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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

Green nanocomposites are advanced materials that integrate environmentally friendly 
and sustainable components, such as biopolymers or green-synthesized nanoparticles, 
to create functional nanomaterials with low toxicity and high eco-compatibility. These 
materials are increasingly used in environmental sensor technologies due to their 
enhanced sensitivity, stability, and sustainable synthesis routes. In smart grid systems, 
green nanocomposites play a crucial role by enabling real-time environmental 
monitoring with minimal environmental impact, supporting energy efficiency and 
renewable integration. Smart sensors provide accurate tracking of energy usage trends, 
enhance load distribution, and advance the sensible application of renewable energy 
resources. These sensors aid in cutting down on energy waste and by interacting with 
customers and enabling demand-response systems. Smart grids benefit from sensors 
made with green nanocomposites for dynamic monitoring of environmental 
parameters influencing energy generation and consumption. These sensors, embedded 
in smart home and grid infrastructure, optimize energy efficiency and renewable 
integration by providing precise data on pollution, temperature, and other conditions. 
Optimization algorithms in smart grids leverage this sensor data to reduce waste and 
enhance system reliability. This study demonstrates the role of green nanocomposites 
in environmental sensors of smart grid systems. 
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1. Introduction 

Green nanocomposites have advantages such as sustainability, 
low cost, eco-friendliness, and high performance that 
biodegradable, renewable, and environmentally benign materials, 
making them favorable for sustainable development. These 
nanocomposites typically have high mechanical strength, thermal 
stability, and other enhanced properties [1, 2]. Green synthesis of 
nanomaterials for electrochemical sensing is a rapidly growing 

research area that combines the excellent physicochemical 
properties of nanomaterials with environmentally friendly and 
cost-effective green synthesis methods [3, 4]. These green 
synthetic methods use biological materials such as plant extracts 
and microorganisms to reduce metal ions into nanomaterials 
without harsh chemicals. This results in biocompatible, 
nanocomposites with relatively high strength, stiffness, and low 
density, suitable for use in sensitive electroanalytical devices [5, 
6]. The green nanocomposites are crucial in advancing 
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environmentally responsible material science especially in energy 
devices like solar cells [7], batteries, and LEDs.  Green 
nanocomposites bridge advanced material science and 
environmental stewardship by employing sustainable 
manufacturing methods and enabling high-performance, eco-
friendly energy devices and sensors, addressing the urgent need to 
reduce ecological damage from conventional nanotech processes 
[8, 9]. For example, the conductive nanoparticles into insulating 
polymer matrices forms nanocomposites that exhibit a 
piezoresistive effect, which is highly useful for sensing 
applications [10].  

When the concentration of conductive nanoparticles reaches a 
critical level, called the percolation threshold, a continuous 
conductive network forms, leading to a significant increase in 
electrical conductivity. This percolation phenomenon is well 
documented and fundamental to the function of these sensors [11]. 
Eco-friendly synthesis of sensors, especially nanocomposite 
sensors, has become a prominent focus for practical environmental 
remediation in recent years. Sensors function as energy converters 
that detect physical, chemical, or mechanical changes in the 
environment and convert them into electrical or optical signals 
[12]. This mini review aims to include the use of green 
nanocomposites in environmental sensors and how they can be 
used in smart grid systems. 

 
2. Overview of green nanomaterials and green 
nanocomposites  

Nanomaterials have rapidly become integral across many 
sectors due to their unique size-dependent properties. They find 
overwhelming applications in electronics, sensors, and biomedical 
fields by enabling devices with enhanced sensitivities, tunable 
properties, and multifunctionality. Researchers constantly seek 
newer synthesis methods that allow more efficient, controlled 
preparation, which helps in fine-tuning nanomaterial properties for 
specific applications [12]. Nanocomposites, especially green 
nanocomposites, are widely used nanomaterials characterized by 
their sustainability, light weight, cost-effectiveness, and 
environmental friendliness. These green nanocomposites are 
primarily derived from plant fibers which serve as natural fillers. 
A unique feature of green nanocomposites is the ability to tailor 
material properties by selecting appropriate matrix-filler 
combinations and mixing them in suitable ratios. Such 
combinations provide customizable properties for various 
applications [13]. The synthesis technique selected for 
nanocomposites is crucial because different methods offer unique 
features that affect the properties and applications of the final 
material [14]. The design, production, application, and disposal of 
natural nanocomposites garner significant interest due to their 
environmental advantages. Natural nanocomposites typically 
involve renewable natural polymers like chitosan, chitin [15], 
starch (from corn, potato, yuca, etc.), glucose, cotton, cellulose and 
derivatives, natural fibers, and natural rubber. These materials 
emphasize green, environmentally friendly alternatives over 
traditional synthetic counterparts [16]. 

When these green nanomaterials are combined with other 
materials to form composites using eco-friendly synthesis routes, 
they are referred to as green nanocomposites. Such green 
nanocomposites reflect sustainability not only in their individual 
components but also in their overall production and application 
processes [17]. A nanocomposite is a multiphase solid material 
where at least one phase has dimensions under 100 nm or contains 
nanoscale structural repeats.  

It typically consists of a bulk matrix combined with nanoscale 
phases that differ in structural and chemical properties, leading to 

unique material characteristics [18]. Nanocomposites exhibit a 
broad range of enhanced properties including superior mechanical 
strength, electrical and thermal conductivity, optical clarity, 
electrochemical behavior, catalytic activity, and barrier 
performance against gases and moisture. These improvements 
result from the nanoscale fillers incorporated within the matrix, 
which create mechanisms like enhanced interfacial bonding, 
increased surface area, and tortuous paths that impede gas 
diffusion [19]. Various synthesis methods widely used and suitable 
for the preparation of nanocomposites. Nanocomposite, in general, 
can be classified into three broad categories namely (i) polymer 
matrix nanocomposites, (ii) ceramic matrix nanocomposites, and 
(iii) metal matrix nanocomposites [20]. 

 
3. Overview of environmental sensors 

Technological advancement, particularly in fields like the 
Internet of Things (IOTs) and various  communication methods 
have emerged,  and sensor technologies have also reached a 
developed level and are widely used [21]. The natural environment 
has been gradually polluted by events such as climate warming and 
pollution emissions, and the demands of modern human beings for 
life safety and quality of life conflict with the declining quality of 
the natural environment and natural resources. Ordinary 
environmental monitoring methods, such as physical deployment 
of monitors to conduct sampling, are described as cumbersome, 
inefficient, and costly [22]. Wireless network technology 
advancements combined with sensor miniaturization have enabled 
realistic and practical monitoring of the natural environment 
through wireless sensor networks. These networks consist of an 
array of small sensor nodes that collectively sense environmental 
parameters (such as humidity, temperature, pressure) and transmit 
the data wirelessly to a central server or data repository for real-
time or later analysis. operate by communicating among sensor 
nodes and forwarding collected data via a sink or gateway node 
connected to a server, often accessible over the internet [23]. 
Collected information on Sandia-developed sensor technologies 
applicable to monitoring contaminants including trace metals, 
radioisotopes, volatile organic compounds (VOCs), and biological 
pathogens [24]. Advanced science and technology play a crucial 
role in real-time environmental monitoring systems that measure 
air quality, water quality, and other vital indicators to control 
pollution levels and ensure the safety of humans and wildlife. Key 
technologies include IoT-enabled sensors, satellite-based remote 
sensing, artificial intelligence  (AI), and blockchain systems, which 
together enable continuous, automated data collection, processing, 
and predictive modeling for sustainable resource management 
[22]. 

3.1. Types of environmental sensors 

Environmental sensors are indeed connected devices capable 
of providing diverse types of information such as location, 
position, individual movements, and contextual elements [25]. 
These data can be compared with information collected from 
sensors embedded on or implanted in individuals to validate 
alarms, such as fall detection. However, their deployment raises 
significant ethical concerns primarily related to privacy and 
surveillance [25, 26]. The point about sensitivity is indeed critical 
for video capture sensors, especially when these sensors are used 
in robotic devices to interact with humans. Such sensors must be 
highly sensitive to accurately capture visual information and adapt 
to the context or needs of the person they are interacting with. This 
sensitivity enables the sensor to detect subtle changes and provide 
real-time data to the robotic system, allowing it to modify its 
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behavior or responses accordingly. Video capture sensors in 
robotic applications are often part of a larger sensory system that 
includes tactile, thermal, and motion sensors, enabling 
comprehensive interaction capabilities including adapting to 
human gestures, expressions, and environmental context [27]. 
Environmental sensors like air quality sensors, light sensors, and 
smoke detectors typically do not have the primary objective of 
monitoring individual health. However, the data these sensors 
collect can be cross-referenced with other data sources to produce 
potentially personalized health information and trigger alarms for 
health-related changes [28]. Table 1 lists the types of sensors and 
their characteristics. 

 
4. Green nanocomposite materials in environmental 
sensor technologies 

Nano sensors operate by monitoring physicochemical changes 
caused by the target analyte's interaction with the sensor surface, 
often leading to electrical, optical, or other transduced signals [36]. 
Nanosensors consist of a recognition component that enhances 
specificity and a signal transmission system that outputs electrical 
or optical signals, enabling real-time, sensitive, and selective 
pollutant detection [37]. Due to their nanoscale size and high 
surface-to-volume ratio, nanosensors have enhanced sensitivity, 
selectivity, and speed compared to conventional sensors [38]. 
These qualities allow nanosensors to detect single molecules and 
monitor various physical properties such as pressure, temperature, 
concentration, and more and find applications in diverse fields 
including medicine, environmental monitoring, pollution control, 
and pathogen detection, among others [12, 39]. Green 
nanomaterials have emerged as highly effective nanosensors in 
environmental monitoring  [40], enabling the sensitive detection 
and removal of various pollutants  such as toxic gases, heavy 
metals, and organic contaminants  even at extremely low 
concentrations ranging from nanomolar to sub-picomolar levels 
[41]. Nanowires and other nanomaterials revolutionized sensor 
creation starting in the early 2000s by enabling very sensitive and 
specific detection of chemical, biological, and physical parameters 
such as temperature and pressure [42]. Nanowires offer advantages 
like high surface-to-volume ratios and enhanced electrical 
properties that improve sensing performance. Their applications 
include chemical and biosensors capable of detecting extremely 
low concentrations of analytes and physical parameters with high 
precision [43]. The development of nanowire sensors has involved 
various materials (metallic, semiconducting, insulating) and 
fabrication methods, significantly advancing sensor technologies 
and enabling applications in diverse fields including 
environmental monitoring, healthcare, and industrial uses [44]. 
Au-based eco-friendly nanocomposites are recognized for their 
unique surface and electronic properties that make them highly 
promising for sensing applications, specifically in environmental 
monitoring and biomedical diagnostics [45].  These 

nanocomposites, when combined with biocompatible and 
biodegradable materials such as starch, enhance mechanical 
robustness, electrical conductivity, and flexibility, facilitating their 
use in wearable and transient electronics for sustainable 
environmental sensors [46].  For instance, starch-based 
nanocomposites reinforced with gold (Au), cadmium sulfide 
(CdS), or MXene exemplify transient electronics with improved 
mechanical and electrical performance, suitable for flexible 
sensors sensitive to movements or touch. Such materials contribute 
to the development of sustainable, eco-friendly sensor devices that 
meet the demands of durability, flexibility, and sensitivity [47]. 

Vinod Patil et al. [48] proposed a smart grid model design 
integrating renewable energy resources including solar panels, 
windmills, and hydraulic power plants, aiming to create energy-
efficient smart grid systems that reduce greenhouse gas emissions 
and enhance network lifetime. Other research groups have reported 
green synthesis of metal/polymer nanocomposite particles which 
have applications in catalytic reactions and potentially in smart 
materials for energy systems [49]. Green composites are used to 
enhance the performance of supercapacitors and lithium-ion 
batteries, which are crucial for balancing supply and demand in 
smart grids [50, 51]. Fig. 1 and 2 show the hardware and software 
used for the general block diagram of smart the experiment and the 
general block diagram of smart water quality monitoring system 
[52, 53].  

 
5. Smart grid relevance environmental sensors 

Smart sensors integrated into smart grid systems can enhance 
environmental monitoring by continuously tracking parameters 
such as temperature, humidity, and air quality, thereby enabling 
proactive and timely responses to environmental changes [54]. 
Safety applications such as detecting partial discharges in power 
devices are critical for preventing energy losses and enhancing grid 
reliability. Partial discharge detection helps identify early 
insulation defects in power equipment like transformers, cables, 
and switchgear, enabling timely maintenance interventions and 
avoiding catastrophic failures and reduces equipment failure rates, 
improves power supply stability, and supports preventive 
maintenance, thereby significantly enhancing the reliability and 
safety of power grids [55]. Intelligent resource management using 
fuzzy inference systems (FIS) demonstrates strong capability in 
optimizing energy consumption and enhancing user comfort. 
Studies have shown that fuzzy logic integrated with other 
techniques can optimize energy use in residential buildings by 
adjusting factors like lighting, heating, and cooling systems based 
on environmental and occupancy data. This leads to significant 
energy savings while maintaining or improving comfort levels for 
occupants [54]. The integration of AI within smart sensor systems 
thus amplifies benefits and is shaping the future of smart, 
connected environments with enhanced predictive, diagnostic, and 
security capabilities [56].  

Table 1 
Types of environmental sensors 

Sensor type Applications Measured parameter Ref. 
Temperature Weather stations, HVAC systems, agriculture Ambient temperature [29] 
Humidity Greenhouses, smart homes, industrial processes Relative humidity [24] 
Air Urban monitoring, indoor air quality, vehicles Pollutants (e.g., CO₂, PM2.5) [30] 
Pressure Meteorology, altimeters, aviation Atmospheric pressure [31] 
Light Smart lighting, solar tracking, photography Light intensity, UV index [31] 
Soil Precision farming, irrigation systems Volumetric water content [31] 
Rain Presence or amount of rainfall Weather stations, irrigation [32] 
Gas Industrial safety, leak detection, mining Specific gases (e.g., methane), CO2, NOx, SO2, O3, VOCs [33] 
UV Ultraviolet radiation levels Health monitoring, environmental studies [34] 
Sound Noise levels Noise pollution monitoring [35] 
Radiation Ionizing radiation Nuclear facilities, Ionizing radiation levels [24] 
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Fig. 1. Taxonomy diagram of general quality monitoring system. 

 
Fig. 2. Taxonomy diagram of water quality monitoring system. 

Smart grid sensors play a critical role in environmental 
sustainability by enabling real-time monitoring and optimization 
of energy flows, which reduces transmission losses and minimizes 
energy waste, thereby lowering carbon footprints [57]. These 
sensors also facilitate the integration of renewable energy 
sources like solar and wind by dynamically adjusting energy 
distribution to handle their variability, ensuring a stable and 
reliable supply while reducing dependence on fossil fuels. 
Additionally, smart grid sensors enhance demand response and 
load management, optimizing energy supply based on 
consumption patterns to avoid overproduction and energy waste. 
They empower consumers with real-time insights into their energy 
use, fostering more sustainable consumption behaviors [58]. 
Additionally, Smart grids play a crucial role in the seamless 
integration of renewable energy sources such as solar and wind 
into the electricity grid. By dynamically managing and adjusting 
energy distribution to accommodate the variability and 
intermittency inherent in these renewable sources, smart grids 
ensure a stable and reliable power supply. This reduces reliance on 
non-renewable resources and supports a more sustainable energy 
system [59]. Smart grid sensors significantly enhance demand 
response and load management capabilities by enabling real-time 
adjustment of energy supply based on consumption patterns. This 
real-time data monitoring allows the grid to optimize energy 
distribution, reducing overproduction and minimizing energy 
wastage, which results in more sustainable and efficient resource 
use [60]. These technologies empower consumers by providing 
them with real-time insights into their energy usage, encouraging 
informed decision-making and fostering sustainable consumption 

practices [59]. Therefore, smart grid sensors are essential to 
improve the resilience, efficiency, and reliability of power systems 
[59]. These sensors support technologies for real-time grid 
management, fault detection, energy optimization, smart metering 
for consumer engagement and conservation, and integration of 
renewable energy to enhance sustainability. Advances incorporate 
AI and IoT to enhance fault detection and optimization [61]. Smart 
grid technology enhances environmental sustainability by 
improving energy efficiency, facilitating renewable energy 
integration, and enabling consumer engagement [62]. The addition 
of intelligent sensors to smart grids is crucial as they provide real-
time monitoring and optimization of energy flows, helping reduce 
transmission losses and energy waste, thus lowering carbon 
emissions. These sensors also dynamically adjust energy 
distribution to accommodate the variability of renewable sources 
like solar and wind, which increases system efficiency and reduces 
reliance on fossil fuels. Moreover, they enable demand response 
and load management by adjusting supply based on consumption 
patterns, optimizing resource use, and empowering consumers 
with real-time energy usage insights to foster sustainable 
consumption habits. Through these mechanisms, smart grid 
sensors support reducing greenhouse gas emissions and water 
usage, advancing overall environmental sustainability efforts in 
energy systems [54].  

This impacts the energy sector is undergoing a significant 
transition from large-scale central production to decentralized, 
local energy generation primarily using renewable energy sources 
and distributed energy resources [63]. This shift aims to make the 
electric system more intelligent by integrating new energy 
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technologies, enabling more flexible, resilient, and sustainable 
energy management [64]. Decentralized energy production 
includes technologies such as rooftop solar panels, small wind 
turbines, battery energy storage, and microgrids, which reduce 
reliance on fossil fuels, transmission losses, and support grid 
decarbonization. The innovation and integration of smart 
technologies like IOT, smart inverters, and energy management 
systems are key to supporting this evolution toward smart grids 
and smart homes, aiming to optimize energy use and reduce the 
sector's environmental footprint [62]. 

 
6. Challenges and future directions 

Green nanocomposites for environmental sensors in smart grid 
systems indeed face multiple challenges in technical 
implementation, economic feasibility, and scalability. However, 
their future potential is promising with key future directions 
including integration of AI, innovations in green synthesis 
methods, improved material design, and decentralized control 
mechanisms to enhance sustainable and efficient smart grids [65]. 
Advancing green synthesis routes and eco-friendly approaches for 
producing sustainable nanomaterials and nanocomposites, 
including graphene and biopolymers, focuses on using 
environmentally benign, cost-effective, and sustainable materials 
and methods to minimize environmental impact [66, 67]. 

 
7. Conclusion 

Smart grid sensors are key enablers for a sustainable energy 
future. Their strategic deployment combined with AI integration 
can help meet energy demands while promoting long-term 
environmental and economic sustainability, especially as nations 
transition to greener power infrastructure. These sensors enhance 
environmental sustainability by improving renewable energy 
integration, reducing transmission losses, enabling real-time fault 
detection, optimizing load management, and promoting active 
consumer participation in energy saving. They reduce fossil fuel 
dependency and improve demand-response mechanisms to 
stabilize the energy supply and consumption. These sensors 
enhance environmental sustainability by improving renewable 
energy integration, reducing transmission losses, enabling real-
time fault detection, optimizing load management, and promoting 
active consumer participation in energy saving. They reduce fossil 
fuel dependency and improve demand-response mechanisms to 
stabilize the energy supply and consumption. Thus, environmental 
sensors in smart grids are critical for promoting energy 
conservation, integrating clean energy, ensuring system reliability, 
and supporting environmental monitoring and sustainability 
initiatives across urban and industrial settings. 
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