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ABSTRACT ARTICLE INFORMATION
This study offers a comprehensive analysis of metal additive manufacturing (AM), a Article History:
production technique that uses digital 3D models to directly construct intricate metallic Received 15 March 2024
components layer by layer. It discusses the key procedures in metal AM, such as Received in revised form 30 May 2024
directed energy deposition (DED), binder jetting (BJ), and powder bed fusion (PBF), Accepted 04 June 2024
emphasizing how they can create parts with complex geometries that are impossible
. . . . . " . Keywords:
to achieve with conventional manufacturing techniques. In addition to addressing 3-D printing
issues like anisotropy and joint flaws related to the process, the focus is on metal e

additive manufacturing's exceptional ability to produce components with complex
geometries and specific microstructures that traditional manufacturing cannot provide.
The paper also explores the significance of post-processing approaches for
performance enhancement and how process parameters influence the mechanical and
structural properties of the produced components. Applications in the industrial,
automotive, and medical fields highlight the technology's versatility and growing
market potential. By integrating digital design with functional metal components, this
synthesis aids in the design, optimization, and selection of suitable metal AM methods
for advanced metallic component manufacture.
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1. Introduction

The manufacturing technique known as AM, or 3D printing,
allows for creating items by printing one layer at a time under the
guidance of a digital 3D model [1-4]. Complex geometries that are
nearly impossible to build using traditional technologies may now
be manufactured because of this special feature. Because of this,
AM is a tool resource that allows designers to produce complicated
or bespoke models in a single step without being constrained by
traditional manufacturing constraints such as significant material
waste, the inability to build complex forms, or the requirement for
specialized tooling [5]. AM provides various benefits over
conventional production processes, such as increased structural
efficiency, geometric flexibility, customization [6], and lower
material use [2]. It is coupled with the opportunity for functionally
graded materials and prestressing, repair, and strengthening
prospects [6]. It also decreases or eliminates assembly time and
expense [7, 8]. Metals, ceramics, and polymers are just a few
materials that AM technology may work with [8-11]. Researchers
and companies are becoming more interested in metallic materials
[12]. Along with the aforementioned advantages, metal AM may
offer other environmental benefits, including less waste, improved
quality, lower emissions of pollutants, and the ability to produce
components on demand [9, 10]. Even though metal AM offers
significant advantages, only a small number of industries [13],
including dentistry [14], construction [6], and aerospace [15], are
now using metal AM technologies to their full potential. The
biomedical and industries now manufacture metal additives to
create highly customized or small-batch high-value end-use
products [16, 17]. AM methods encompass a range of procedures
that frequently involve an energy source, such as an electron beam
or laser. Then, AM methods are divided into directed deposition
and powder bed processes according to the kind of substrate
employed. AM procedures include, but are not restricted to, EBM,
DED, etc. The most common metallic materials used in AM are
alloys made of steel, aluminum, titanium, and nickel [2]. The
present status of metal additive manufacturing is authoritatively
summarized in this overview, which covers basic procedures,
materials, structural traits, and properties. It highlights how the
technology has the ability to completely transform manufacturing
by making sophisticated, high-performance metallic components
possible. However, it also points out the problems that still need to
be solved and the future lines of inquiry required to fully reap the
rewards of 3D printed metal parts in various sectors.

2. Additive manufacturing processes for metals

The most appropriate term for 3D printing or rapid prototyping
is AM. This technology is concerned with creating prototypes and
finished goods in any form or size that meet specifications [18].
Using liquid or semisolid paste, powder, and solid materials, this
new technique creates objects that may either be printed into their
final dimensions and shape or, if necessary, postprocessed to take
on their final shape [19, 20]. Utilizing traditional machining
techniques to manufacture 3D printed objects is known as post-
processing. AM can quickly catch market updates because of its
many applications, which include prototyping, printing end-user
items, and repairing components at a cheaper cost and time. This
offers excellent chances to get into the business [8, 21].

2.1. Powder bed fusion (PBF)

PBF techniques are used in most metal AM systems (Fig. 1).
Direct Metal Laser Sintering (DMLS), Electron Beam Melting

(EBM), Selective Laser Melting (SLM), and Direct Metal Laser
Melting (DMLM) are standard metal PBF techniques [22]. Heat is
used in all of these systems to fuse the powdered materials. The
variations depend on the powder materials and energy source [7].
For example, EBM employs an electron beam as its energy source,
whereas SLS, DMLS, and SLM use lasers [23]. Only metallic
components are produced using SLM and DMLS techniques
among these technologies [24]. The fundamental idea behind these
two technologies is often the same. Laser Metal Fusion (LMF),
another name for SLM, is mainly used for single-component
metals like aluminum, whereas DMLS is frequently used for metal
alloys like titanium and aluminum [25]. With the exception of the
fact that laser beams produce fragile metal layers and a uniform
melt pool, the DMLM method is pretty similar to the DMLS
technique. The main benefits of this method over DMLS are
reduced porosity and better surface quality [13]. In EBM
technology, a high-energy electron beam is used to fuse metal
powder together, instead of a laser in SLM printers. Owing to the
components, they may be stacked inside the build volume. EBM
technology is more productive than SLM systems. However,
owing to the high energy density and quick heat cycles, the AM
products still have greater degrees of distortion and residual
stresses [26].
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Fig. 1. Schematic representation of PBF techniques [27].

2.2. Directed energy deposition (DED)

Methods often used to repair or add extra material to existing
components, DED is a more sophisticated additive printing
technique [28]. A nozzle on a multi-axis arm of a standard DED
machine drops molten material onto a designated surface, where it
hardens. A laser, electron beam, or plasma arc heat and melt the
material. The thickness of the layer is the distance at which the
item is lowered. Until every layer has been deposited, these
procedures are repeated [14]. From an energy standpoint, DED
may be divided into two primary groups: thermal energy and cold
spray [29]. Kinetic energy, another name for cold spray, is the
process of adding material in the form of small particles to a
substrate that has enough kinetic energy to form a dense layer or
coating [30]. Using a laser beam, electron beam, plasma, or arc,
the other class of DED devices concentrates on thermal energy.
This team adds the wire or powder feedstock material to the
construction platform one at a time after selectively melting it [29].
Metal component fabrication is the main application for DED
technology [31]. In order to print at greater deposition rates with
lesser resolution, this AM group uses robotic welding methods
[32]. Standard DED procedures include Lase Clading (LC), Laser-
Engineered Net Shaping (LENS), Wire-based Joule printing,
Electron Beam Additive Manufacturing (EBEAM), Wire and Arc
Additive Manufacturing (WAAM), and Hybrid Systems (HS) [33].
Table 1 summarizes typical DED procedures in this comparison
table.
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Table 1
Common DED processes.
Process Energy source Key characteristics Advantages Disadvantages Ref.
EBEAM  Electron beam Uses focused electron beam in High deposition rate; suitable for Requires vacuum, high [33]
vacuum, high deposition rates, reactive materials, low residual stress equipment cost, and limited
and low residual stress material diversity
WAAM Electric arc Wire-based DED using arc High production rate (up to 5 kg/h); Lower precision; requires [34]
(GMAW) welding, high material utilization, large build volume; low wire cost; post-machining; limited to
and large build volume mechanical properties comparable to wire feedstock
forged parts
LENS High-power laser Powder-based laser DED, high High precision, versatile material High powder cost; powder [35]
precision; hermetically sealed argon  options; suitable for repairs and handling challenges
environment to prevent oxidation adding features.
LC Laser Laser melts feedstock to build or High precision, good metallurgical Limited build size; slower [36]
repair surface layers; often used bonding, suitable for surface than wire arc methods
for coating or repair enhancement
HS Combination (laser +  Combines different heat sources Improved control over microstructure Complex equipment, higher ~ [37]

machining or arc)+ and feedstock types to optimize

deposition

and properties; flexible feedstock cost

2.3. Binder jetting (BJ)

In comparison to metal PBF, BJ technology requires no support
structures. It produces far more accurate objects by printing the
desired metal parts in layers using metal powder and a liquid-state
binder [38], as shown in Fig. 2. The binder droplets consolidate the
powdered materials within and between sliced layers [13].

In addition to being an inert method, BJ offers many benefits,
including the flexibility to employ a variety of materials like metal,
polymer, and and a considerable number of
powder/binder combinations [14].
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Fig. 2. Schematic representation of BJ process [39].

3. Structural characteristics of 3D-printed metals

The AM technique, which constructs components layer by
layer, significantly impacts the unique structural properties of 3D-
printed metals. These traits impact their overall performance,
microstructure, and mechanical qualities.

3.1. Microstructure properties

Anisotropic microstructures are produced when directional
heat removal causes grains in techniques like as SLM and electron
beam powder bed fusion (E-PBF) to elongate along the build
direction. For instance, SLM 316L stainless steel has elongated
austenitic grains around 10 pm wide to improve mechanical
strength. These grains are far finer than their traditional wrought
or cast counterparts [40, 41].

Another critical factor is powder particle size; coarse powders
encourage equiaxed fine grains, which enhance isotropy and
mechanical qualities like strength and ductility, whereas fine
powders often result in coarse-columnar grains [42].

3.2. Mechanical properties

Defects affect mechanical qualities, with porosity and surface
quality being essential variables. Various approaches of lowering

porosity have been put forth [43]. For instance, penetrating the
sintered body with vitreous materials, applying cold/hot isostatic
pressure on the green body, introducing dopants or a viscous
liquid-forming phase, and selecting ceramic powders with an
appropriate granulometric distribution [44, 45].

4. Applications of metallic 3D-printing

The capacity of metallic 3D printing to create intricate
geometries, bespoke parts, and robust yet lightweight components
make it useful in a variety of industries, including automotive and
medical and etc.

4.1. Automotive parts

Because it may lower the research, production, and product
costs of automotive components, AM technology is a valuable tool
in this sector [46, 47]. It is especially intriguing for racing vehicles,
where lightweight metals such titanium and aluminum and
composites are utilized to create extremely complex structures,
because it enables the production of tiny amounts of structural and
functional pieces [46].

4.2. Medical devices

Recent advances in the fields of biomaterials, biological
sciences, and biomedicine have increased the use of AM
techniques. Customization is important in this field, and AM
enables the production of a wide range of products with specific
properties and shapes that meet the needs of the patient, such as
drug delivery systems, medical devices, tissue scaffolds,
diagnostic platforms, orthopedic and dental implants, and artificial
organs [48]. In recent years, biofabrication through AM has
emerged as a new alternative to fabricate tissues [49, 50]. A metal
AM orthopedic device that is sold commercially is seen in Fig. 3a.

()

(b)

Fig. 3. Parts made with additive manufacturing in dentistry and medicine:
(a) an orthopedic device made of titanium alloy, and (b) a porous titanium
spinal implant [13].
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Another illustration is the Titanium AM spinal cage
manufactured by the US-based Next Spine (Fig. 3b). This firm
claims that when people age, have spinal malignancies, or
experience trauma, spine surgery is becoming increasingly
prevalent [51]. Custom orthopedic implants that are based on
precise bone structure capture are another example. Based on a CT
scan, Harrysson et al. [52] created integrated implants. They then
used EBM or DMLS technologies to construct the unique
implants, which were made of Ti6AI4V.

5. Challenges in metal additive manufacturing

Even while AM was developed to create prototypes quickly, it
may also be used to create new items with complicated geometric
designs by removing design and production limitations [53]. In
order to revolutionize product lifecycle performance, AM is
currently expanding quickly into a variety of industrial
applications, from flexible design optimization to functional
improvement [54].

This inevitably brings with it more cross-disciplinary and case-
dependent research challenges, such as function-specific product
design and simulation tools, high-quality cross-scale part
fabrication, in-process monitoring and effective control, and
dependable product lifecycle management. Resolving these
challenges will increase fundamental research and provide tangible
benefits to industries [1].

5.1. Material limitations

Although the list of metals and alloys that are now acceptable
for AM is small, the number of materials for metal AM
technologies is growing. Stainless steel, gold, silver, Inconel,
copper, titanium alloys, nickel-based superalloys, tool steels,
aluminum alloys, platinum, palladium, and tantalum are just a few
of the metal materials available to designers today [55, 56]. Since
there aren't many metal materials available for AM systems,
research and development are working to increase the number of
materials and broaden the use of existing metal AM processes.
High-entropy alloys, magnetic alloys, bulk metallic glasses
(BMGQG), functionally graded materials (FGM), new metal
composite structures, and nano-architected metals are a few
examples of the cutting-edge research being done in these areas
[13].

5.2. Process optimization

The thickness of each printed layer is determined by the AM
technique, processing conditions, and raw material characteristics
[57-59]. The thickness of each printed layer is affected by the
following factors: material jetting techniques produce the finest
layer thickness (= 0.02 mm) due to the small jetted droplets;
powder bed fusion and vat polymerization origin lower layer
thicknesses (= 0.1 mm) because of their ability to precisely focus
the energy beam radius; and powder bed AM produces lower
surface quality than the other AM techniques because of the
presence of large and partially melted powder particles on the
printed pieces' surfaces [14].

5.3. Design constraints

Because of residual stresses, microstructural features, and
relatively high surface roughness, AM processes have an impact
on fatigue and fracture strength even though they provide
previously unheard-of geometrical design freedom that can lead to
significant weight reductions in components [60]. This is caused

by flaws, distortions, anisotropy, and stress concentration effects,
the impacts of which require further research [1].

6. Conclusion

Investigating 3-D printing for metallic components reveals a
revolutionary approach to manufacturing that enables the
production of intricate geometries, unique structures, and material
properties that are unattainable with conventional techniques.
Technologies for metal additive manufacturing, such as PBF,
DED, and BJ, offer several advantages, including high accuracy,
material efficiency, and design flexibility, which are driving
innovation in the automotive, aerospace, and healthcare industries.
Continuous advancements in process control and defect detection
are enhancing part quality and reliability despite challenges,
including high costs, size limitations, and the need for post-
processing. Metal 3D printing is emerging as a complementary and
increasingly vital technology in modern manufacturing due to its
ability to produce near-net-shape products with superior
mechanical and thermal properties, as well as environmental
benefits like reduced waste and energy consumption. The potential
of metal additive manufacturing to transform production and
unlock new opportunities in the engineering and biomedical fields
will be further harnessed by future research focused on material
discovery, process optimization, and application-specific
solutions.
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