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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

Biosensors are a fundamental component of point-of-care diagnostic technologies, 
which are essential for early detection and real-time health monitoring. They play a 
vital role in improving healthcare outcomes and making a significant societal impact 
by facilitating rapid diagnostics and disease management. This review explores the 
fundamentals of biosensors, including their operational principles, key components, 
and mechanisms, as well as the use of composite materials and their applications in 
disease detection. Furthermore, it discusses important performance metrics such as 
sensitivity, specificity, stability, and reproducibility. 
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1. Introduction 

Point-of-care (POC) diagnostics enable early detection and 
real-time health monitoring, crucial for improving treatment 
outcomes [1-4]. Biosensors significantly contribute to this by 
supporting rapid, on-site disease detection and monitoring disease 
progression, ultimately enhancing quality of life [5-8]. The 
demand for biosensing systems that reliably detect physiological 
signals and biomarkers, with biocompatible surfaces for safe 
device–human interaction, drives ongoing innovation in sensing 

materials, strategies, and device structures [9]. Biosensors are 
compact devices that allow in situ analysis and POC testing, 
transforming biological responses into electrical signals [1]. They 
eliminate the need for traditional laboratory methods, offering 
benefits such as low cost, speed, and reliability. Advances in 
nanobiotechnology have enhanced biosensor capabilities, enabling 
more straightforward alternatives to complex techniques like CT, 
RT-PCR, ELISA, and lateral flow assays [10, 11]. A biosensor 
integrates a biological recognition element, such as DNA, 
enzymes, antibodies, or cells with a transducer that can be 
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electrochemical, optical, or mechanical [12]. These sensors are 
vital for early disease detection, monitoring health signals, and 
assessing treatment effectiveness [13]. Recent progress has seen 
significant improvements in transducing materials, device 
architecture, and miniaturization, though challenges remain, 
especially for wearable and implantable devices that interface 
seamlessly with soft tissues [14].  

Therefore, effective healthcare increasingly relies on 
innovative, real-time sensing technologies capable of translating 
biological and chemical signals into measurable outputs [15, 16]. 
This review covers the basics of biosensors, working principles, 
core components, composite materials and their applications in 
detecting infectious diseases, cancer biomarkers, metabolic and 
chronic illnesses, along with discussions on performance and 
ongoing challenges. 

 
2. Fundamentals of biosensors 

Biosensors are devices designed to identify specific biological 
markers, such as proteins, DNA, RNA, or cells, and convert their 
interactions into measurable electrical signals for digital output 
[17]. They typically comprise biological components like nucleic 
acids, enzymes, cell receptors, tissues, proteins, or engineered 
molecules such as antibodies and aptamers, paired with physical 
or chemical transducers, including optical, electrical, piezoelectric, 
or electrochemical elements within a compact system [10, 18]. 

2.1. Key components 

A biosensor integrates analytes, bioreceptors, transducers, and 
output systems to quantify markers like cancer indicators. These 
analytical tools process biological samples using specialized 
detecting molecules in conjunction with electronic sensors and 

transducers to gather relevant information [17]. Fig. 1. illustrates 
key elements and selected parts of a typical biosensor. 

2.2. Working principles 

Development of biosensors depends on the target analytes such 
as cancer or immune markers, or genetic material found in 
biological samples [19]. A typical biosensor includes a) 
bioreceptors that selectively bind the analyte, b) an interface where 
biological recognition occurs, generating a signal, c) a transducer 
that converts this signal into an electronic form, which is amplified 
and processed by circuitry and software, then d) presented via a 
display or interface for the user [9]. Biosensors can analyze a range 
of samples, including bodily fluids, food, cell cultures, or 
environmental samples [17].  

2.3. Types of biosensors 

Classification varies based on the types of bioreceptors and 
transducers used, with immobilization strategies for biorecognition 
components on the transducer surface being essential [5]. Overall, 
biosensors can be classified into three groups i.e., based on 1) 
receptor type e.g., biocatalytic (enzymes), immunological 
(antibodies), or nucleic acid-based (DNA) 2), transduction method 
e.g., electrochemical, optical, piezoelectric, or thermal and 3) 
application field e.g., medical, environmental, or wearable devices 
[10, 18, 20]. Commercial biosensors are also categorized as 
laboratory-based or portable. All biosensors require a stable 
interface to ensure reliable and high-performance sensing [20]. 
Fig. 2 highlights the flow from analyte input to digital output, 
involving molecules such as proteins, DNA, enzymes, and 
antibodies, with transducers categorized as optical, 
electrochemical, piezoelectric, or thermal depending on their 
detection mechanisms and transducer systems [10, 17, 18]. 

 

Fig. 1. Key elements and selected parts of a typical biosensor [9]. 

 

Fig. 2. Overview of the biosensor device workflow. 
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2.3.1. Types of biosensors based on transduction 
method 

Optical Biosensors detect interactions between 
microorganisms and target analytes by measuring photons such as 
luminescence, fluorescence, or color changes, in UV, visible, or 
near-infrared ranges, rather than electrons [21]. Electrochemical 
Biosensors rely on redox reactions, measuring changes in current, 
voltage, or other parameters driven by electron transfer, with 
electroactive materials playing a key role [13]. 

Piezoelectric Biosensors measure variations in resonant 
frequency of piezoelectric crystals caused by mass changes during 
biochemical interactions, like antibody-antigen binding or DNA 
hybridization. They include devices like quartz crystal 
microbalances and surface acoustic wave sensors, which translate 
mechanical deformations into electrical signals. When external 
forces, such as blood pressure, deform the crystal, electric dipoles 
polarize, generating measurable currents proportional to the 
applied pressure, used in applications like bacterial lysis 
monitoring [22-25]. 

Thermal Biosensors detect heat produced or absorbed during 
biochemical reactions. They use temperature changes, measured 
by sensitive thermistors or calorimetric devices, to infer reaction 
dynamics. These sensors often employ flow injection techniques 
with immobilized enzymes and differential temperature 
measurement, offering high stability and affordability, though they 
have historically faced challenges like sensitivity issues [26-29]. 

Each type provides unique advantages for detecting biological 
interactions, offering diverse tools for medical diagnostics, 
environmental monitoring, and microbiology research [20]. 

 
3. Composite materials in biosensors 

Nanomaterials, polymers (including conducting polymers and 
biopolymers), and their combinations are commonly used in 
biosensor interfaces [30]. Advances include monolayer 
membranes and 3D structures, with growing applications of 
nanocomposites. Biosensors are versatile tools in fields like food 
safety, defense, environmental monitoring, and healthcare [20, 31, 
32]. Conducting polymers (ICPs) and their composites are 
particularly valued for their biocompatibility, efficient electron 
transfer, and ability to immobilize biomolecules such as glucose, 
DNA, cholesterol, aptamers, and cancer cells [33, 34]. 

3.1. Types of composites (polymer-, metal-, and carbon-
based) 

Composites in biosensors can be broadly categorized into 
several types. Polymer-based composites play a crucial role, with 
conductive polymers often used to coat electrodes or immobilize 
receptors [33], while biopolymers such as chitosan, agarose [20, 
35], and hydrogels provide biocompatible matrices that facilitate 
immobilization of biomolecules and enable efficient analyte 
diffusion. Hydrogels, which are water-rich networks, can be 
functionalized with nanoparticles or biomolecules to further 
enhance sensor performance [14]. Inorganic materials like metal 
oxides, including CuO, NiO, Fe₂O₃, and TiO₂, are valued for their 
catalytic activity and electrical properties, making them effective 
electrocatalysts in biosensing applications [12]. Metal-organic 
frameworks (MOFs), characterized by their crystalline and porous 
nature, offer high stability, tunability, and functionalization 
capabilities, making them ideal for the sensitive and selective 
detection of biomedical analytes through various methods such as 
electrochemical, fluorescence, or colorimetric assays [36]. Carbon 
nanomaterials, especially carbon nanotubes (CNTs) and graphene, 

provide exceptional electrical and mechanical properties; CNTs 
are often employed in diagnostics and drug delivery, whereas 
graphene enables highly sensitive detection of volatile organic 
compounds (VOCs) related to disease diagnosis [12]. The 
integration of nanomaterials like graphene with polymers or 
biomolecules has significantly improved biosensors by enhancing 
their sensitivity, lowering detection limits, and increasing 
selectivity [1]. For example, in research by Villa et al., a carbon 
nanotube-based immunosensor was successfully used to detect 
rheumatoid arthritis antibodies in serum, demonstrating the 
potential of these composite materials in advanced biosensing 
technologies [37]. 

Another study highlighted that incorporating graphene, either 
alone or in composites, enhances biosensor performance by 
extending dynamic ranges, lowering detection limits, and 
improving selectivity and miniaturization [38]. Furthermore, 
recent research focused on composites of conducting polymers 
(CPs) and graphene, which combine their exceptional electrical, 
mechanical, and chemical properties, leading to increased interest 
and application in advanced sensor design [39]. Fig. 3 
demonstrates the diagram of hydrogel-based composites used for 
health monitoring and disease diagnosis. 

 

Fig. 3. Diagram of hydrogel-based composites used for health monitoring 
and disease diagnosis [14]. 

 
4. Fabrication techniques 

The fabrication of affordable, flexible biosensors using organic 
electronics and high-throughput printing techniques offers 
significant advantages for chemical and biological detection. 
Advances in organic materials and synthesis have improved 
sensitivity, stability, and specificity, enabling detection of a wide 
range of analytes [40]. A key step in biosensor development is 
depositing (nano)materials onto conductive electrodes to enhance 
performance by increasing surface area, supporting enzyme 
immobilization, and boosting catalytic and bioaffinity properties 
[41]. 

Microfluidic devices benefit from their high surface-to-volume 
ratio, enabling efficient fluid management, reduced reaction 
volumes, and precise temperature control, all at low cost [42]. 
Cutting-edge printing and deposition methods are transforming 
biosensor manufacturing by increasing throughput, miniaturizing 
features, and lowering costs. Techniques like inkjet, screen, 
microcontact, gravure, lithography, plasma modification, and laser 
printing are emerging as effective tools for patterning 
biomolecules and materials at micro- and nano-scales, paving the 
way for scalable, high-performance biodevices [43]. Fig. 4 shows 
the different fabrication methods employed in creating 
miniaturized microfluidic biosensors. 
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Fig. 4. Different fabrication methods employed in creating biosensors. 

 
5. Applications in disease detection 

Biosensors have broad applications in disease detection, 
exemplified by rapid tests for COVID-19, home pregnancy kits, 
cancer markers, pathogen identification, and glucose monitoring. 
They are vital in disease management, food security, and 
environmental safety due to their high specificity, portability, and 
low cost [5, 15]. Different applications of biosensors are shown in 
Fig. 5. 

 

Fig. 5. Different applications of biosensors. 

5.1. Detection of infectious and metabolic diseases 

In infectious disease detection, especially for COVID-19, 
biosensors, particularly electrochemical ones based on conducting 
polymers, offer promising alternatives to traditional methods like 
PCR and CT scans [44]. These biosensors are advantageous 
because they are rapid, sensitive, and suitable for point-of-care and 
home use, although challenges remain regarding their stability and 
interaction with biomarkers [17]. Studies show they can detect 
various COVID-19 biomarkers such as viral RNA, proteins, and 
whole viruses [44]. 

For metabolic and chronic diseases, breath analysis and VOC 
detection provide non-invasive diagnostic tools. Recent research 
employs molecularly imprinted polymers and nanostructured 
electrodes to detect viral proteins like SARS-CoV-2 with high 
sensitivity and specificity, facilitating rapid virus identification [1]. 
Similar approaches are used to monitor immune responses, such as 
detecting antibodies against COVID-19 [45]. 

In diabetes management, biosensors measuring biomarkers like 
glycated albumin complement traditional glucose tests, especially 
when HbA1c results are unreliable. Bimetallic nanomaterial-based 
biosensors on microelectrodes enable sensitive, broad-range 
detection of diabetes biomarkers [46]. 

Additionally, biosensors are being developed for infectious 
diseases such as Zika virus, where rapid, low-cost electrical 
biosensors utilizing aptamers and advanced flow techniques can 
detect viral proteins within minutes, significantly enhancing 
diagnostic speed and accuracy [47]. 

Baradoke et al. developed an electrochemical sensor for SARS-
CoV-2 antibodies using gold nanoparticles on screen-printed 
electrodes with immobilized Spike protein. It offered rapid 
detection with a limit of 2 ng/mL, providing an effective tool for 
monitoring immune response to COVID-19 [48]. 

5.2. Cancer biomarkers 

In cancer diagnostics, biosensors enable early detection by 
identifying biomarkers like microRNA-21, which is overexpressed 
in many cancers. Innovative paper-based electrochemical 
biosensors using gold inkjet printing are cost-effective and capable 
of detecting miR-21 at very low concentrations, making them 
suitable for resource-limited settings. Biosensors also hold 
potential in monitoring cancer progression, metastasis, and the 
effectiveness of treatments, offering quicker diagnostics and real-
time disease management [17, 49-52]. 

 
6. Performance evaluation and challenges 

Biosensors, including piezoelectric and electrochemical types, 
are highly sensitive and selective devices that utilize materials like 
piezoelectric crystals and conducting polymers (CPs) [24, 25, 33]. 
Piezoelectric mechanisms show promise as alternative signal 
transduction methods if issues like non-specific binding and 
sensitivity are addressed. Conversely, biorecognition molecules 
such as antibodies, DNA, or aptamers, often face hurdles related to 
stability, nonspecific adsorption, and small analyte detection, 
which limit their widespread commercial use despite extensive 
research [12]. Moreover, electrochemical biosensors, especially 
when combined with nanomaterials, offer high sensitivity, 
simplicity, and low cost. However, challenges such as high 
detection limits and inconsistent reproducibility remain. Recent 
advancements include wearable glucose sensors and sweat 
analysis patches [11]. Recent innovations involve combining CPs 
with graphene-based materials (CP/GE composites), which 
enhance flexibility, surface area, stability, and recognition capacity 
[44]. High-sensitivity DNA biosensors based on graphene field-
effect transistors (GFETs) have demonstrated scalability and 
reproducibility, with potential for rapid, inexpensive DNA 
hybridization and sequencing, advancing genomics and diagnostic 
applications [53]. 

Notably, Ping et al. developed a scalable, highly reproducible 
(>90%) process for fabricating label-free DNA biosensors using 
GFETs functionalized with single-stranded DNA. The sensor's 
Dirac point voltage shifted systematically with target DNA 
concentration, with a detection limit of 1 fM for 60-base DNA. 
Tests with mismatched DNA confirmed that mismatch position 
affects hybridization strength, highlighting the potential for fast, 
cost-effective, and precise DNA detection and sequencing [53]. 

Overall, key challenges involve effectively capturing 
biorecognition signals and converting them into measurable 
outputs such as electrical, optical, or acoustic signals. Improving 
transducer performance by increasing sensitivity, response speed, 
reproducibility, and detection limits (down to single molecules) is 
essential. Miniaturization via micro- and nano-fabrication 
techniques is also crucial, as nanomaterials provide high surface 
area and conductivity [12, 54]. 

In the third generation, it was shown that enzymes are 
integrated directly into the sensing element, enabling electron 
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transfer without mediators, which reduces costs and allows 
repeated measurements [11]. Next-generation biosensors are 
crucial for early disease detection and point-of-care diagnostics 
due to their portability, rapid results, and multiplexing abilities 
[53]. 

 
7. Conclusion 

Biosensors are emerging as valuable tools in disease 
management, particularly offering great promise for cancer 
detection and monitoring. They can provide rapid, precise 
measurements of cancer cells and metastasis, evaluate the 
effectiveness of anticancer treatments, analyze cancer biomarkers, 
and assess drug performance at specific target sites. Overall, 
biosensors aim to shorten diagnostic times and track therapeutic 
outcomes. Developing scalable, highly sensitive, and selective all-
electronic biosensors is essential for advancing research and 
practical applications in disease and pathogen detection. 
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