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guarantee that these materials meet the demands of various industries, including
construction, automotive, and aerospace. These composites offer lightweight and cost-
effective alternatives to traditional materials, simultaneously reducing carbon
footprints by incorporating renewable resources and minimizing waste. While
preserving performance and cost-effectiveness, the research underscores that eco-
friendly composites hold the potential to transform engineering practices and promote
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1. Introduction

In the past few years, a growing global awareness has inspired
people to take steps to protect nature from numerous threats. These
include air pollution, which exacerbates global warming, water
contamination, and the erosion of natural resources [1].
Consequently, many individuals are pushing for a new kind of
development and conduct through various regulations designed to
increase the use of alternative fuels. This initiative has given rise
to the idea of sustainable development [2-4]. Eco-friendly
sustainable composites have been a popular trend for materials
science innovation in recent years [5, 6].

New materials based on renewable resources are being
developed due to the excessive consumption of petroleum-based
products and the growing awareness of sustainable development.
The latest environmental regulations have created innovative,
environmentally friendly materials for various building,
automotive, and packaging uses [6-9]. The main objective of
sustainable development is to replace the current synthetic
petroleum-based composites with natural resources and help
achieve environmental goals such as lowering greenhouse gas
emissions, reducing carbon emissions, and lessening the effects of
climate change [6, 10]. Due to the increased demand for
sustainable engineering solutions, eco-friendly composites are at
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the forefront of contemporary material innovation [11]. These
cutting-edge materials combine excellent performance with a
lower environmental effect, making them a possible substitute for
more conventional counterparts like metals and non-renewable
polymers [12, 13].

To solve issues throughout their whole lifecycle from
manufacture to disposal eco-friendly composites are designed to
reduce carbon emissions, use recycled or renewable feedstocks,
and adhere to the principles of the circular economy [14, 15].
These materials are gradually replacing more traditional solutions
in construction, automotive, and aerospace sectors because of their
durability,

low weight, and potential to use less energy while in operation
[16, 17]. However, obstacles, including energy-intensive
production procedures, some composites' limited capacity for
recycling, and the environmental costs of end-of-life management,
must be overcome to achieve real sustainability [5, 6, 14].

This study investigates the creation of environmentally friendly
composites to achieve sustainable engineering methods. It looks at
life cycle analyses, new material developments, and strategies to
increase resource efficiency and recyclability to meet global
sustainability —targets. While encouraging environmental
stewardship, eco-friendly composites have the potential to
transform contemporary engineering by tackling these issues.
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2. Types of eco-friendly composites

Three categories of eco-friendly composites bio-based,
recycled, and natural fiber are made of various cutting-edge
materials intended to lessen their adverse environmental effects. A
synopsis of each is provided below. In multiple applications, these
composites enrich performance and cost-effectiveness and provide
environmental advantages.

2.1. Bio-based composites

Biocomposite materials, which are made from plant fibers and
other renewable resources, are gradually taking the place of
conventional synthetic and non-biodegradable materials in a
variety of lightweight applications. To create sustainable, eco-
friendly biocomposites, natural fibers like flax, hemp, jute, sisal,
wood, cotton, bamboo, silk, wool, feathers, and so forth are
necessary [18].

These renewable plant and animal fibers are inexpensive,
recyclable, biodegradable, and generate minimal non-recyclable
trash. They also have a low carbon footprint. These materials can
be used as fillers in the polymer matrix to produce ecologically
friendly, sustainable biocomposites suitable for various bulk
industrial, biomedical, and engineering uses [19].

Natural fillers develop the mechanical properties of green
composites, such as strength and stiffness, while preserving their
lightweight, thermally stable, and sustainable attributes. Because
of their exceptional performance, renewability, affordability, and
environmental sociability, natural fillers are critical in producing
maintainable green composites, expressively contributing to a
more maintainable and greener future [20].

Furthermore, advanced additive manufacturing, which
offerings potential solutions for preparation, processing, and
manufacturing, is made probable by these justifiable composites
[21]. Additionally, adding additive manufacturing affects various
engineering uses [22].

2.2. Recycled composites

Waste material processing is a laborious issue that requires a
lot of resources, which reduces its profitability [23]. Several
experimental studies have been conducted to determine whether it
is feasible to produce wood-plastic composites (WPC) using both
waste plastic and waste wood [24].

One crucial factor that should be considered while creating a
new WPC is the potential to reuse the discarded WPC. Recycling
generally results in material savings but degrades the material's
mechanical, chemical, and physical qualities [25]. More studies
should be conducted to determine whether recycling waste WPC
as a raw material is feasible. The breakdown of old wood,
particularly at high temperatures (about 200 °C), where toxic
volatiles are released, is a important barrier to WPC recycling [26].

To produce WPC using three distinct waste materials, such as
matrix and thermoplastics, cedar wood sawdust (SD) has been
utilized as reinforcement. Specifically HDPE, PET, and PP [24].
As a waste by-product of woodworking activities like planning,
routing, drilling, sanding, and sawing, SD is inexpensive, clean,
and easily accessible. Using sawdust minimizes the amount of
waste in landfills by giving regenerated wood fibers a new purpose
[24]. SD is widely used as a filler with various polymers. Sawdust
is an environmentally friendly method of reinforcing recycled
polystyrene composite [27].

According to scientific research, natural fiber-reinforced
composites, or NFCs, have gained international recognition for

their environmentally beneficial and renewable qualities [28].
Compared to traditional materials, NFCs provide several
advantages [29].

Natural fibers' high specific strength, stiffness, low density, and
exceptional thermal insulation qualities make them valuable in
various industries, including consumer goods, construction,
automotive, and packaging [16, 30]. Since these fibers come from
cellulose-based, botanical, and zoological sources, they are also
sustainable resources that lessen reliance on non-renewable
alternatives [31].

Since these natural fibers are often hydrophilic, they have
difficulty adhering to hydrophobic materials, mainly at high
temperatures [32]. However, this can be quickly resolved by
applying several surface modification techniques to the fibers [33].

Examining these composites' properties, manufacturing
methods, applications, and sustainability will raise public
awareness and acceptance of these materials as viable and
sustainable alternatives [34].

Researchers are investigating traditional natural fibers such as
sisal, hemp, flax, jute, kenaf, abaca, pineapple leaf fiber, ramie
coir, bamboo, bagasse, and wheat straw. These natural fibers have
different chemical compositions, affecting their use [35]. The
properties and applications of some of these natural fibers are
presented in Fig. 1 and Table 1 shows images of some natural
fibers.

3. Manufacturing processes

To solve the environmental issues related to conventional
composite materials, eco-friendly composite production
techniques are changing. These procedures use sustainable
materials and methods to lower waste, energy use, and
environmental effects. Below are these procedures:

3.1. Green manufacturing techniques

Various production techniques, such as extrusion, compression
moulding, resin transfer moulding, extrusion, and thermoforming,
(Fig. 2) are used to create green composites. Below, a few of these
techniques will be discussed. The kind and process of material
being treated, part's hardness, the complexity of its design,
production resources, and funding needs are usually considered
when selecting manufacturing procedures [70].

3.1.1. Pultrusion

Pultrusion is a process for creating composite profiles that
involve impregnating the fiber with a thermosetting matrix and
then drawing it through a heated die. In general, symmetric
sectional profiles with notable volume rates can be produced by
continuously using this fabrication technique. There are three
primary zones in pultrusion, which are tugging, pressure, and heat
transfer zones [71].

The final cross-sectional shape of the die is determined by the
output of drawing the fiber tapes using a thermosetting polymer
resin solution. Composites containing reinforcing elements
composed of fibers such as glass or carbon or natural fibers like
hemp, jute, and kenaf can be created using the pultrusion process
[72,73].

Depending on the die's geometry, the products are often shaped
like bars or poles. The final harvests are cut to the appropriate
distance, and the die also requires composite curing. This
technique's primary advantage is that it may continuously generate
mechanisms with a steady cross-sectional plan [74].
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Table 1

Jute

Flax

Fig. 1. Different types of natural fibers [36].

Properties and applications of natural fibers

Natural fibers Properties Applications References

Sisal (Agave 1.5 to 2 meters tall, favorable sound and thermal Automotive industry, shipping, civil construction, [37-41]

sisalana) insulation elevator steel wire cables, agricultural twine

Hemp (Cannabis 1.2-4.5m in length and 2 cm in diameter, sustainability Automotive, packaging, rope, textiles, garden mulch, [42-47]

sativa) and biodegradability building materials and animal bedding

Flax (Linum 90 cm length and diameter of 12—16pum. Furniture materials, textiles, bed sheets, linen, interior [48-50]

usitatissimum) decoration accessories

Jute 15-20 cm length, acoustic and thermal insulation Textile products, packaging, construction, automobile  [51-53]

(Corchorus

capsularis)

Kenaf biodegradability, noteworthy thermal stability Automotive, construction, packaging, furniture, [54-56]

(Hibiscus textiles, mats, paper pulp

cannabinus)

Ramie 1-2m height Textiles, pulp, paper, agrochemicals [49, 57,

(Boehmeria nivea) 58]

Bamboo Great mechanical strength, high resilience, and ability to Making houses, bridges, traditional boats, packaging, [59-63]

(Bambusoideae) absorb and release moisture athletic equipment, textiles and apparel

Banana Fiber Noteworthy tensile strength, high moisture resistance, Manufacturing of paper, textile products [64, 65]
biodegradable, environmental sustainability,

Pineapple Leaf Good mechanical properties, Automotive, textile, mats, construction, [66, 67]

(Ananas comosus)

Coconut Fiber Resilience, strength, and damping Agriculture, construction [68, 69]

(Cocos nucifera)

Compression

moulding

Green
manufacturing
prosses

Resin transfer

Thermoforming

Fig. 2. Green manufacturing techniques of eco-friendly composites.

3.1.2. Compression moulding

A powerful press compresses a stack of pre-impregnated layers
between a set of matched dies, and the stack is subsequently cured
while under compression. This technique is known as compression
moulding. This process produces tiny amounts of high-quality

parts, like bicycle frames and crash helmets. This approach is very
costly. Additionally, it is pretty challenging to create components
with constantly dropping plies [75]. The mechanical properties of
CNF/3D-polylactic acid composites produced by 3D printing and
compression molding were compared in a new study by Ambone
et al. [76]. CNF made from sisal fibers was used as reinforcement
in the study. It was demonstrated that compression-molded
composites outperformed 3D-printed composites in terms of
tensile properties.

3.1.3. Molding with resin transfer

The resin transfer moulding process creates discontinuous
lignocelluloses, woven rovings, and continuous mats. The primary
benefit of this technology is its easy regulation of fiber orientation
[77]. The long-term endurance of high-strength components
created using this technology is an additional advantage. Wood
strand panels with high performance for automotive applications
were produced [78]. In a study by Gartner et al [79]. Using
compression resin transfer moulding and resin transfer technology.
When exposed to moisture, resin transfer-moulded composites of
wood strands showed meaningly improved mechanical properties
and dimension stability.

3.1.4. Thermoforming

Composite sheets are either pre-cut or roll-fed during
thermoforming, depending on their total thickness [80]. A
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crimping frame is commonly utilized to prevent warping and
twisting of pre-cut sheets. In either case, convection or radiation
heaters are then used to preheat the sheets to their glass transition
temperature [81].

Preheating is recommended before forming to reduce the
amount of material shear as well as early fractures brought on by
rapid cooling [81, 82]. As reported by Wang et al [83]. Woven
bamboo fiber/polypropylene composites were made using the
thermoforming technique. Using bamboo fibers that have been
alkali-treated, the woven bamboo fiber/polypropylene composite
has greater tensile strength than the unprocessed bamboo fiber
composite.

3.2. Life cycle assessment (LCA)

Life cycle assessment, or LCA, is a technique for analysing the
possible effects on ecosystems of a product or substance from the
beginning of production to the conclusion of its life. Life cycle
inventory (LCI) analysis is a crucial phase in the (LCA). Every
input and output of the system boundaries must be measured and
allocated to the various product stages and processes during the
LCI. Emissions (air, soil, and water), waste, raw materials, and
energy are typical inputs and outputs [84].

LCA has been used to evaluate various natural fiber
composites' environmental characteristics and possible effects.
According to most life cycle assessments, including natural fibers
in composites instead of synthetic ones can lessen their negative
environmental impact [85, 86].

These lead to decreased reliance on non-renewable energy and
material sources, reduced emissions of pollutants and greenhouse
gases (GHGs), improved energy recovery, and the
biodegradability of components at the end of their helpful lives
[87]. Analysing bio-based composites with different natural fiber
reinforcing in a biosynthesized polymer matrix also maintains this
tendency [85].

In a study by Carvalho et al [88]. Ramie and jute were
evaluated from the perspectives of technical performance, cost,
and the environment compared to E-glass and carbon fiber-
reinforced epoxy composites (with aluminum as the standard
material as a baseline). The manufacturing phase is the primary
contributing phase and cycle time is a factor in the variations
among the options in this phase.

More energy is needed for a longer cycle duration, significantly
affecting the environment. With just minor differences, the effects
of the various composite materials are somewhat similar. Still, the
aluminum alternative has a much greater value because it is made
from primary sources, even though it benefits from material
recycling at the end of its useful life. From an LCA standpoint,
ramie is the optimum material for the solution because it uses less
material than jute and has a lesser impact.

3.3. Energy efficiency in production

NFCs have been widely used by several industries, including
the automotive, construction, packaging, and aerospace sectors.
These composites can lessen adverse environmental effects,
increase energy efficiency, and promote sustainability [89, 90].

Furthermore, natural fiber composites can potentially lower the
carbon footprints of numerous companies. Creating synthetic
materials usually involves chemical synthesis, energy-intensive
procedures, and major carbon emissions. In contrast, the
production of NFCs usually uses less energy and emits less carbon
emissions.

Natural fibers require less energy to grow and process than
synthetic counterparts [91].

4. Applications in engineering

The versatility of eco-friendly composites makes them a
valuable asset across multiple industries. Their distinctive
properties, such as lightweight nature, durability, and
sustainability, not only meet engineering demands but also
contribute positively to environmental conservation efforts. Due to
their distinctive properties, eco-friendly composites find numerous
engineering applications. These applications span various
industries, including construction, automotive, aerospace, and
consumer products, highlighting their importance.

4.1. Construction and building materials

Due to the urgent need to reduce the built environment's carbon
footprint to combat climate change, environmentally friendly
engineered cementitious composites, or ECCs, have been
produced continually for the last ten years [92]. ECCs are a
cementitious material with many advantages over regular concrete,
including excellent ductility, strain-hardening capabilities, and a
distinct fiber composition [93, 94]. By removing the need for
ongoing maintenance brought on by steel corrosion and concrete
fracture in reinforced concrete components, these materials also
hold great promise for reducing the carbon footprint of
infrastructure [95]. It is essential to handle building materials and
dispose of construction waste properly to maintain sustainability.
Scientists are now developing and implementing natural fiber in
the building industry because of many synthetic fibers’ high
embodied energy and carbon footprints (including carbon, glass,
asbestos, and aramid). Nwankwo et al [96]. Provide a succinct
evaluation of fiber-reinforced polymer (FRP) composites made of
natural fiber and bio-polymer for strengthening concrete
structures, addressing sustainability, cost-effectiveness, and
durability. Additionally, the study found that concrete beams and
columns can be reinforced with FRPs based on biopolymers.
Additionally, the width of the FRP materials is significantly
influenced by the composite materials employed as confinement.

Zhang et al [97]. Studied the application of superabsorbent
polymers and nanomaterials to coarsen the pore structure and
increase the impermeability of ECC. The results indicated that the
long-term performance of the composite structure is improved by
the major reduction in shrinkage deformation of ECC caused by
the addition of SAP. Furthermore, they discovered that ECC
outperformed mortar regarding mechanical integrity and surface
erosion because of its high tensile strength after creating a
methodical way to model microbiologically generated erosion and
assess the sewage-simulated durability of engineered cementitious
composites. Despite this, Hawileh et al [98]. Also, evidence of
improved concrete workability was obtained when 1% nano-silica
was used instead of some of the cement.

4.2. Automotive industry

New manufacturers use a lot of composite materials in order to
decrease weight and increase range of battery-electric and hybrid
vehicles[20, 99]. Fibers and resins are composite materials with
advantages not found in their constituent parts alone. When
adequately developed and constructed, a composite material can
exhibit increased strength, fatigue life, toughness, corrosion
resistance, damage resistance, stiffness, thermal insulation, and
wear resistance. Furthermore, compared to traditionally
manufactured metallic materials, composite materials have
mechanical properties like modulus and specific strength
(MPa/kg/m3) that are several times higher per unit density [100].
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Crash-absorbing composite components, interior trim panels
and bins for family cars made from natural fiber, storage systems
for commercial trucks, A large panel for a bus or a medium-duty
truck, as well as a whole truck cab, are just a few examples of how
composites are finding their way into more accessible
transportation modes [101]. The introduction of innovative
biocomposites in the automotive sector results from the numerous
obstacles contemporary companies have had to overcome to
comply with environmental sustainability [99]. Thermoplastic-
reinforced nanocellulose fibers have been successfully employed
in automotive applications in recent years [102].

These fibers are an excellent alternative to synthetic carbon and
glass fibers. Because of its many excellent qualities, including its
low cost, aluminum-like tensile strength, design freedom, and low
weight, nanocellulose can be used in various automotive
applications [103]. According to research by Pervaiz et al.[104],
Microfiber technology (MF technology) allows for the production
of a variety of lightweight components for automotive applications
when bio microfibers are distributed throughout the polymer
matrix. They investigated the usage of carbon fiber-reinforced
composite with cellulose microfiber, which reduced weight by 15—
30% and made it appropriate for various end-use applications.
Additionally, Meng et al [105]. Offered a thorough analysis of
recycled carbon fiber that can be used for various automotive
applications and explained how to effectively lower energy
consumption in the transportation sector by adopting lightweight
vehicles.

4.3. Aerospace applications

The use of composite materials in the transportation and
aerospace has grown in recent years because of their superior
mechanical qualities, low weight, and favorable fatigue behavior
[17]. Composites make it possible to build lighter and more
efficient aircraft, lowering fuel consumption. The main structural
components of contemporary aircraft, such as the Airbus A350 and
Boeing 787 Dreamliner, are made of high-performance composites
like carbon fiber reinforced polymers (CFRP) [106]. They are
gradually taking the place of traditional materials like steel and
aluminum. Additionally, sandwiches composed of phenolic resins
as a matrix system and glass fiber reinforced polymers (GFRP)
find use in interior spaces because of their fire resistance and low
weight to stiffness ratio [84].

The goal of using green polymer composites for interior
components is to replace potentially hazardous materials like glass
fibers and phenolic resins with non-renewable resources. Because
of the reduced weight, this change improves fuel economy, lowers
carbon emissions and emphasizes how crucial it is to maintain
sufficient strength and adhere to strict safety regulations.

Hussain et al. created new 3D jute-reinforced natural fiber
aluminum laminates (JuRALs) [107]. The compressive, tensile,
and flexural strengths of fiber metal laminates (FMLs) composed
of natural and synthetic fiber composites were evaluated by
Mohammed et al [108]. The carbon and flax fiber reinforced
aluminum alloy (CAFRALL) composite outperformed the
CAKRALL composite in compressive and tensile strength. EMF
was used by Glushchenkov et al [109] for a five-layer metal-
polymer composite that was made of commercial aluminum that
was 0.3 mm thick and had carbon fiber interlayers surrounded by
two-way reinforced epoxy laminate. The findings demonstrated
that increased strain values raise the electromagnetic field's energy
level. A more excellent profile height (>30%) was attained using
the EMF approach instead of traditional stretching without
cracking [110].

4.4. Consumer products

NFCs are increasingly used by the packaging sector as
sustainable packaging substitutes. They are used to produce
biodegradable packaging materials such as trays, containers, and
disposable silverware. These composites meet various packing
requirements thanks to mechanical strength, moisture resistance,
and thermal insulation. In the consumer goods sector, they emerge
in toys, cookware, household appliances, and furniture, combining
aesthetic appeal and environmental friendliness [111, 112].

Applications for NFCs are varied and include furniture and
sporting goods production. They create skateboards, helmets,
tennis rackets, and bicycle frames by balancing durability,
vibration-damping capabilities, and lightweight design. In terms of
furnishings, they combine organic textures with modern styles to
form table tops, chair frames, and ornamental accents. These
examples underline the potential and versatility of NFCs in various
industries [112]. In recent years, the utilization of bamboo has been
strengthened to exploit bamboo as a non-wood renewable fiber.
Bamboo's fast-growing and renewable properties lead to an
evolution in theoretical and applied research on bamboo-based
products, particularly furniture. These products are made from
70% recycled bamboo fibers and 30% recycled high-density
polyethylene (HDPE) and are very popular in the market. These
bamboo composites have been designed with unique
characteristics, maintaining their shape, termite resistance, high
thermal stability, easy handling, and installation [113].

5. Future trends

Natural fibers are inherently prone to absorbing moisture,
leading to dimensional changes, a deterioration in mechanical
properties, and, ultimately, disintegration[114]. This problem is
most noticeable in situations where exposure to moisture is likely,
such as with outdoor building materials or automobile
components. Surface treatments, chemical alterations, and the
infusion of moisture-resistant matrix materials are some methods
being investigated to reduce moisture absorption [115].

Standardization and quality control are essential for uniform
performance, which supports material selection and market
acceptance. Fiber characteristics, manufacturing methods, and
composite qualities vary among fiber composites. These
discrepancies make establishing uniform testing procedures and
performance standards more difficult. Standardized testing
processes, material standards, and quality control methods tailored
to NFCs are being developed. This step will enable producers to
produce reliable goods, increasing consumer trust and commercial
acceptance [116]. Cost effectiveness and market acceptability are
key factors in the broad use of fiber composites. Although there is
a growing interest in sustainable materials, perceived performance
constraints, a lack of information, and a preference for traditional
solutions can all work against their acceptance. Fibers can be more
expensive than standard materials because of fiber processing,
surface treatment, and quality control costs. However, the cost-
efficiency of these composites is set to improve, making them
more competitive because of improvements in production
methods, economies of scale, and increased awareness of
environmental benefits [117].

6. Conclusion

Developing eco-friendly composites is an essential step
towards realizing maintainable answers in modern engineering.
These materials, often composed of natural fibers and recyclable
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matrices, decrease not only environmental effect but also offer
viable mechanical properties compared to traditional composites.
Combining eco-composites into industries such as automotive,
aerospace, construction, and consumer products expressively
lowers carbon footprints and improves resource efficiency.
Furthermore, progresses in recycling technologies and additive
manufacturing methods are decisive for scaling up the construction
of these balanced materials. As the world moves towards a more
circular economy, embracing eco-friendly composites will be
important for meeting sustainability aims while maintaining
economic viability. By leveraging cutting-edge technologies and
modern engineering practices, the possible for eco-friendly
composites to transform industries and contribute to a greener
future is massive and promising.
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