

Available Online at www.jourcc.com

Journal homepage: www.JOURCC.com

CrossMark

Journal of Composites and Compounds

Advancements in green composites: materials science innovations for a sustainable future

Fariba Azamian ^{a}, Mahsa Hojjati ^b*

^aDepartment of Materials Science and Nanotechnology, Sharif University of Technology, International Campus-Kish, Postal Code: 794117-76655, Kish Island, Iran

^bFaculty of Chemistry, Shahrood University of Technology, Shahrood, Semnan, Iran

ABSTRACT

The use of biodegradable polymers and natural fibers in green composites offers sustainable alternatives to traditional materials. Nanotechnology, artificial intelligence, and self-healing mechanisms enhance their performance. AI-based recycling and policy incentives can drive adoption, despite cost and scalability challenges. Advances in manufacturing and circular economy models will be key to future success.

©2023 UGPH.

Peer review under responsibility of UGPH.

ARTICLE INFORMATION

Article History:

Received August 11 2023

Received in Revised form November 24 2023

Accepted December 27 2023

Keywords:

Green composites

Biodegradable materials

Nanotechnology

1. Introduction

As the world grapples with the pressing challenges of climate change and environmental degradation, the quest for sustainable materials has never been more critical [1]. Green composites, which integrate natural fibers with biodegradable matrices, have emerged as a promising solution to reduce reliance on fossil fuels and minimize waste. Fig. 1 illustrates comprehensive data on historical performance and future projections for green composites. In the period between 2010 and 2019, biodegradable polymers and natural fibers were introduced to the green composites market [2, 3]. Global composites market growth declined in 2020 as a result of COVID-19 pandemic, despite innovation, especially with nanotechnology [4, 5]. We also see an increased emphasis in 2023 on the recyclability of materials and the biodegradability of products, as well as advances in nanocomposites [6, 7]. We expect a greater

integration of artificial intelligence into manufacturing processes in 2025 as well as an expanded use of AI in the automobile and construction industries[8]. For the selection of materials and process optimization in green composites, emerging technologies such as artificial intelligence (AI) and machine learning algorithms are increasingly being used. The use of AI-driven predictive modeling enables researchers to identify optimal fiber-matrix combinations that maximize mechanical properties while ensuring environmental sustainability [9]. This perspective aims to explore the recent advancements in materials science that are enhancing the performance and applicability of green composites. By importance technological innovations, industry applications, and the contests that lie ahead, we seek to underscore the potential of green composites in fostering a sustainable future.

*Corresponding author: Fariba Azamian. E-mail: Fariba.azamian@brokerteam.ca

<https://doi.org/10.61186/jcc.5.4.5> This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>)

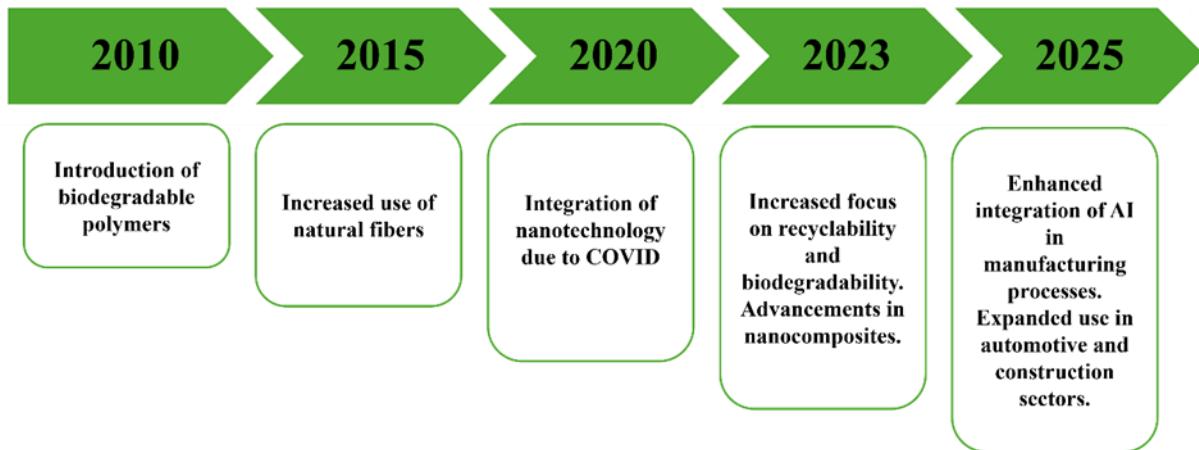


Fig. 1. Advancements in green composites.

2. Understanding Green Composites

Green composites are defined by their composition, typically involving a biodegradable polymer matrix reinforced with natural fibers [10]. This combination not only improves mechanical properties but also reduces the environmental impact associated with traditional synthetic composites [11]. The shift towards these materials is largely driven by the need for defensible answers that minimize carbon footprints and promote recycling and biodegradability [12].

3. Technological Innovations Enhancing Performance

Recent technological novelties in green composites have expressively boosted their presentation, making them more competitive with traditional materials [13]. Key advancements include the use of nanocomposites, which incorporate nanoparticles to improve mechanical and thermal properties, thereby increasing strength and durability [14]. Additionally, advanced biocomposites derived from agricultural waste are being developed to optimize resource utilization while maintaining high performance [15]. Advances in processing techniques, such as improved molding methods and fiber alignment, further contribute to the robustness of these materials. In this field, self-healing mechanisms have also been incorporated into green composites. In industrial applications, self-repairing polymeric matrices are being investigated as a means to enhance durability, longevity, and reduce material waste. The integration of 3D printing technologies allows for precise customization of composite structures, enabling the creation of complex geometries that increase functionality while reducing waste [16]. Collectively, these inventions are propelling green composites into various applications across industries, from automotive to construction, underscoring their potential as sustainable alternatives in material science [17].

4. Applications Across Industries

Green composites are increasingly being adopted across various industries due to their sustainability and performance characteristics [18]. In the automotive sector, manufacturers utilize these materials to create lightweight and durable components, which not only reduce vehicle weight but also improve fuel efficiency and lower carbon emissions [19]. In construction, green composites are employed for insulation, panels, and structural elements, providing an eco-friendly alternative to traditional materials while maintaining structural integrity [20]. The packaging industry is also benefiting from green composites, as they offer biodegradable options that meet consumer demand for sustainable explanations [21]. Additionally, applications in agriculture, such as biodegradable planting pots and films, illustrate the versatility of these materials in addressing environmental encounters while promoting resource productivity [22]. Policy and regulatory frameworks will be crucial to accelerating the adoption of green composites in the future. Biodegradable materials are expected to be promoted by governments worldwide through stricter regulations and incentives, thereby driving an industry-wide transformation into sustainability. Overall, the integration of green composites across these sectors highlights their potential to contribute meaningfully to a sustainable economy [23].

5. Challenges and Future Directions

Despite the advancements in green composites, several important challenges hinder their widespread adoption [13]. Cost competitiveness remains a major barrier, as the production of green composites is often more expensive than traditional materials, limiting their market viability [24]. Additionally, large-scale production poses logistical and technological hurdles that need to be addressed to meet industry demands effectively [25]. There is also a need for market acceptance, as consumers and industries may be hesitant to transition from established materials to newer, eco-friendly alternatives [26]. Furthermore, inadequate infrastructure for

recycling and processing these materials can impede their integration into existing supply chains [27]. Recycling waste from green composites into new materials is essential to overcoming these challenges. Waste management processes can be further optimized with AI-driven sorting and recycling technologies, ensuring sustainable goals are met. To overcome these challenges, continued investment in research and development is essential, alongside collaborative efforts among governments, academia, and industry stakeholders. Future directions should focus on enhancing recyclability and biodegradability, as well as leveraging advanced technologies such as artificial intelligence to optimize material properties and processing techniques, ensuring that green composites can play a pivotal role in a sustainable economy [28].

6. Conclusion

The advancements in green composites represent a major step towards achieving sustainability in materials science. As Europe leads the way with funding programs like Horizon Europe, the future looks promising for these innovative materials. With ongoing research focused on enhancing recyclability and biodegradability, green composites are set to play a pivotal role in transitioning towards a more sustainable economy. Artificial intelligence, advanced manufacturing techniques, and sustainable resource management will be key factors in determining how industries integrate these materials into mainstream production in the next decade. The integration of advanced technologies will further develop their potential, making them indispensable in addressing global environmental challenges while meeting industrial needs.

Authors' contribution

Fariba Azamian: Interpretation, Writing—Original Draft Preparation, Writing—Review and Editing. **Mahsa Hojjati:** Conceptualization, Writing—Original Draft Preparation, Writing—Review and Editing,

Declaration of competing interest

The authors have no conflicts of interest to disclose.

Data availability

The article does not include any data.

Funding

No funding was received for this work.

REFERENCES

- [1] C. Becker, *Insolvent: How to reorient computing for just sustainability*, MIT Press2023.
- [2] M.C. Biswas, M.M. Lubna, M.H.U. Iqbal, Z. Mohammed, M.E. Hoque, Future trends of fiber-reinforced polymer composites, *Fiber-Reinforced Polymer: Processes and Applications*; Nova Science Publishers Inc.: Hauppauge, NY, USA (2021) 399-443.
- [3] S. Gul, M. Awais, S. Jabeen, M. Farooq, Recent trends in preparation and applications of biodegradable polymer composites, *Journal of Renewable Materials* 8(10) (2020) 1305-1326.
- [4] D. Rutitis, A. Smoca, I. Uvarova, J. Brzga, D. Atstaja, I. Mavlutova, Sustainable value chain of industrial biocomposite consumption: influence of COVID-19 and consumer behavior, *Energies* 15(2) (2022) 466.
- [5] S. Malik, K. Muhammad, Y. Waheed, Nanotechnology: a revolution in modern industry, *Molecules* 28(2) (2023) 661.
- [6] M.-B. Coltell, P. Morganti, A. Lazzeri, Sustainability assessment, environmental impact, and recycling strategies of biodegradable polymer nanocomposites, *Biodegradable and Biocompatible Polymer Nanocomposites*, Elsevier2023, pp. 699-737.
- [7] A.H. Anwer, A. Ahtesham, M. Shoeb, F. Mashkoor, M.Z. Ansari, S. Zhu, C. Jeong, State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review, *Advances in colloid and interface science* 318 (2023) 102955.
- [8] M. Azamian Jazi1, S.A. Haddadi, A. Ramazani Saadat Abadi1, F. Azamian, A Poly(vinyl acetate)/Colloidal SiO₂ Nanocomposite Synthesized by Emulsion Polymerization and Study of Its Mechanical, Thermal and Rheological Properties, *Iranian Journal of Polymer Science and Technology* 30(2) (2017) 151-161.
- [9] M.H. Shahavi, R. Esfilar, B. Golestani, M.S. Sadeghabad, M. Biglaryan, Comparative study of seven agricultural wastes for renewable heat and power generation using integrated gasification combined cycle based on energy and exergy analyses, *Fuel* 317 (2022) 123430.
- [10] M.Z. Islam, M.E. Sarker, M.M. Rahman, M.R. Islam, A.F. Ahmed, M.S. Mahmud, M. Syduzzaman, Green composites from natural fibers and biopolymers: A review on processing, properties, and applications, *Journal of Reinforced Plastics and Composites* 41(13-14) (2022) 526-557.
- [11] M.M. Ahmed, H. Dhakal, Z. Zhang, A. Barouni, R. Zahari, Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review, *Composite Structures* 259 (2021) 113496.
- [12] J.-G. Rosenboom, R. Langer, G. Traverso, Bioplastics for a circular economy, *Nature Reviews Materials* 7(2) (2022) 117-137.
- [13] J.J. Andrew, H. Dhakal, Sustainable biobased composites for advanced applications: recent trends and future opportunities—A critical review, *Composites Part C: Open Access* 7 (2022) 100220.
- [14] T. Hassan, A. Salam, A. Khan, S.U. Khan, H. Khanzada, M. Wasim, M.Q. Khan, I.S. Kim, Functional nanocomposites and their potential applications: A review, *Journal of Polymer Research* 28(2) (2021) 36.
- [15] R. Phiri, S.M. Rangappa, S. Siengchin, O.P. Oladijo, H.N. Dhakal, Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review, *Advanced Industrial and Engineering Polymer Research* (2023).
- [16] J. Saroia, Y. Wang, Q. Wei, M. Lei, X. Li, Y. Guo, K. Zhang, A review on 3D printed matrix polymer composites: its potential and future challenges, *The international journal of advanced manufacturing technology* 106 (2020) 1695-1721.
- [17] N. Ninduwezuor-Ehiobu, O.A. Tula, C. Daraojimba, K.A. Ofonagoro, O.A. Ogunjobi, J.O. Gidiagba, B.A. Egbokhaebho, A.A. Banso, Exploring innovative material integration in modern manufacturing for advancing us competitiveness in sustainable global economy, *Engineering Science & Technology Journal* 4(3) (2023) 140-168.
- [18] S.D.S. Kopparthy, A.N. Netravali, Green composites for structural applications, *Composites Part C: Open Access* 6 (2021) 100169.
- [19] A.K. Mohanty, S. Vivekanandhan, N. Tripathi, P. Roy, M.R. Snowdon, L.T. Drzal, M. Misra, Sustainable composites for lightweight and flame retardant parts for electric vehicles to boost climate benefits: a perspective, *Composites Part C: Open Access* 12 (2023) 100380.
- [20] A. Almusaed, A. Almssad, A. Alasad, I. Yitmen, S. Al-Samarae, Assessing the role and efficiency of thermal insulation by the “Bio-Green Panel” in enhancing sustainability in a built environment, *Sustainability* 15(13) (2023) 10418.

[21] M. Azamian Jazi, A. Ramezani S.A., S.A. Haddadi, S. Ghaderi, F. Azamian, In situ emulsion polymerization and characterization of PVAc nanocomposites including colloidal silica nanoparticles for wood specimens bonding, *Journal of Applied Polymer Science* 137(15) (2020) 48570.

[22] D. Merino, V.A. Alvarez, Advanced applications of green materials in agriculture, *Applications of Advanced Green Materials*, Elsevier2021, pp. 193-222.

[23] E. Vázquez-Núñez, A.M. Avecilla-Ramírez, B. Vergara-Porras, M.d.R. López-Cuellar, Green composites and their contribution toward sustainability: A review, *Polymers and Polymer Composites* 29(9_suppl) (2021) S1588-S1608.

[24] M. Abdur Rahman, S. Haque, M.M. Athikesavan, M.B. Kamaludeen, A review of environmental friendly green composites: production methods, current progresses, and challenges, *Environmental Science and Pollution Research* 30(7) (2023) 16905-16929.

[25] G. Lozzi, G. Iannaccone, I. Maltese, V. Gatta, E. Marcucci, R. Lozzi, On-demand logistics: Solutions, barriers, and enablers, *Sustainability* 14(15) (2022) 9465.

[26] M.M. Zver, T. Vukasović, Consumers' Attitude Towards Eco Friendly Textile Products, *Tekstilec* 64(2) (2021) 159-171.

[27] P. Kumar, R.K. Singh, V. Kumar, Managing supply chains for sustainable operations in the era of industry 4.0 and circular economy: Analysis of barriers, Resources, conservation and recycling 164 (2021) 105215.

[28] P. Bradu, A. Biswas, C. Nair, S. Sreevalsakumar, M. Patil, S. Kannampuzha, A.G. Mukherjee, U.R. Wanjari, K. Renu, B. Vellingiri, Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future, *Environmental science and pollution research international* (2022) 1.