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ABSTRACT

ARTICLE INFORMATION

Battery electrode materials have advanced significantly, enabling the advancement of
efficient energy storage systems. Throughout this mini-review, we emphasize
innovations in lithium-ion batteries, emerging technologies, and the latest
developments in anode and cathode materials. Several breakthroughs have been
achieved, including the creation of electrodes that offer high voltages and flexibility,
the development of metal-organic frameworks and derivatives to enhance electrode
performance, and advancements in silicon-based anodes that address capacity and
cycle life issues. Furthermore, the review highlights the shift from traditional
intercalation materials to conversion-type electrodes, which provide increased specific
capacities but are more challenging to stabilize. Additionally, new materials have been
integrated to improve energy density, safety, and charging speed of solid-state
batteries. A range of strategies, including doping, coating, and the integration of
nanomaterials, is being utilized to address issues like material scarcity, safety
concerns, and environmental effects. This review provides an extensive summary of
current materials, synthesis techniques, and electrochemical mechanisms, along with
future directions for developing effective electrodes aimed at producing long-lasting,
efficient batteries with high energy density for upcoming applications.
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1. Introduction

In recent years, the demand for high-energy, safer, and longer-
lasting rechargeable batteries has increased significantly, fueled by
portable electronics, electric vehicles, and renewable energy
storage solutions [1, 2]. Electrode materials are essential to these
developments,  substantially influencing the  batteries'

electrochemical performance, stability, and overall efficiency [3].
Advancements in electrode materials address challenges such as
capacity fade and mechanical deterioration while also reducing
production costs, paving the way for the next generation of high-
performance batteries [1, 4].

The current market is largely influenced by conventional
batteries that utilize inorganic cathode materials, primarily lithium
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iron phosphate and lithium cobalt oxide [S]. While these materials
are effective, they also present challenges such as limited capacity,
high production costs, and concerns regarding the safety of toxic
metals [4]. Consequently, researchers are exploring alternative
materials, including polymeric electrodes, which offer advantages
like enhanced capacity, structural adaptability, and eco-
friendliness [6]. Additionally, metal-based electrodes, such as tin
foams, have emerged, surpassing traditional graphite electrodes in
mechanical strength and charge storage abilities. These
advancements are part of a broader initiative to diversify electrode
chemistries to overcome the limitations of existing materials [4].

In the development of electrodes, modifying surface properties
and engineering structures have become essential strategies that
transcend material composition [7]. For instance, creating model
electrodes with controlled morphology facilitates a deeper
understanding of lithium-ion storage, while surface coatings
enhance battery lifespan and interface stability. Furthermore,
innovative crystalline structures, such as those found in niobium
pentoxide electrodes, show great potential for accelerating
charging times and increasing storage capacity by promoting
lithium-ion transport and reducing degradation issues like lithium
plating. These approaches underscore the importance of
integrating electrochemical engineering with materials science to
optimize electrode performance [8].

Despite these advancements, challenges persist in attaining
optimal electrode performance, such as difficulties with material
production, scalability, and safety [1]. Thorough evaluations
highlight the necessity of tackling these issues through methods
like doping, coatings, nanostructuring, and interface engineering
to improve energy storage efficiency and extend battery lifespan
[4, 9]. Additionally, developing durable, high-energy rechargeable
batteries depends on the incorporation of effective electrolytes and
the establishment of safety protocols [1, 10].

This article presents a comprehensive review of recent
advancements in battery electrode materials, focusing on
improvements in both cathode and anode performance. By
analyzing progress and ongoing challenges, it seeks to provide
insights into future research directions for electrode materials that
will meet the changing needs of energy storage technologies across
a range of applications, including consumer electronics, electric
vehicles, and grid storage.

2. Types of electrode materials

Organic and inorganic electrode materials are essential in
battery technology, each presenting unique benefits and
challenges. Organic materials, made from carbon-based
compounds, offer flexibility and sustainability, whereas inorganic
materials, which are usually metal-based, provide high energy
density and stability. Battery technology utilizes organic and
inorganic electrode materials, each presenting advantages and
disadvantages. Inorganic materials, typically composed of metals,
provide stability and high energy density, while organic materials,
consisting of carbon-based compounds, offer flexibility and
sustainability.

2.1. Inorganic electrode materials

Inorganic materials offer numerous benefits over organic
molecules, including larger surface areas, enhanced electrical
conductivity, greater thermal stability, more active sites, and
higher capacities, thereby broadening their potential for energy
storage [11]. The development and efficiency of batteries,
especially LIBs and emerging technologies like magnesium,
aluminum, and sodium-ion batteries, depend significantly on

inorganic electrode materials. These materials serve as cathodes or
anodes, prized for their substantial theoretical capacities, ability to
undergo multi-electron redox reactions, and structural stability.
They typically include metal oxides, phosphates, or polyanion
compounds [12]. For instance, inorganic cathode materials like
lithium manganese oxide (LiMn,O4) and lithium iron phosphate
(LiFePOy,) are widely used due to their environmental friendliness
and relatively high discharge capabilities. However, they face
challenges such as capacity fading caused by the dissolution of
transition metals and high manufacturing costs related to
complicated synthesis and limited raw materials [12].

Many inorganic nanomaterials, including metal oxides, metal
phosphides, and oxysalt nanoparticles, have been extensively
studied as LIB electrode materials [13, 14]. These nanoparticles'
small size allows for a decrease in the diffusion channel between
lithium ions and the collective electrode tension (mechanical
stress/strain) brought on by Li insertion and removal [14].
However, their relatively low conductivity, especially in weak
contact, is a serious problem [13, 15].

2.2. Organic electrode materials

Conducting polymers, radical, organosulfur, conjugated
carbonyl compounds, and other redox-active organic materials
with promising electrochemical characteristics were effectively
introduced by the initial progress of organic electrodes [16].
Because they are made of lightweight, plentiful materials, batteries
based on organic electrode materials have been regarded as a
highly eco-friendly alternative to inorganic electrode materials.
Additionally, their cost is lower than inorganic materials [17]. Fig.
1 displays the structure formula for a low-cost organic electrode
material.
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Fig. 1. Formula for the structure of certain inexpensive organic electrode
materials. (A) For flow batteries, 9, 10-anthraquinone-2, 7-disulfonic acid.
(B) A triangular macrocycle based on phenanthrenequinone that is redox
active. Phenazine-5,10-diyl) dibenzoate, 4, 4-. (D) The Zn-organic battery's
phenazine component [28].

One of the component parts of current electrodes, cobalt, is
categorized as an essential raw material. Processing inorganic
minerals is a particularly energy-intensive operation. On the other
side, because the biomass may produce new precursors, organic
materials may be thermally recycled [18]. Additionally, the
organics' real electrochemical performance is not worse. Because
of the light elements, they have a large gravimetric capacity and a
very high rate of charge and discharge [19, 20]. However, there are
still certain issues that need to be resolved, even though organic
materials have several advantages as substitute electrode materials
in LIBs [21]. Their often low electronic conductivity is a
significant obstacle that may restrict the battery's overall
performance and rate capabilities [16, 22]. For organic cathode
materials, cyclability and stability are also important factors. A
shorter battery life and capacity fading can result from some
organic compounds' low stability after repeated cycles of charging
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and discharging [23-25]. Additionally, some organic cathode
materials have trouble becoming soluble in the electrolyte. Over
time, capacity loss and electrolyte degradation may arise from
dissolving the active molecules in the electrolyte [26, 27].

3. Recent advancements in electrode materials

Recent developments in electrode materials have greatly
improved energy storage and conversion devices' sustainability
and performance [29]. This section briefly overviews current
developments in sodium-ion, lithium-ion, and multivalent ion
battery electrode materials.

3.1. Lithium-ion batteries (LIBs)

Electrode processing greatly impacts manufacturing cost,
throughput, and Cell energy density, which is crucial to developing
lithium-ion battery technology. However, there hasn't been nearly
as much work done in this field as there has been in materials
development [30, 31].

3.1.1. Innovations in anode and cathode materials

Several breakthroughs have been made in lithium-ion batteries'
materials used as anodes and cathodes. Table 1 shows some of the
innovations in this field.

3.1.2. Role of metal-organic frameworks (MOFs)

In addition to having the functional properties of both an
organic ligand guest and a metal ion host, metal-organic
frameworks (MOFs), as well as their derivative materials, also
provide the benefits of wide surface area, tunable porosity,
structure, and composition [49, 50]. Within the energy sector
storage, they have excellent application potential when used along
with suggestions for electrode material design [51]. MOFs are
more ordered than typical materials, and their structural diversity
and flexibility can be effectively controlled by the organic ligands
and metal ions that may be adjusted. The storage and transfer of
lithium ions are made easier by the bigger space and appropriate
channel that MOFs' porosity may create [52]. Stable active centers
and activity can be created using the component design and
nanostructure of MOF composite materials to create effective,
long-lasting electrode materials [53]. Nevertheless, MOFs have
low conductivity. MOFs must be electrochemically modified in
order to enhance their electrochemical characteristics and
conductivity [54]. To improve the chemical stability of LIB
applications, MOF-derived materials are required to mitigate the
disadvantages of MOFs' low conductivity while preserving their
advantages [49]. Bai et al. [55] have employed MOFs as dividers
in Li-S batteries to reduce shuttling problems (Fig.2). Due to its
well-organized micropores, which have a size window of

approximately 9 A, significantly smaller than the diameter of
lithium polysulfides, HKUST-1 was selected for this study's
MOF@GO separator fabrication. This characteristic contributes to
the separator's claimed suitability to block polysulfides and sieve
Li selectively ions, with structural stability and reliability observed
under electrochemical conditions.

Ik

MOF@GO separator

Fig. 2. Schematic diagram of a MOF@GO separator in Li-S batteries [55].

3.2. Multivalent ion batteries

Rechargeable multivalent ion batteries (MIBs) are the best
energy storage technology for grid-scale applications because they
are less expensive than lithium (Li)-ion batteries [56]. Regarding
cost, volumetric energy density, and safety, MIBs that transmit
Ca®', Zn®', A", Mg?, and other charge carriers have emerged as
an intense research interest. They are becoming more and more
appealing options for grid energy storage [57-59]. However,
because of the difficulties associated with the restricted
multivalent-ion diffusion kinetics, they are still far from becoming
mature [59].

3.2.1. Development of organic and inorganic materials

Organic electrode materials (OEMs) are versatile, high-
performing electroactive materials used across various
rechargeable battery systems because of their availability, ease of
use, affordability, sustainability, and recyclability. Advanced
rechargeable battery development is made possible by the wide
structural variety and the ability to tune OEMs, composed of light
components that are abundant on Earth, including H, O, C, S, and
N [60-63].

The functional group that is active, not the crystalline structure,
determines the electrochemical performance of OEMs, in contrast
to inorganic electrode materials. The varied molecular structures
and unique electrochemical properties of OEMs contribute to their
strong electrochemical performance in lithium-ion batteries (LIBs)
and other applications [63, 64]. While the energy density of organic
energy materials (OEMs) is not yet on par with that of inorganic
materials used in lithium-ion batteries (LIBs), their low cost,
widespread availability, and structural adaptability make OEMs
excellent candidates for affordable and sustainable energy storage
solutions [64].

Table 1
Innovations in anode and cathode materials in LIBs.
Material types Advantages Refs.
Innovations in anode Silicon-based anodes High theoretical capacity but volume expansion [32-36]
materials challenges
Carbon-based nanomaterials (graphene, reduced Conductivity and stability [37-39]
graphene oxide)
Metal oxides and sulfides (Fe203, MoSz) High theoretical capacity but issues with volume [40, 41]

change and conductivity

Metal oxide-carbon hybrids Combining the advantages of both components [42]
Mxenes (2D transition metal carbides) High conductivity and fast lithium-ion transport [43]
Perovskite-like hybrid anodes based High Li storage capacity and tunable properties [44]
Electrospun nanofiber anode materials Improving rate capability and cycling stability [45]
Innovations in cathode High voltage spinel cathodes like (LiNixCoxMi.x.yO2) Offering high rate and energy density [46, 47]
Diverse cathode materials explored Improved voltage and capacity [48]
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3.2.2. Performance comparisons with traditional
batteries

Cost and safety are crucial considerations when using battery
technology for extensive stationary electrical energy storage.
Unfortunately, the high toxicity of Pb/PbO, and the scarce and
unequally distributed lithium resources hinder the development of
LIBs and lead acid batteries (LABs), respectively [16, 65-67].
Many people are looking forward to another advancement in
battery technology that will result in energy storage systems that
are safe, affordable, and environmentally friendly. Since
multivalent metals and OEMs are inexpensive and plentiful,
organic multivalent rechargeable batteries (MRBs) are a possible
substitute for LIBs and LABs [64].

3.3. Sodium-ion batteries

Similar to LIB, NIB operates by having Na ions move between
two electrodes that house Na ions via an organic liquid electrolyte
while a voltage is applied [68]. At the laboratory scale, NIBs
perform almost as well as commercial LIBs regarding cycle life,
power density, and energy density [69-71]. Several layered oxide
cathodes, for instance, have been shown to achieve an extended
lifecycle of several hundred cycles, a high rate of 30 “C, and a high
capacity of 190 mAh g [70, 72-74]. Recent NIB research projects
showed potential for developing NIB systems that function
similarly to LIBs [75].
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