

Available Online at [www.jourcc.com](http://www.jourcc.com)Journal homepage: [www.JOURCC.com](http://www.JOURCC.com)

# Journal of Composites and Compounds

## The recent advancement of electrode materials for batteries: A mini review

**Naghmeh Abavi Torghabeh <sup>a\*</sup>, Mahnaz Dadkhah <sup>b</sup>**

<sup>a</sup> School of Chemical Engineering, University of Newcastle, Australia

<sup>b</sup> School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia

### ABSTRACT

Battery electrode materials have advanced significantly, enabling the advancement of efficient energy storage systems. Throughout this mini-review, we emphasize innovations in lithium-ion batteries, emerging technologies, and the latest developments in anode and cathode materials. Several breakthroughs have been achieved, including the creation of electrodes that offer high voltages and flexibility, the development of metal-organic frameworks and derivatives to enhance electrode performance, and advancements in silicon-based anodes that address capacity and cycle life issues. Furthermore, the review highlights the shift from traditional intercalation materials to conversion-type electrodes, which provide increased specific capacities but are more challenging to stabilize. Additionally, new materials have been integrated to improve energy density, safety, and charging speed of solid-state batteries. A range of strategies, including doping, coating, and the integration of nanomaterials, is being utilized to address issues like material scarcity, safety concerns, and environmental effects. This review provides an extensive summary of current materials, synthesis techniques, and electrochemical mechanisms, along with future directions for developing effective electrodes aimed at producing long-lasting, efficient batteries with high energy density for upcoming applications.

©2024 UGPH

Peer review under responsibility of UGPH.

### ARTICLE INFORMATION

#### Article History:

Received 17 March 2024

Received in revised form 13 June 2024

Accepted 19 June 2024

#### Keywords:

Organic electrode materials

Inorganic electrode materials

Lithium-ion batteries

Multivalent ion batteries

Sodium-ion batteries

### Table of Contents

|                                                                 |   |
|-----------------------------------------------------------------|---|
| 1. Introduction .....                                           | 1 |
| 2. Types of electrode materials .....                           | 2 |
| 2.1. Inorganic electrode materials .....                        | 2 |
| 2.2. Organic electrode materials.....                           | 2 |
| 3. Recent advancements in electrode materials.....              | 3 |
| 3.1. Lithium-ion batteries (LIBs) .....                         | 3 |
| 3.1.1. Innovations in anode and cathode materials.....          | 3 |
| 3.1.2. Role of metal-organic frameworks (MOFs).....             | 3 |
| 3.2. Multivalent ion batteries .....                            | 3 |
| 3.2.1. Development of organic and inorganic materials.....      | 3 |
| 3.2.2. Performance comparisons with traditional batteries ..... | 4 |
| 3.3. Sodium-ion batteries .....                                 | 4 |
| 4. Conclusion .....                                             | 4 |
| 5. References.....                                              | 4 |

### 1. Introduction

In recent years, the demand for high-energy, safer, and longer-lasting rechargeable batteries has increased significantly, fueled by portable electronics, electric vehicles, and renewable energy storage solutions [1, 2]. Electrode materials are essential to these developments, substantially influencing the batteries'

electrochemical performance, stability, and overall efficiency [3]. Advancements in electrode materials address challenges such as capacity fade and mechanical deterioration while also reducing production costs, paving the way for the next generation of high-performance batteries [1, 4].

The current market is largely influenced by conventional batteries that utilize inorganic cathode materials, primarily lithium

\* Corresponding author: Naghmeh Abavi Torghabeh, E-mail: [Naghmeabavi@gmail.com](mailto:Naghmeabavi@gmail.com)

<https://doi.org/10.61882/jcc.6.2.5> This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>)

iron phosphate and lithium cobalt oxide [5]. While these materials are effective, they also present challenges such as limited capacity, high production costs, and concerns regarding the safety of toxic metals [4]. Consequently, researchers are exploring alternative materials, including polymeric electrodes, which offer advantages like enhanced capacity, structural adaptability, and eco-friendliness [6]. Additionally, metal-based electrodes, such as tin foams, have emerged, surpassing traditional graphite electrodes in mechanical strength and charge storage abilities. These advancements are part of a broader initiative to diversify electrode chemistries to overcome the limitations of existing materials [4].

In the development of electrodes, modifying surface properties and engineering structures have become essential strategies that transcend material composition [7]. For instance, creating model electrodes with controlled morphology facilitates a deeper understanding of lithium-ion storage, while surface coatings enhance battery lifespan and interface stability. Furthermore, innovative crystalline structures, such as those found in niobium pentoxide electrodes, show great potential for accelerating charging times and increasing storage capacity by promoting lithium-ion transport and reducing degradation issues like lithium plating. These approaches underscore the importance of integrating electrochemical engineering with materials science to optimize electrode performance [8].

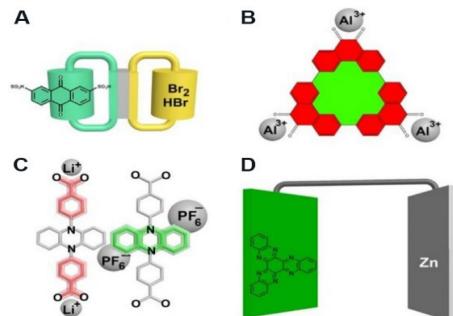
Despite these advancements, challenges persist in attaining optimal electrode performance, such as difficulties with material production, scalability, and safety [1]. Thorough evaluations highlight the necessity of tackling these issues through methods like doping, coatings, nanostructuring, and interface engineering to improve energy storage efficiency and extend battery lifespan [4, 9]. Additionally, developing durable, high-energy rechargeable batteries depends on the incorporation of effective electrolytes and the establishment of safety protocols [1, 10].

This article presents a comprehensive review of recent advancements in battery electrode materials, focusing on improvements in both cathode and anode performance. By analyzing progress and ongoing challenges, it seeks to provide insights into future research directions for electrode materials that will meet the changing needs of energy storage technologies across a range of applications, including consumer electronics, electric vehicles, and grid storage.

## 2. Types of electrode materials

Organic and inorganic electrode materials are essential in battery technology, each presenting unique benefits and challenges. Organic materials, made from carbon-based compounds, offer flexibility and sustainability, whereas inorganic materials, which are usually metal-based, provide high energy density and stability. Battery technology utilizes organic and inorganic electrode materials, each presenting advantages and disadvantages. Inorganic materials, typically composed of metals, provide stability and high energy density, while organic materials, consisting of carbon-based compounds, offer flexibility and sustainability.

### 2.1. Inorganic electrode materials


Inorganic materials offer numerous benefits over organic molecules, including larger surface areas, enhanced electrical conductivity, greater thermal stability, more active sites, and higher capacities, thereby broadening their potential for energy storage [11]. The development and efficiency of batteries, especially LIBs and emerging technologies like magnesium, aluminum, and sodium-ion batteries, depend significantly on

inorganic electrode materials. These materials serve as cathodes or anodes, prized for their substantial theoretical capacities, ability to undergo multi-electron redox reactions, and structural stability. They typically include metal oxides, phosphates, or polyanion compounds [12]. For instance, inorganic cathode materials like lithium manganese oxide ( $\text{LiMn}_2\text{O}_4$ ) and lithium iron phosphate ( $\text{LiFePO}_4$ ) are widely used due to their environmental friendliness and relatively high discharge capabilities. However, they face challenges such as capacity fading caused by the dissolution of transition metals and high manufacturing costs related to complicated synthesis and limited raw materials [12].

Many inorganic nanomaterials, including metal oxides, metal phosphides, and oxysalt nanoparticles, have been extensively studied as LIB electrode materials [13, 14]. These nanoparticles' small size allows for a decrease in the diffusion channel between lithium ions and the collective electrode tension (mechanical stress/strain) brought on by Li insertion and removal [14]. However, their relatively low conductivity, especially in weak contact, is a serious problem [13, 15].

### 2.2. Organic electrode materials

Conducting polymers, radical, organosulfur, conjugated carbonyl compounds, and other redox-active organic materials with promising electrochemical characteristics were effectively introduced by the initial progress of organic electrodes [16]. Because they are made of lightweight, plentiful materials, batteries based on organic electrode materials have been regarded as a highly eco-friendly alternative to inorganic electrode materials. Additionally, their cost is lower than inorganic materials [17]. Fig. 1 displays the structure formula for a low-cost organic electrode material.



**Fig. 1.** Formula for the structure of certain inexpensive organic electrode materials. (A) For flow batteries, 9, 10-anthraquinone-2, 7-disulfonic acid. (B) A triangular macrocycle based on phenanthrenequinone that is redox active. Phenazine-5,10-diyli dibenzoate, 4, 4-. (D) The Zn-organic battery's phenazine component [28].

One of the component parts of current electrodes, cobalt, is categorized as an essential raw material. Processing inorganic minerals is a particularly energy-intensive operation. On the other side, because the biomass may produce new precursors, organic materials may be thermally recycled [18]. Additionally, the organics' real electrochemical performance is not worse. Because of the light elements, they have a large gravimetric capacity and a very high rate of charge and discharge [19, 20]. However, there are still certain issues that need to be resolved, even though organic materials have several advantages as substitute electrode materials in LIBs [21]. Their often low electronic conductivity is a significant obstacle that may restrict the battery's overall performance and rate capabilities [16, 22]. For organic cathode materials, cyclability and stability are also important factors. A shorter battery life and capacity fading can result from some organic compounds' low stability after repeated cycles of charging

and discharging [23-25]. Additionally, some organic cathode materials have trouble becoming soluble in the electrolyte. Over time, capacity loss and electrolyte degradation may arise from dissolving the active molecules in the electrolyte [26, 27].

### 3. Recent advancements in electrode materials

Recent developments in electrode materials have greatly improved energy storage and conversion devices' sustainability and performance [29]. This section briefly overviews current developments in sodium-ion, lithium-ion, and multivalent ion battery electrode materials.

#### 3.1. Lithium-ion batteries (LIBs)

Electrode processing greatly impacts manufacturing cost, throughput, and cell energy density, which is crucial to developing lithium-ion battery technology. However, there hasn't been nearly as much work done in this field as there has been in materials development [30, 31].

##### 3.1.1. Innovations in anode and cathode materials

Several breakthroughs have been made in lithium-ion batteries' materials used as anodes and cathodes. Table 1 shows some of the innovations in this field.

##### 3.1.2. Role of metal-organic frameworks (MOFs)

In addition to having the functional properties of both an organic ligand guest and a metal ion host, metal-organic frameworks (MOFs), as well as their derivative materials, also provide the benefits of wide surface area, tunable porosity, structure, and composition [49, 50]. Within the energy sector storage, they have excellent application potential when used along with suggestions for electrode material design [51]. MOFs are more ordered than typical materials, and their structural diversity and flexibility can be effectively controlled by the organic ligands and metal ions that may be adjusted. The storage and transfer of lithium ions are made easier by the bigger space and appropriate channel that MOFs' porosity may create [52]. Stable active centers and activity can be created using the component design and nanostructure of MOF composite materials to create effective, long-lasting electrode materials [53]. Nevertheless, MOFs have low conductivity. MOFs must be electrochemically modified in order to enhance their electrochemical characteristics and conductivity [54]. To improve the chemical stability of LIB applications, MOF-derived materials are required to mitigate the disadvantages of MOFs' low conductivity while preserving their advantages [49]. Bai et al. [55] have employed MOFs as dividers in Li-S batteries to reduce shuttling problems (Fig. 2). Due to its well-organized micropores, which have a size window of

approximately 9 Å, significantly smaller than the diameter of lithium polysulfides, HKUST-1 was selected for this study's MOF@GO separator fabrication. This characteristic contributes to the separator's claimed suitability to block polysulfides and sieve Li selectively ions, with structural stability and reliability observed under electrochemical conditions.

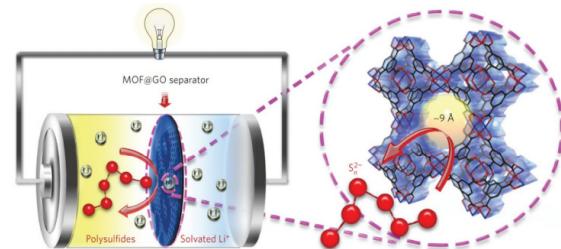



Fig. 2. Schematic diagram of a MOF@GO separator in Li-S batteries [55].

#### 3.2. Multivalent ion batteries

Rechargeable multivalent ion batteries (MIBs) are the best energy storage technology for grid-scale applications because they are less expensive than lithium (Li)-ion batteries [56]. Regarding cost, volumetric energy density, and safety, MIBs that transmit  $\text{Ca}^{2+}$ ,  $\text{Zn}^{2+}$ ,  $\text{Al}^{3+}$ ,  $\text{Mg}^{2+}$ , and other charge carriers have emerged as an intense research interest. They are becoming more and more appealing options for grid energy storage [57-59]. However, because of the difficulties associated with the restricted multivalent-ion diffusion kinetics, they are still far from becoming mature [59].

##### 3.2.1. Development of organic and inorganic materials

Organic electrode materials (OEMs) are versatile, high-performing electroactive materials used across various rechargeable battery systems because of their availability, ease of use, affordability, sustainability, and recyclability. Advanced rechargeable battery development is made possible by the wide structural variety and the ability to tune OEMs, composed of light components that are abundant on Earth, including H, O, C, S, and N [60-63].

The functional group that is active, not the crystalline structure, determines the electrochemical performance of OEMs, in contrast to inorganic electrode materials. The varied molecular structures and unique electrochemical properties of OEMs contribute to their strong electrochemical performance in lithium-ion batteries (LIBs) and other applications [63, 64]. While the energy density of organic energy materials (OEMs) is not yet on par with that of inorganic materials used in lithium-ion batteries (LIBs), their low cost, widespread availability, and structural adaptability make OEMs excellent candidates for affordable and sustainable energy storage solutions [64].

**Table 1**  
Innovations in anode and cathode materials in LIBs.

|                                | Material types                                                                           | Advantages                                                               | Refs.    |
|--------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Innovations in anode materials | Silicon-based anodes                                                                     | High theoretical capacity but volume expansion challenges                | [32-36]  |
|                                | Carbon-based nanomaterials (graphene, reduced graphene oxide)                            | Conductivity and stability                                               | [37-39]  |
|                                | Metal oxides and sulfides ( $\text{Fe}_2\text{O}_3$ , $\text{MoS}_2$ )                   | High theoretical capacity but issues with volume change and conductivity | [40, 41] |
|                                | Metal oxide-carbon hybrids                                                               | Combining the advantages of both components                              | [42]     |
|                                | Mxenes (2D transition metal carbides)                                                    | High conductivity and fast lithium-ion transport                         | [43]     |
| Innovations in cathode         | Perovskite-like hybrid anodes based                                                      | High Li storage capacity and tunable properties                          | [44]     |
|                                | Electrospun nanofiber anode materials                                                    | Improving rate capability and cycling stability                          | [45]     |
|                                | High voltage spinel cathodes like $(\text{LiNi}_x\text{Co}_x\text{M}_{1-x-y}\text{O}_2)$ | Offering high rate and energy density                                    | [46, 47] |
|                                | Diverse cathode materials explored                                                       | Improved voltage and capacity                                            | [48]     |

### 3.2.2. Performance comparisons with traditional batteries

Cost and safety are crucial considerations when using battery technology for extensive stationary electrical energy storage. Unfortunately, the high toxicity of Pb/PbO<sub>2</sub> and the scarce and unequally distributed lithium resources hinder the development of LIBs and lead acid batteries (LABs), respectively [16, 65-67]. Many people are looking forward to another advancement in battery technology that will result in energy storage systems that are safe, affordable, and environmentally friendly. Since multivalent metals and OEMs are inexpensive and plentiful, organic multivalent rechargeable batteries (MRBs) are a possible substitute for LIBs and LABs [64].

### 3.3. Sodium-ion batteries

Similar to LIB, NIB operates by having Na ions move between two electrodes that house Na ions via an organic liquid electrolyte while a voltage is applied [68]. At the laboratory scale, NIBs perform almost as well as commercial LIBs regarding cycle life, power density, and energy density [69-71]. Several layered oxide cathodes, for instance, have been shown to achieve an extended lifecycle of several hundred cycles, a high rate of 30 °C, and a high capacity of 190 mAh g<sup>-1</sup> [70, 72-74]. Recent NIB research projects showed potential for developing NIB systems that function similarly to LIBs [75].

## 4. Conclusion

The advancement of efficient energy storage systems has dramatically accelerated due to recent advancements in battery electrode materials. The limitations of conventional materials like graphite have been addressed through innovations in anode and cathode materials, including composites, which have significantly improved energy density, charging speed, and cycle life. Research continues to focus on new synthesis methods, coatings, and targeted doping to tackle challenges related to cost, safety, and resource scarcity. Increased capacities are expected as the industry shifts from traditional intercalation processes to conversion-type reactions; however, further research and engineering will be necessary to ensure stability and longevity. The combination of material innovation and architectural redesign is making next-generation batteries with quicker charging, longer lifespans, and wider applications in electric vehicles, grid storage, and portable gadgets possible. However, more research and scalable manufacturing techniques will be needed to turn these discoveries into economically feasible, effective, and sustainable energy storage technologies.

## Author contributions

**Naghmeh Abavi Torghabeh:** Conceptualization, Writing – original draft, Writing – review & editing; **Mahnaz Dadkhah:** Conceptualization, Writing – original draft, Writing – review & editing.

## Funding

No funding was received for this study.

## Conflict of interest

The authors declare no conflict of interest.

## Data availability

No data is available.

## REFERENCES

- [1] T. Dutta, J.M. Gladis, Recent developments on electrode materials and electrolytes for aluminium-ion batteries, *Journal of Energy Storage* 86 (2024) 111287.
- [2] L.G. Chagas, S. Jeong, I. Hassa, S. Passerini, Ionic liquid-based electrolytes for sodium-ion batteries: tuning properties to enhance the electrochemical performance of manganese-based layered oxide cathode, *ACS applied materials & interfaces* 11(25) (2019) 22278-22289.
- [3] E. Kamali-Heidari, A. Kamyabi-Gol, M. Heydarzadeh Sohi, A. Ataie, Electrode materials for lithium ion batteries: a review, *Journal of Ultrafine Grained and Nanostructured Materials* 51(1) (2018) 1-12.
- [4] S.A. Khan, S. Ali, K. Saeed, M. Usman, I. Khan, Advanced cathode materials and efficient electrolytes for rechargeable batteries: Practical challenges and future perspectives, *Journal of Materials Chemistry A* 7(17) (2019) 10159-10173.
- [5] B. Yu, Y. Wang, J. Li, Y. Jin, Z. Liang, L. Zhou, M. Chen, Recent advances on low-Co and Co-free high entropy layered oxide cathodes for lithium-ion batteries, *Nanotechnology* 34(45) (2023) 452501.
- [6] R. Dantas, C. Ribeiro, M. Souto, Organic electrodes based on redox-active covalent organic frameworks for lithium batteries, *Chemical Communications* 60(2) (2024) 138-149.
- [7] G. Zhu, D. Chao, W. Xu, M. Wu, H. Zhang, Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries, *ACS nano* 15(10) (2021) 15567-15593.
- [8] P. Barnes, Y. Zuo, K. Dixon, D. Hou, S. Lee, Z. Ma, J.G. Connell, H. Zhou, C. Deng, K. Smith, Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries, *Nature Materials* 21(7) (2022) 795-803.
- [9] L. Sheng, J. Feng, M. Gong, L. Zhang, J. Harding, Z. Hao, F.R. Wang, Advances and challenges in electrolyte development for magnesium–sulfur batteries: a comprehensive review, *Molecules* 29(6) (2024) 1234.
- [10] W. Zhao, Y. Liu, X. Zhao, Z. Pan, J. Chen, S. Zheng, L. Qu, X. Yang, Chloride-Free Electrolytes for High-Voltage Magnesium Metal Batteries: Challenges, Strategies, and Perspectives, *Chemistry—A European Journal* 29(10) (2023) e202203334.
- [11] C. Wu, X. Lu, L. Peng, K. Xu, X. Peng, J. Huang, G. Yu, Y. Xie, Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors, *Nature communications* 4(1) (2013) 2431.
- [12] X. Shen, X.-Q. Zhang, F. Ding, J.-Q. Huang, R. Xu, X. Chen, C. Yan, F.-Y. Su, C.-M. Chen, X. Liu, Advanced electrode materials in lithium batteries: Retrospect and prospect, *Energy Material Advances* (2021).
- [13] Y. Sharma, N. Sharma, G. Subba Rao, B. Chowdari, Nanophase ZnCo<sub>2</sub>O<sub>4</sub> as a high performance anode material for Li-ion batteries, *Advanced Functional Materials* 17(15) (2007) 2855-2861.
- [14] M.G. Kim, S. Lee, J. Cho, Highly reversible Li-ion intercalating MoP<sub>2</sub> nanoparticle cluster anode for lithium rechargeable batteries, *Journal of The Electrochemical Society* 156(2) (2008) A89.
- [15] Y.S. Hu, L. Kienle, Y.G. Guo, J. Maier, High lithium electroactivity of nanometer-sized rutile TiO<sub>2</sub>, *Advanced Materials* 18(11) (2006) 1421-1426.
- [16] S. Lee, G. Kwon, K. Ku, K. Yoon, S.K. Jung, H.D. Lim, K. Kang, Recent progress in organic electrodes for Li and Na rechargeable batteries, *Advanced materials* 30(42) (2018) 1704682.
- [17] V. Dieterich, J.D. Milshtein, J.L. Barton, T.J. Carney, R.M. Darling, F.R. Brushett, Estimating the cost of organic battery active materials: a case study on anthraquinone disulfonic acid, *Translational Materials Research* 5(3) (2018) 034001.
- [18] H. Chen, M. Armand, G. Demaillly, F. Dolhem, P. Poizot, J.M. Tarascon, From biomass to a renewable Li<sub>x</sub>C<sub>6</sub>O<sub>6</sub> organic electrode for sustainable Li-ion batteries, *ChemSusChem: Chemistry & Sustainability Energy & Materials* 1(4) (2008) 348-355.
- [19] I.A. Rodríguez-Pérez, Y. Yuan, C. Bommier, X. Wang, L. Ma, D.P. Leonard, M.M. Lerner, R.G. Carter, T. Wu, P.A. Greaney, Mg-ion battery electrode: an organic solid's herringbone structure squeezed upon Mg-ion insertion, *Journal of the American Chemical Society* 139(37) (2017) 13031-13037.
- [20] J. Bitenc, K. Pimat, T. Bančič, M. Gaberšček, B. Genorio, A. Randon-Vitanova, R. Dominko, Anthraquinone-based polymer as cathode in rechargeable magnesium batteries, *ChemSusChem* 8(24) (2015) 4128-4132.
- [21] P. Poizot, J. Gaubicher, S. Renault, L. Dubois, Y. Liang, Y. Yao, Opportunities and challenges for organic electrodes in electrochemical energy storage, *Chemical reviews* 120(14) (2020) 6490-6557.
- [22] F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries, *Advanced materials* 23(15) (2011) 1695-1715.
- [23] X. Feng, X. Chen, B. Ren, X. Wu, X. Huang, R. Ding, X. Sun, S. Tan, E. Liu, P. Gao, Stabilization of organic cathodes by a temperature-induced effect enabling higher energy and excellent cyclability, *ACS Applied Materials & Interfaces* 13(6) (2021) 7178-7187.

[24] Y. Zhang, J. Wang, S.N. Riduan, Strategies toward improving the performance of organic electrodes in rechargeable lithium (sodium) batteries, *Journal of Materials Chemistry A* 4(39) (2016) 14902-14914.

[25] Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, *Energy & Environmental Science* 6(8) (2013) 2280-2301.

[26] R. Chen, D. Bresser, M. Saraf, P. Gerlach, A. Balducci, S. Kunz, D. Schröder, S. Passerini, J. Chen, A comparative review of electrolytes for organic-material-based energy-storage devices employing solid electrodes and redox fluids, *ChemSusChem* 13(9) (2020) 2205-2219.

[27] J. Heiska, M. Nisula, M. Karppinen, Organic electrode materials with solid-state battery technology, *Journal of Materials Chemistry A* 7(32) (2019) 18735-18758.

[28] T. Huang, M. Long, J. Xiao, H. Liu, G. Wang, Recent research on emerging organic electrode materials for energy storage, *Energy Materials* (2021).

[29] L. Zhao, Y. Li, M. Yu, Y. Peng, F. Ran, Electrolyte-wettability issues and challenges of electrode materials in electrochemical energy storage, energy conversion, and beyond, *Advanced Science* 10(17) (2023) 2300283.

[30] J. Li, J. Fleetwood, W.B. Hawley, W. Kays, From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing, *Chemical reviews* 122(1) (2021) 903-956.

[31] B. Fakić, A. Kumar, M. Alipour, A. Abbas, E. Ahmadi, N. Nikzad, P. Shafiee, Carbon-based materials and their composites as anodes: A review on lithium-ion batteries, *Journal of Composites and Compounds* 4(11) (2022) 124-139.

[32] A.K. Mishra, B.S. Patial, A review on recent advances in anode materials in lithium ion batteries, *Materials Today Electronics* 7 (2024) 100089.

[33] G.F.I. Toki, M.K. Hossain, W.U. Rehman, R.Z.A. Manj, L. Wang, J. Yang, Recent progress and challenges in silicon-based anode materials for lithium-ion batteries, *Industrial Chemistry & Materials* 2(2) (2024) 226-269.

[34] Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery, *Advanced Energy Materials* 7(23) (2017) 1700715.

[35] H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, *Nano today* 7(5) (2012) 414-429.

[36] J. Ryu, D. Hong, H.-W. Lee, S. Park, Practical considerations of Si-based anodes for lithium-ion battery applications, *Nano Research* 10 (2017) 3970-4002.

[37] P. Pietsch, D. Westhoff, J. Feinauer, J. Eller, F. Marone, M. Stampanoni, V. Schmidt, V. Wood, Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes, *Nature communications* 7(1) (2016) 12909.

[38] M. Ko, S. Chae, J. Ma, N. Kim, H.-W. Lee, Y. Cui, J. Cho, Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries, *Nature Energy* 1(9) (2016) 1-8.

[39] Q. Xu, J.K. Sun, Y.X. Yin, Y.G. Guo, Facile synthesis of blocky SiO<sub>x</sub>/C with graphite-like structure for high-performance lithium-ion battery anodes, *Advanced Functional Materials* 28(8) (2018) 1705235.

[40] Y. Luo, L. Wei, H. Geng, Y. Zhang, Y. Yang, C.C. Li, Amorphous bimetallic oxides Fe-V-O with tunable compositions toward rechargeable Zn-ion batteries with excellent low-temperature performance, *ACS Applied Materials & Interfaces* 12(10) (2020) 11753-11760.

[41] V.K. Hoang Bui, M.K. Kumar, M. Alinaghabeigi, S. Moolayadukkam, S. Eskandarinejad, S. Mahmoudi, S. Mirzamohammadi, M. Rezaeikhamseh, A review on zinc oxide composites for energy storage applications: solar cells, batteries, and supercapacitors, *Journal of Composites and Compounds* 3(8) (2021) 182-193.

[42] S. Fleischmann, A. Tolosa, V. Presser, Design of carbon/metal oxide hybrids for electrochemical energy storage, *Chemistry—A European Journal* 24(47) (2018) 12143-12153.

[43] Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage, *Advanced Materials* 30(23) (2018) 1707334.

[44] N. Vicente, G. Garcia-Belmonte, Methylammonium lead bromide perovskite battery anodes reversibly host high Li-ion concentrations, *The journal of physical chemistry letters* 8(7) (2017) 1371-1374.

[45] Y.-E. Miao, Y. Huang, L. Zhang, W. Fan, F. Lai, T. Liu, Electrospun porous carbon nanofiber@ MoS<sub>2</sub> core/sheath fiber membranes as highly flexible and binder-free anodes for lithium-ion batteries, *Nanoscale* 7(25) (2015) 11093-11101.

[46] J. Hassoun, K.-S. Lee, Y.-K. Sun, B. Scrosati, An advanced lithium ion battery based on high performance electrode materials, *Journal of the American Chemical Society* 133(9) (2011) 3139-3143.

[47] K.L. Browning, L. Baggetto, R.R. Unocic, N.J. Dudney, G.M. Veith, Gas evolution from cathode materials: A pathway to solvent decomposition concomitant to SEI formation, *Journal of power sources* 239 (2013) 341-346.

[48] W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y.M. Kang, W.S. Yoon, Advances in the cathode materials for lithium rechargeable batteries, *Angewandte Chemie International Edition* 59(7) (2020) 2578-2605.

[49] M. Shen, H. Ma, Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries, *Coordination Chemistry Reviews* 470 (2022) 214715.

[50] A. Abdelaal, F. Banei, A. Fenti, N.A. Maryam, M. Martín Sómer, State of the art review of photocatalytic water treatment, (2023).

[51] R. Tian, Y. Zhou, H. Duan, Y. Guo, H. Li, K. Chen, D. Xue, H. Liu, MOF-derived hollow Co<sub>3</sub>S<sub>4</sub> quasi-polyhedron/MWCNT nanocomposites as electrodes for advanced lithium ion batteries and supercapacitors, *ACS Applied Energy Materials* 1(2) (2018) 402-410.

[52] J.S. Park, J.H. Kim, S.J. Yang, Rational Design of Metal–Organic Framework-Based Materials for Advanced Li<sub>2</sub>S Batteries, *Bulletin of the Korean Chemical Society* 42(2) (2021) 148-158.

[53] D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, *Nature materials* 16(2) (2017) 220-224.

[54] W. Liu, J. Huang, Q. Yang, S. Wang, X. Sun, W. Zhang, J. Liu, F. Huo, Multi-shelled hollow metal–organic frameworks, *Angewandte Chemie International Edition* 56(20) (2017) 5512-5516.

[55] S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal–organic framework-based separator for lithium–sulfur batteries, *Nature Energy* 1(7) (2016) 1-6.

[56] S.-B. Son, T. Gao, S.P. Harvey, K.X. Steirer, A. Stokes, A. Norman, C. Wang, A. Cresce, K. Xu, C. Ban, An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes, *Nature Chemistry* 10(5) (2018) 532-539.

[57] M.E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, M.R. Palacín, Achievements, challenges, and prospects of calcium batteries, *Chemical Reviews* 120(14) (2019) 6331-6357.

[58] H. Yang, H. Li, J. Li, Z. Sun, K. He, H.M. Cheng, F. Li, The rechargeable aluminum battery: opportunities and challenges, *Angewandte Chemie International Edition* 58(35) (2019) 11978-11996.

[59] Z. Liu, L. Qin, X. Cao, J. Zhou, A. Pan, G. Fang, S. Wang, S. Liang, Ion migration and defect effect of electrode materials in multivalent-ion batteries, *Progress in Materials Science* 125 (2022) 100911.

[60] Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries, *Nature Reviews Chemistry* 4(3) (2020) 127-142.

[61] Y. Lu, Q. Zhang, L. Li, Z. Niu, J. Chen, Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries, *Chem* 4(12) (2018) 2786-2813.

[62] T.B. Schon, B.T. McAllister, P.-F. Li, D.S. Seferos, The rise of organic electrode materials for energy storage, *Chemical Society Reviews* 45(22) (2016) 6345-6404.

[63] S. Muench, A. Wild, C. Fribe, B. Haupler, T. Janoschka, U.S. Schubert, Polymer-based organic batteries, *Chemical reviews* 116(16) (2016) 9438-9484.

[64] K. Qin, J. Huang, K. Holguin, C. Luo, Recent advances in developing organic electrode materials for multivalent rechargeable batteries, *Energy & Environmental Science* 13(11) (2020) 3950-3992.

[65] J. Muldoon, C.B. Bucur, T. Gregory, Quest for nonaqueous multivalent secondary batteries: magnesium and beyond, *Chemical reviews* 114(23) (2014) 11683-11720.

[66] S. Lee, G. Kwon, K. Ku, K. Yoon, S.K. Jung, H.D. Lim, K. Kang, Organic electrode materials: Recent progress in organic electrodes for Li and Na rechargeable batteries (adv. mater. 42/2018), *Advanced Materials* 30(42) (2018) 1870312.

[67] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review, *Chemical reviews* 117(15) (2017) 10403-10473.

[68] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, *Chemical reviews* 114(23) (2014) 11636-11682.

[69] H. Yoshida, N. Yabuuchi, K. Kubota, I. Ikeuchi, A. Garsuch, M. Schulz-Dobrick, S. Komaba, P2-type Na 2/3 Ni 1/3 Mn 2/3-x Ti x O 2 as a new positive electrode for higher energy Na-ion batteries, *Chemical communications* 50(28) (2014) 3677-3680.

[70] N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-type Na x [Fe1/2Mn1/2] O2 made from earth-abundant elements for rechargeable Na batteries, *Nature materials* 11(6) (2012) 512-517.

[71] R.J. Clément, P.G. Bruce, C.P. Grey, manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials, *Journal of The Electrochemical Society* 162(14) (2015) A2589.

[72] E. de la Llave, E. Talaie, E. Levi, P.K. Nayak, M. Dixit, P.T. Rao, P. Hartmann, F. Chesneau, D.T. Major, M. Greenstein, Improving energy density and structural stability of manganese oxide cathodes for Na-ion batteries by structural lithium substitution, *Chemistry of Materials* 28(24) (2016) 9064-9076.

[73] L. Liu, X. Li, S.H. Bo, Y. Wang, H. Chen, N. Twu, D. Wu, G. Ceder, High-performance P2-type Na<sub>2</sub>/3 (Mn<sub>1</sub>/2Fe<sub>1</sub>/4Co<sub>1</sub>/4) O<sub>2</sub> cathode material with superior rate capability for Na-ion batteries, *Advanced Energy Materials* 5(22) (2015) 1500944.

[74] Y. Wang, R. Xiao, Y.-S. Hu, M. Avdeev, L. Chen, P2-Na<sub>0.6</sub>[Cr<sub>0.4</sub>Ti<sub>0.4</sub>]O<sub>2</sub> cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries, *Nature communications* 6(1) (2015) 6954.

[75] Q. Bai, L. Yang, H. Chen, Y. Mo, Computational studies of electrode materials in sodium-ion batteries, *Advanced energy materials* 8(17) (2018) 1702998.