thus, PVC is a common component of many clinical
devices, such as flexible blood bags, urine ostomy pouches, tubing
systems, inhalation and oxygen masks, and various types of
personal protective equipment [11, 12]. Since late 2019, Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and
its variants have caused large-scale health crises and significant
strain on healthcare systems worldwide [13]. These viruses are
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highly contagious and are transmitted mainly through droplets or
aerosols [14, 15]. Importantly, research has shown that SARS-
CoV-2 can remain infectious for up to 24 hours on polymeric
surfaces [16]. Therefore, the development of self-disinfecting
polyvinyl chloride (PVC) is significant for the production of
structural and medical products (e.g., wall guards, handrails, and
similar items) which could help lessen epidemiological risk in
hospital and clinical environments [17, 18].

Surface modification and the addition of inorganic agents with
intrinsic bactericidal and fungicidal properties are the primary
methods for imparting self-disinfecting properties to PVC [19].
Alternatively, blending with cationic polymers or applying
cationic functional groups through cationization has been shown
to promote the antimicrobial performance of PVC [20]. The benefit
of incorporating the antimicrobial agent into the polymer matrix is
compatibility with conventional polymer processing (e.g.,
extrusion, injection molding) and longer-lasting antimicrobial
activity beyond surface treatment. However, high concentrations
of antimicrobial additives are often needed to achieve bactericidal
(not bacteriostatic) performance. To overcome this, polymer
nanocomposites have emerged that feature polymeric matrices
containing nanoscale antimicrobial agents. With the emergence of
COVID-19, self-sanitizing PVC materials are becoming
increasingly relevant for reducing secondary infections through
surfaces in healthcare environments, where surface contamination
leads to hand contact and ultimately virus spread [21, 22].

Common examples of organic antimicrobial agents studied
include the addition of natural essential oils, such as clove oil [23],
eugenol [24], trachyspermum copticum, mentha pulegium,
satureja hortensis [25], geraniol, cuminum cyminum [26],
ziziphora clinopodioides, and tarragon [27], which exhibit
antibiofilm activity against microorganisms and are used in food,
medicine, and various industries due to their antioxidant,
antibacterial, and anti-inflammatory properties [28]. Common
examples of inorganic antimicrobial agents studied extensively in
the production of antimicrobial materials include silver (Ag),
copper (Cu), titanium dioxide (TiO,), zinc oxide (ZnO), cuprous
oxide (Cuy0), and cupric oxide (CuO) [29-35]. Antimicrobial
activity is often due to reactive oxygen species (ROS) and the
release of metal ions, which cause irreversible damage to viruses,
bacteria, and fungal cells [36-38]. Research suggests that silver
nanoparticles (AgNPs) or silver-based nanomaterials are better
than other agents in polymeric nanocomposites [39-45], some of
which were able to inactivate SARS-CoV-2 [46]. While a couple
of studies have documented the potential for self-disinfecting
behavior of PVC/AgNP nanocomposites [47], no reports have
been made on the antiviral activity against SARS-CoV-2.
Additionally, it should be noted that in most of these studies,
neither Ag nor PVC was used in the melt blending of PVC and
AgNPs [48-50].

Da Silva et al. processed PVC nanocomposites with AgNPs
using melt processing and, presumably due to the well-
documented antimicrobial effect of AgNPs in polymeric systems,
demonstrated that melting) ca. 0.1-0.5 wt% AgNPs resulted in an
effective reduction in Young's modulus and ultimate tensile
strength of PVC in the nanocomposite. Presumably, the
microstructural defects introduced by processing did not affect the
impact strength. In addition, the authors reported that the
yellowness index (YI) was higher and the optical bandgap was
lower than those of neat PVC. Interestingly, PVC/AgNP
nanocomposites (0.3 wt% and higher) exhibited virucidal activity
against SARS-CoV-2 B.1.1.28 within 48 hours, indicating
potential use for hospital furniture and equipment that require self-
disinfecting properties to reduce secondary transmission of
COVID-19 [51]. In the present research, we modeled the Young's
modulus of PVC with AgNPs using the Takayanagi model, based

on the experimental measurements of Da Silver et al. [S1]. We
compared the theoretical predictions of the Takayanagi model with
experimental data and found good agreement between the model
and the measurements.

Lastly, we performed a Monte Carlo simulation to model
uncertainties in the material properties of both the matrix and the
filler, specifically the moduli of PVC (Em) and AgNPs (E)). This
method provides estimates of the uncertainty and confidence
intervals for the predicted composite modulus. Overall, this
provided us with a better understanding of the nanocomposite's
mechanical properties.

2. Materials and methods

The mechanical properties of polymer nanocomposites depend
strongly on the properties of the matrix and the dispersed
nanoparticles, as well as on their distribution and interactions. In
this research, the Young's modulus of PVC containing AgNPs is
analyzed using the Takayanagi model, which treats the composite
as a series-parallel combination of matrix and filler phases.

2.1. Takayanagi model

As a specialized model, Takayanagi predicts the effective
modulus of a two-phase composite by combining both the matrix
and filler contributions in a weighted series-parallel structure [52].
The effective Young's modulus E. of a composite is given by
matrix modulus £, filler modulus E; and connectivity (or
efficiency) of filler networks b, is:

E.=E,(1—b)+
(1—b)+b5—f M

In this study, the parameter b can be correlated to the volume
fraction of the nanoparticles (7)) as follows:

b=V, @

2.2. Monte Carlo simulation

To address uncertainties in the mechanical properties of both
the matrix and filler, a Monte Carlo simulation was used.
Specifically, Em and Ef are treated as random variables with
defined mean values and standard deviations to represent
experimental or material variability.

For each weight fraction of nanoparticles, 10000 random
samples of Em and Ef are generated, and for each sample, E. is
calculated using the Takayanagi model.

The subsequent distribution of E. provides estimates of the
mean, standard deviation, and confidence intervals for the modulus
prediction, enabling robust assessment of composite mechanical
behavior. Thus, the combination of the Takayanagi model and
Monte Carlo simulation enables the prediction of the Young's
modulus of PVC/AgNPs composites with reasonable accuracy, in
agreement with experimental results.

3. Results and discussion

Da Silva and colleagues measured the Young's modulus (a
measure of stiffness) of PVC/AgNP nanocomposites in the
laboratory. Young's modulus was measured in the study for PVC
and PVC/silver nanoparticle (AgNP) nanocomposites using a
uniaxial tensile test, as described in ASTM D1708. Sample
preparation consisted of hot-pressing one mm-thick films for 3
minutes at 190°C under 6 tons of pressure, followed by cutting the
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samples into microtensile specimens. Uniaxial tensile testing of
samples was performed on an Instron Universal Testing Machine
equipped with a 50 kN load cell at a crosshead speed of 1.5
mm/min. Young's modulus was derived from the initial linear
portion of the stress-strain curve.

Values reported in this study reflect the mean of 3 to 6
replicates. Statistical significance of the reported values was
determined using a one-way ANOVA with Tukey's post hoc test
(95% confidence level, p < 0.05). This mechanical testing
standardization protocol established a reliable means for
comparing stiffness between pure PVC and nanocomposite
polymers containing 0.1, 0.3, and 0.5 wt% AgNPs [51].

In this work, the mechanical properties of PVC reinforced with
AgNPs were modeled using the Takayanagi model, and the
predictions were compared with the experimental measurements
reported by Da Silver et al. The studied weight fraction range of
AgNPs was 0-0.5 wt%.

3.1. Takayanagi model predictions

Using the Takayanagi model, the effective Young's modulus of
the composites was calculated at each nanoparticle loading. The
parameter b was assumed to be the square root of the volume
fraction (b = \/Vf) [53], as is commonly done for random
dispersions of fillers.

Fig. 1 shows the effect of AgNP contents on the effective
Young's modulus of the composite materials. The data show that
Young's modulus decreases with AgNP content. This behavior is
in line with the series-dominant result from the Takayanagi model
that accounts for the effect of the soft polymer matrix and the stiff
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Fig. 1. The effect of AgNPs on the Young's modulus of PVC
nanocomposite.
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filler partially produced in a series-parallel arrangement. This
result is confirmed by Da Silver et al. [51].

3.2. Comparison with experimental data

In Fig. 2, the predicted modulus values are compared with
experimental measurements [51].

The Takayanagi model captures the general trend of the
experimental data and shows appropriate agreement, particularly
for low filler loadings. Minor departures from higher weight
fractions are expected due to particle aggregation, imperfect
dispersion, and interfacial phenomena not accounted for in the
relatively simple Takayanagi model. Overall, the coefficient
variation is 3%.

3.3. Monte Carlo simulation

A Monte Carlo simulation was conducted to account for
uncertainties in the mechanical properties of the PVC matrix (£,,)
and the silver nanoparticles (Ef), based on engineering data. £,, and
Erare considered to be normally-distributed random variables with
mean values of 2.1 GPa and 70 GPa, respectively, and standard
deviations of 0.05 GPa for E,, and 5 GPa for E;. For each weight
fraction, 10,000 E. samples were computed. The mean predicted
modulus, along with error bars for the standard deviation, is shown
in Fig. 3. Monte Carlo results show the ranges of predicted
composite moduli resulting from material property variability. The
predicted distributions were relatively narrow, indicating that the
model is robust and small uncertainties in £,, and E/lead to limited
variation in E..
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Fig. 2. Comparison of predicted values of Young's modulus with the
experimental ones [51].
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Fig. 3. Estimated probability density function of the effective composite modulus Ec at (a) 0, (b) 0.1, (c) 0.3, (d) 0.5 wt% AgNPs.



4 M. H. Shahavi/ Journal of Composites and Compounds 6(2024) 1-5

4. Conclusion

Using the Takayanagi model in conjunction with a Monte
Carlo simulation enables a detailed study of the overall mechanical
behavior of PVC/AgNPs composites. The Takayanagi model can
reasonably predict the overall change in Young's modulus with
increasing filler content, while the Monte Carlo component
provides a quantifiable framework to account for uncertainties in
material properties. So, this approach allows composite design to
progress to the next level, as the predicted modulus and its
associated confidence intervals can be derived from the
uncertainties in constituent properties.

Thus, the study concludes that the Takayanagi model,
including a Monte Carlo simulation, can be a valuable tool for
predicting and assessing the mechanical properties of metallic
nanoparticles reinforced polymer nanocomposites.
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