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ABSTRACT ARTICLE INFORMATION
Bioactive glasses, glass ceramics, and ceramic composites represent a transformative Article History:

class of materials in regenerative medicine. The purpose of this review is to analyze Received 25 Murch 2025

the status of current developments in these bioactive materials, including their Received in revised form 29 April 2025
biological and mechanical properties, fabrication techniques, and clinical applications. Accepted 01 May 2025

Bioactive glasses are able to bond to both hard and soft tissues, stimulate osteogenesis,
and release therapeutic ions that enhance cellular responses. Glass ceramics offer
enhanced mechanical strength through controlled crystallization processes. Ceramic
composites, incorporating bioactive components with polymers or other materials,
address challenges, enabling tailored mechanical and biological properties for specific
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clinical applications. Despite significant progress, future challenges include

optimizing mechanical properties for load-bearing applications, improving fabrication

methods for complex structures like scaffolds and coatings, and exploring new

compositions with therapeutic ions for enhanced bioactivity. This review underscores

the potential of bioactive glasses, glass ceramics, and composites to revolutionize

tissue engineering, dentistry, and medicine while identifying key challenges for

advancing their clinical utility.
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1. Introduction

Inorganic biomaterials such as glass ceramics and bioactive
glasses are engineered to provoke particular biological responses,
especially a robust interaction with bone [1]. The concept of
bioactive material lies between that of resorbable and inert
materials. Although multiple definitions of bioactivity exist,
Hench's definition is obvious: bioactivity is the ability of an
implanted substance to bond with living tissue [2]. The
development of these materials for human bone implants and
replacements has gained increasing importance in the last five to
ten years [3].Due to their remarkable qualities, including superior
biocompatibility, adjustable degradation rates, osteoinductive
properties, antibacterial capabilities, and pro-angiogenic effects,
from 1969 to the present, bioactive glass and

glass ceramic has been used in many applications within tissue
engineering, implantology, and pharmaceutics. These qualities are
crucial for developing multifunctional systems [4, 5]. When
artificial materials are placed into bone deficiencies, they are often
encased in fibrous tissue. However, in 1971, Hench and associates
found that specially made glasses termed Bioglass® in the Na,O-
Ca0-Si0,-P,05 system do not produce fibrous tissue but create a
strong chemical relationship upon direct contact with the
surrounding bone [6]. Since bioglass was invented, various
glasses, glass ceramics, and sintered ceramics have been used to
adhere to live bone [7]. When bioactive glasses come into contact
with biological fluids, a hydroxyapatite (HA) coating forms on
their surface, linking them with bone tissue. The dissolution and
biomineralization processes on the surface of bioactive glasses
lead to the production of such an HA layer; this HA-forming
capability of bioactive glasses is referred to as "bioactivity" [8].
Additionally, by releasing physiologically active ions during
dissolution, BGs can initiate various advantageous biological
reactions, including osteogenesis and angiogenesis. Additionally,
it was discovered via both in vitro and in vivo investigations that
dissolving the glass network creates a silica-rich gel layer, and the
subsequent deposition of an apatite-like layer on the glass surface
is a crucial phase for connecting glass to live tissues [9].

However, different biomaterials display diverse bonding
properties, such as time dependence, strength, mechanisms, and
bonding zone thickness [10]. Moreover, a bioactive material's
structure, porosity, and chemical composition are essential
characteristics that affect the material's behavior in vivo [11].
Moreover, glass ceramics are bioactive, forming hydroxyapatite
when exposed to bodily fluid simulations, which improves their
ability to integrate with bone tissue. Glass ceramics based on
silicate and phosphate have been created, with compositions
specifically designed to enhance mechanical and biocompatibility
[12, 13]. Some glass ceramics possess antibacterial properties,
alleviating concerns about infection associated with implants [14].
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The materials are appropriate for bone, dental, and joint
replacements due to their hardness, abrasion resistance, and low
friction coefficients [15]. Melting quenching procedures and
thermal treatments can create glass ceramics, which are materials
containing crystal phases embedded within a matrix of glass. With
the ability to develop innovative bilayered implants for complete
tooth replacement, these adaptable materials exhibit promise for
various dental applications, including restorative dentistry and
implantology [12].

Furthermore, metal and metalloid oxides, nitrides, sulfides, and
carbides are ceramics. Bioceramics, natural or synthetic materials
that bond with bone, have emerged as an alternative to metallic
implants [16]. Due to their favorable and compatible physico-
chemical properties with specific human body components, they
play a crucial role in the biomedical field. In the 18th century,
bioceramic porcelain was first utilized for crown treatments.
Plaster of Paris was later introduced to dentistry in the 19th
century. With advancements in processing technology, the
application of ceramics in medicine expanded significantly
throughout the 20th century [17]. Recently, the scientific
community has shown increasing interest in ceramic materials,
glass ceramic materials, and bioactive glass. Fig. 1 illustrates the
number of publications related to each substance based on data
from the Web of Science.
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Fig. 1. The number of publications related to each material.

The purpose of this review is to highlight the main obstacles
that remain to be overcome, as well as to offer a comprehensive
analysis of current technologies available in bioactive glasses,
ceramics, glass ceramics, and composite materials. We thoroughly
examine each material type, including bioactive glasses, ceramics,
glass ceramics, and composites, with sections addressing
composition, characteristics, synthesis techniques, applications,
and future challenges. It is through the analysis of these materials
that we can improve our understanding of the role they play in a
wide range of applications and their unique properties and
advances.
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2. Properties of bioactive glasses

Several glass formulations have been developed for bioactive
glass, a nanocrystalline ceramic [18]. Generally, a material that
produces a specific biological action is called a bioactive material
[19]. The following sections will provide further information
regarding the composition, properties, synthesis methods, and
applications.

2.1. Composition and properties

Bioactive materials can create an adherent interface with
tissues strong enough to withstand mechanical fracture. They
exhibit excellent biocompatibility, stimulate bone cell functions,
and can bond chemically with bone and other tissues [20].
Additionally, these materials have great potential for use as
polymer fillers and coatings. However, in the use of bioglasses in
the manufacture of porous scaffolds, dental materials, or filler
materials, it is crucial to consider the properties of the materials,
given their granulates of varying sizes and the particles/ powders
of different shapes and sizes. Developing structurally compatible
bioglasses while not adversely affecting living tissues is crucial
[19]. The primary criteria for a bioactive glass are that it must
contain calcium and phosphorus, the key components of the
mineral phase in bone tissue, while avoiding any other unnecessary
or harmful substances for living organisms [2]. The silicate
concentration in the glass influences the biocompatibility of
bioactive glasses; a silicate concentration of 45-52% yields
optimal graft-bonding ability [20].

This composition has undergone several revisions: the Food
and Drug Administration (FDA) authorized and named it Bioglass.
Its name is Bioglass 45S5, which is listed in Table 1. There are
various biological reasons why metallic ions are introduced into
bioactive glass networks. Still, they are often also used for their
structural and processable effects and for imparting additional
functional properties to the glass [21]. For example, to enhance the
effectiveness of bioactive glasses, ions such as silver (Ag"”, boron
(B¥), cobalt (Co*"), copper (Cu®"), iron (Fe*), lithium (Li"),
niobium (Nb*"), strontium (Sr**), and zinc (Zn*") are added to their
structures. [22-24]. The effect of ions on bioglass bioactivity is
shown in Table 2.

Table 1
Various compositions of Bioactive glass in wt.%.
Bioglass  Composition Refs.
4585 45810, 24.5Ca0, 24.5Na;0 and 6P,0s [25-28]
S53P4 538i02, 23Na>0, 20Ca0 and 4P20s [29]
58S 58Si02, 33Ca0 and 9P,0s [29]
70S30C 708i02, 30Ca0 [30]
13-93 538i02, 6Nax0, 12K»0, 5MgO, 20Ca0, 4P20s [31]
Table 2
The effect of ions on the bioglass bioactivity.
Ton Effect on bioactive glass Refs.
Zn Antibacterial [32-35]
B Biodegradability [36]
Ag Antibacterial activity [37-41]
Biocompatibility [35, 37]
Ga Antibacterial activity [39, 42, 43]
Improve thermal stability [39]
Nb Improve mechanical properties [44, 45]
Ti Improving antibacterial properties [46, 47]
Sr Antibacterial effect [48-50]
Boost biological properties [32, 34, 51, 52]
Cu Antibacterial activity [35, 53, 54]
Boost biological properties [32, 34, 51, 52]
Sm Improve the bioactivity [55-58]
Improve thermal stability [37]
Improve the mechanical properties [37]
Antibacterial properties [37]

2.2. Synthesis methods

The production process is a crucial component of the creation
of bioactive materials, dramatically affecting the final production
cost and quality, as well as the material created [59]. Numerous
techniques, including sol-gel, melt quench, spray pyrolysis,
microwave irradiation, Stober process, flame synthesis, acid-free
hydrothermal, and microemulsion, can be used to create bioglass
[60]. Melt quenching operations and sol-gel techniques are the two
main methods employed in the production of bioglass [27]. This
section provides a basic overview of sol-gel and melt quenching
methods.

2.2.1. Melt quenching process

Until the 1990s, most bioglasses were produced using melting
techniques, which involved fusing oxides and additives at high
temperatures, quickly quenching the melt, and grinding the glass
particles into a fine powder [61]. The components are subsequently
melted in electric furnaces at high temperatures (typically between
1200 °C and 1550 °C), with parameters carefully adjusted to
ensure a homogeneous melt [62].

The melting process can be repeated several times to achieve
incredibly high degrees of homogeneity. The following options are
among the forming routes that may be employed, depending on the
desired final shape: I. Forming by pulling into continuous fibers,
quickly chilling in water, or casting in molds. II. The particles can
sinter when the glass is heated above its glass transition
temperature (Tg), generating a porous scaffold, drawing fibers
from a pre-form, or facilitating particle sealing to create surface
coatings [63].

After milling, the melt quench technique creates glasses with
specific particle sizes. Today, more than 99 percent of bioactive
glasses are produced through melting, the most common
commercial process. Melt quenching also allows for modifications
in compositional space and the doping of transition metals and rare
earth elements [64]. The high working temperature and the
evaporation of specific components, such as Na,O and P,Os, pose
challenges with this method [65, 66].

2.2.2. Sol-gel process

The sol-gel technique is a widely used chemical synthesis
method for producing inorganic materials with unique
characteristics and microstructures, such as metal oxides, glasses,
and ceramics [67]. By combining the precursors and allowing them
to react in a liquid environment, the sol-gel technique generates
bioglass nanoparticles with better-controlled morphology and size
[68, 69]. This technique provides an alternative method for
creating bioactive glasses at lower temperatures [70]. For bioactive
glasses, sol-gel processing offers numerous advantages over
traditional ~ melt-quenching  methods, including greater
homogeneity and purity, lower operating temperatures, a wider
variety of bioactive structural types, improved control over
composition, size, and morphology, a larger specific surface area,
accelerated formation of apatite layers, faster bone regeneration,
enhanced degradability, and in vivo resorption [71-73].

For bioactive glasses, the sol-gel approach is a wet chemical
process that creates materials comprising silicate, phosphate,
borate, and metallic ion components [74]. The main steps in this
process include material hydrolysis and condensation, followed by
drying and stabilization.The operating requirements can be
adjusted to control the properties of materials, such as composition
and shape [75]. Tetraethyl orthosilicate (TEOS) is a common
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silicate precursor used for synthesizing sol-gel bioactive glasses;
the preferred solvents in this procedure are ethanol and/or water
[27]. Both alkaline and acidic environments can be utilized with
the sol-gel process, with these varying conditions affecting the
properties of the resulting materials. The solution's pH can be
altered to produce bioactive glasses with different topologies. In a
typical sol-gel process, TEOS first undergoes hydrolysis and
condensation with the help of a catalyst to form [SiO4]* structural
units [75].

Metallic ions can be added or doped to produce BGs during the
initial phases of TEOS condensation or after diffusing them into a
SiO, structure following drying and calcination procedures.
Organic substances may be incorporated at any stage of the
manufacturing process to enhance particle dispersion or control
their shape [76]. Additionally, substantial research has been
conducted recently on the sol-gel technique as a potential
alternative to the melting process [77]. Fig. 2 shows the synthesis
of bioactive glasses by the sol-gel method.

Step 1: Preparation of Si0,-B,0; glass particles

TEOS TEB %
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~——— Drying 0 g
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Fig. 2. Scheme of the sol-gel synthesis of bioactive glass powders [78].

2.3. Applications

Bioactive glass has numerous applications in the medical field,
particularly in tissue engineering, dentistry, and medicine (Fig. 3).
It is employed in tissue engineering as a scaffold material for bone
regeneration due to its osteoconductive and osteostimulative
properties, which facilitate the formation of new bone and promote
vascularization.

Additionally, it is utilized for cartilage regeneration and soft
tissue repair; its ability to stimulate angiogenesis is crucial for
neocartilage development and wound healing. In dentistry,
bioactive glass is used as a coating for dental implants, pulp
capping material, mineralizing agents, and restorative materials.
Moreover, it has antibacterial properties that effectively treat
infections and serve as a medium for drug delivery systems. Table
3 illustrates how ions influence the uses of bioglass.

g O

Applications of Bio

active glasses

Dental appli

Fig. 3. Applications of bioactive glasses

Table 3
The effect of ions on bioglass applications.

Ton Applications Refs.

Zn Bone regeneration [33, 109-111]
Wound healing [110, 112, 113]
Tissue engineering [33, 34, 114]
Drug delivery [110]

Mg Drug delivery [115]

B Tissue engineering [116]
Dental applications [116-118]

Ag Bone regeneration [55, 119]
Anticancer therapy [120, 121]
Dental applications [122]

Ga Bone regeneration [24, 123]
Anticancer therapy [24, 124]
Dental applications [42, 43]

Nb Dental applications [45]

Ti Bone regeneration [47]

Sr Dental applications [125, 126]

Cu Bone regeneration [53, 127]
Antibacterial coatings [128]

Sm Bone regeneration [58, 129]

2.3.1. Tissue engineering

One class of inorganic biocompatible materials that may
accelerate soft and hard tissue healing is represented by bioactive
glasses, among the many biomaterials utilized in tissue
engineering and regenerative medicine [79]. A monolithic tissue
called Bioglass was used for the first time in the treatment of
middle ear disease, as cones, which replaced the tiny bones in the
middle ear. Biodegradable materials can act as temporary
replacements to restore damaged tissues [80-83]. Since they
promote cell growth and proliferation, they facilitate
neovascularization and limit bacterial infection; These artificial
biomaterials can enhance tissue repair and regeneration [84]. It has
been suggested that developing bio-glass-based composites to
address tissue engineering challenges results in more successful
mineralization than alternative therapy forms [85, 86]. In some
recent applications, bioactive glasses have also been clinically
tested in contact with soft tissues, showing promising results in
vitro and in vivo in enhancing angiogenesis [32].

Besides providing physical support, the ideal scaffold should
also deliver growth factors and bioactive molecules that regulate
the body's healing processes, along with signal transduction,
proliferation, migration, and differentiation, to promote optimal
bone healing and restore function [87]. Three-dimensional (3-D)
pores facilitate vascularization and nourishment transfer between
matrix-seeded cells and their surroundings. [88]. The scaffold must
gradually degrade, and the host tissue will replace it, as it serves as
a temporary substrate for cells to exist and thrive [89]. The
degradation rate should align with the rate at which new tissue
forms, producing benign byproducts that the body can easily
absorb or eliminate. To address this challenge, most research has
suggested that the scaffold's attributes are primarily dictated by the
material composition, overlooking the interactive effect between
architecture and composition [90].Bioactive glasses are mainly
used as injectable putties, granules, or particles  thatare  easy
to press into bone deformities [32].

It is evident that bioactive materials are being used in
musculoskeletal systems in order to repair intervertebral disks by
cultivating annulus pulposus cells on composite films made of
PLLA and Bioglass, as indicated by the increasing interest in
bioactive glasses applications in medicine and dentistry [91].

2.3.2. Cancer therapy

The use of bioactive glasses that contain thermosets is
considered an excellent way to achieve cancer hyperthermia and
bone regeneration, as well as provide the necessary thermal
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activity for these purposes. For instance, Wang et al [92]. created
bioactive glasses doped with bismuth composed of SiO,, Na,O,
CaO, P,0s, and Bi,0; using the melting-quenching technique. In
vitro and in vivo tests assessed the glasses' biocompatibility,
apatite production, and photothermal effect. A study using nude
mice demonstrated that bismuth-doped glasses could effectively
kill bone tumors in vivo when exposed to near-infrared radiation.
Additionally, the bioactivity of the glass remained unaffected by
the presence of BiO;. Therefore, a bone tumor might be
regenerated with the help of doped glass following its destruction.

2.3.3. Drug delivery

The effective treatment of various malignancies requires
controlled medication delivery [93]. It has recently been
discovered that mesoporous bioactive glasses are excellent
platforms for targeting specific drug delivery in cancer therapy
[94, 95]. It is possible to use these materials as bone fillers to repair
and regenerate bone tissue when a portion of it has been removed
due to bone cancer. They offer several advantages as drug carriers,
including high biocompatibility, appropriate stability, and
adherence to living tissues [96]. Using bioactive mesoporous glass
nanospheres as drug carriers in vitro and in vivo, Sui et al.
[97]assessed their biosafety. They employed 45Ca labeling and
histological examination to explore mesoporous bioactive glasses'
bio-distribution, clearance, cellular localization, and systemic
safety. As a result of the experiments, mesoporous bioactive glass
nanospheres led to no abnormalities in histopathological or
biochemical parameters.

Bioactive glass nanospheres were examined by Wang et al.
[98] for their biological activity and to see how much doxorubicin
was released. They encapsulated doxorubicin successfully into
mesoporous bioactive glass nanospheres, resulting in a 63.6
percent encapsulation efficiency. Research like that of others
observed that the mesoporous structure and local pH environment
could significantly impact the mesoporous bioactive glass
nanospheres' drug release and encapsulation capabilities. This
approach is anticipated to be crucial for various cancers and for
creating novel uses for mesoporous bioactive glasses in treating
Organs and tissues.

2.3.4. Dental applications

When addressing autograft issues, restoring and maintaining
alveolar bone continuity during dentition is challenging [99].There
has been extensive research into synthetic biomaterials like
Bioglass for tissue regeneration due to their biodegradability,
mechanical properties, osteogenic potential, biocompatibility, and
antibacterial attributes [100]. For optimal retention in bone, or
osseointegration, in implantology, there must be continuous
contact between the implant surface and bone tissue [101].
Combining autograft with a mixture of Bioglass granules allows
embedding titanium roots in the porous maxilla. This leads to
thicker trabeculae and accelerated bone regeneration compared to
autograft alone [102]. Due to its superior osteoconductive
properties, slower bone resorption rate, and enhanced
biocompatibility, alkali-free Bioglass is more appropriate for
dental and oral maxillofacial applications [103].

A micro gap is created when restorative materials experience
some degree of polymerization contraction [104]. The failure of
the dental composite can be attributed to the marginal leakage
between the restorative material and the tooth surface. This gap
allows bacteria, fluids, and ions to enter the space between the
restorative material and cavity walls [105]. Because BAG fillers
seal marginal surfaces with hydroxyapatite crystal precipitates,

they are potential additives that enhance biological characteristics,
antimicrobial  effects, hardness, acid buffering, and
remineralization [106]. Especially in dental implants, improved
properties can be achieved by coating BGs on a zirconia substrate
[107]. The two most widely used bioactive materials in restorative
dentistry are calcium silicate and calcium aluminate. Fluoride-
releasing restorative materials, including glass ionomers, are
among the earliest bioactive substances in restorative dentistry.
Bioactive glass that contains resin-modified glass ionomer cement
(GIC) has superior remineralization properties [108].

3. Properties of glass ceramics

According to a revised definition, glass-ceramics are inorganic,
nonmetallic materials created by carefully allowing glasses to
crystallize through various processing techniques. These materials
are made from glass heated to temperatures ranging from 1300 to
1500 °C. A heat treatment is then employed to transform the glass
into crystalline materials [130]. Typically, a glass-ceramic is not
completely crystalline, as the microstructure usually consists of
50-95% crystalline content, with the remainder being residual
glass [131, 132]. These materials exemplify a unique combination
of the characteristics of glass-like materials and traditional
ceramics [133]. The choice of components, cooling rate, and the
presence or absence of nucleating agents used to manufacture glass
ceramics determine whether the material is amorphous or
crystalline [130]. Furthermore, these variables can be adjusted to
create materials with the desired composition and microstructure,
which may be either transparent or opaque, colored or colorless.
Based on SiO,-AlLO;, the most commonly used glass-ceramic
materials include oxide modifiers such as LiO,, Na,O, K,0, CaO,
ZnO, and MgO [134].

3.1. Composition and properties

Glass-ceramic materials differ primarily in their properties
based on their intrinsic properties and morphology, their residual
porosity, and their amorphous phase. Glass-ceramics are versatile
materials that can offer solutions the significant potential for their
use in various situations, attributed to their excellent mechanical,
chemical, and abrasion resistance, high hardness, variable thermal
expansion based on chemical composition, and the ability to be
sintered at relatively high densities (92%-98%) at temperatures
typically below 1000 °C [135].

Various processing methods can create glass-ceramic,
inorganic, nonmetallic materials [136]. If a glass ceramic can be
twisted, milled, drilled, or threaded using metalworking tools,
especially those made of hard metals, without breaking the
workpiece as regular ceramics do, it is considered machinable. The
crystals should comprise roughly two-thirds of the ceramic's
volume, be of an ideal size, and be in mutual contact to ensure
acceptable machinability. Several factors, including grain size,
percentage of crystallinity, distribution of crystal phases,
remaining glassy phase, intergranular bonding, and crystal
orientation, influence the final properties of glass ceramics. The
exceptional electrical, thermal, and biomedical qualities of
fluormica glass ceramics are widely recognized. These specimens
can be easily cut, drilled, and turned using standard tools [137].

3.2. Synthesis methods

Glass ceramics can be produced using various techniques,
including sol-gel, powder sintering, melting, casting, and
crystallization, all outlined below.
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3.2.1. Melting, casting, and crystallisation method

A precursor glass is made by mixing raw glass-forming
ingredients and nucleating agents and melting them at high
temperatures, usually between 1300 and 1500°C. A process called
annealing is used to cool molten glass slowly at room temperature
after it has been cast into the desired shape. During the first stage
of a controlled heat treatment, temperatures are slightly above the
glass transition temperature (Tg) to promote nucleation. In the
second heating stage, temperatures are increased to allow crystals
to grow steadily and without stress. The final microstructure is
influenced by the Dimensions, composition, and concentration of
nucleating agents and shapes of the crystals. This method can
manufacture complex geometries, resulting in uniformly dense
compositions with precise dimensions.Although melting
temperatures can be lowered by adding low-melting-temperature
oxides, a high overall temperature and prolonged treatment times
remain limitations of this approach [138, 139].

3.2.2. Powder sintering method

This process aims to accelerate production by simultaneously
sintering and crystallizing glass particles. A raw glass blank is
made by melting raw glass materials, cooling them in water,
grinding them finely into powder, sieving them, and pressing them
at a specific temperature. Without additional nucleating agents,
bulk nucleation along the glass grain boundaries forms the final
crystalline structure. This method can produce high-temperature
fused glasses that are challenging to generate a molten glass phase,
making it less complicated and time-consuming than the melting
and casting process. However, the resulting intrinsic porosity, thus
limiting the creation of geometrically complex combinations, is a
significant disadvantage [138-140].

3.2.3. Sol-gel process

The sol-gel liquid-phase method is used for curing compounds
with high levels of chemically active components. The compounds
are then heated to produce oxides or other solid compounds. A
precursor, such as an inorganic compound or metal alkoxide, is
used to mix these raw materials in the liquid phase uniformly.
Catalytic hydrolysis and condensation processes are subsequently
conducted to create a stable, transparent sol system in the solution.
Aging further causes the sol to become more polycondensed and
polymerized, resulting in a gel characterized by a three-
dimensional spatial network.

Drying, sintering, and hardening the gel led to the preparation
of molecular and nanostructured materials. This process enables
the creation of various glasses with unique compositions, such as
high-silica glasses, which are challenging to produce using
standard fusion quenching techniques under mild synthesis
conditions. A commonly used alternative to these compounds is
inorganic metal salts, such as nitrates and chlorides, and organic
chelating agents that are less expensive and volatile. To produce
monolithic sol-gel glass, the gel is aged and densified over a long
period at high temperatures [141]. The benefits of sol-gel glasses
over the conventional melted-quenching technique include
improved homogeneity, higher purity levels, and reduced
stoichiometric losses [142].

An additional advantage is the substantial compositional
flexibility of the prepared materials and the ease of applying them
over a vast substrate area [143]. The primary benefits of this
technique are the nanoscale size of the glass particles, which
enhances the uniformity of the final product, and lowering the
temperature, which prevents the potential volatilization of the glass

particles and reduces contamination. However, this method can be
costly and time-consuming, and gel shrinkage is risky during
sintering [138, 144].

3.3. Applications

A glass ceramic can be used in two applications: as a highly
durable material for restorative dentistry and a substitute for hard
tissue [145].

Using ferrimagnetic and bioactive glass ceramics as thermo-
seeds for treating bone tumors is expected to be advantageous.
These materials may effectively kill cancer cells when positioned
near the tumors by forming an interfacial bond with bone and
indirectly heating cancer cells due to their ferrimagnetic properties
[146].

3.3.1. Tissue engineering

Bioceramics are utilized to restore significant bone loss
resulting from diseases such as cancer, and several ceramics are
currently available for treating severe bone and joint disorders or
deformities [147]. These may include rings arranged in a circle
around a metal pin in the center of the remaining bone [148]. New
bone grows into the implants, effectively acting as a scaffold for
regrowth. The Apatite-Wollastonite glass—ceramic (A—W GC) has
a high level of osseointegration and important mechanical
properties like flexural strength and fracture toughness. However,
the system's lack of bioresorbability and inability to bulk nucleate
pose additional research and design challenges. Recently
developed  chlorapatite  glass  ceramics  demonstrate
osseointegration and resorbability [149]. Nevertheless, further
investigation is necessary to assess their in vivo activity, the
relationship between structure and properties, and mechanical and
microstructural characteristics.

This powerful A/W GC features a chemical composition of
MgO 4.6, CaO 44.9, SiO, 34.2, and CaF, 0.5, which increases its
compressive strength to 10800 kg cm™ and bending strength to
2000 kg cm™. A/W GC was developed in 1983 for spine and hip
surgeries for patients with severe lesions or abnormal bones;
however, its mechanical strength is not as good as that of cortical
bone [150]. Each component consists of 35%, 40%, and 25%
calcium oxyfluorapatite (CaO;o(PO4)s(O, F,)) and calcium silicate
(CaSiO0s), respectively. It was developed by Kokubo et al [151].
Several glass-ceramic vertebral prostheses with radiopaque
anchors that adhered well to the bones were suitable for clinical
applications. In the operating room, the surgeon can choose among
different prostheses based on their size [152].

Despite being significantly more bioactive, Cerabone® A/W
shares properties with lithium disilicate-based glass-ceramics
[153]. When biological fluids come into contact with a glass-
ceramic, Ca*" ions are released, imparting bioactive qualities.
Among them are calcium phosphates, hydroxyapatite, and other
bioactive glasses [152].

3.3.2. Cancer therapy

Magnetic glass ceramics, serving as thermo-seed materials for
cancer Therapy, have recently garnered significant attention due to
their acceptable bioactivity.

A variety of factors affect the heat generated by these materials
when implanted around cancerous bone tissues, including the
magnetic properties of the material, the amount of magnetic crystal
phases present within the material, the intensity and frequency of
the applied alternating magnetic field, as well as the glass-ceramic
microstructure [154, 155].
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Magnetic bioactive glass ceramics can form apatite upon
exposure to SBF, which has commonly been used to assess their in
vitro bioactivity. Glass ceramics bond with living tissues by
creating an appetite layer following SBF immersion. In general,
two different magnetic field intensities are utilized to evaluate the
magnetic hysteresis loops of glass ceramics: high (=10 kOe) and
low (500 Oe).

The higher magnetic field value is adequate for saturation
magnetization, while low-field measurements are suitable for
clinical laboratory settings [156]. The calorimetric measurement of
magnetic glass ceramics is often performed using a magnetic
induction furnace at an operating frequency of approximately 500
Oe (~400 kHz) [155].

Li et al. [157] proposed a new scaffold for tissue engineering
based on chitosan, incorporating apatite-wollastonite magnetic
glass-ceramic particles to enhance osteogenic potential in bone
defects. Various rabbit models were used to test the scaffold in
vivo, with some implanted with free scaffolds and others with
scaffolds filled with rabbit bone marrow stromal cells (BMSCs).
Based on the results, the scaffolds were effective in enhancing the
osteogenic potential of newly produced bone in vivo.

Magnetic bioactive glass-ceramic is a viable bone substitute
biomaterial for regenerating injured hard tissues and treating
malignant hyperthermia [156].

3.3.3. Dental applications

There are several inherent drawbacks associated with
traditional dental restorations, which can be addressed by
functional dental ceramic coatings. Coatings protect dental
substrates like crowns, bridges, implants, inlays, and veneers and
serve as multipurpose materials.

The main goal of these coatings is to enhance the
biocompatibility, antibacterial properties, and resistance to
deterioration of the restorations. Natural polymers like chitosan are
often incorporated into the coatings to improve their performance
further, increasing their effectiveness and durability. For instance,
researchers have successfully created Fluorapatite glass-ceramics
(FGC) coatings on TicALV substrates using dip-coating and heat
treatment methods. As a result of their excellent bioactivity and
defect-free, crack-free interface, these coatings are also suitable for
implanting in humans [158, 159].

FGC was primarily used on overlay inlays, which are metal-
based restorations, in the early 21st century. For example, Holand
et al. [145] used FGC veneers on metal anterior teeth, which
produced a visual match with neighboring natural teeth. As ZrO,
has become more widely utilized in dental restorations, FGC has
also become commonly used as a veneering material for ZrO,
restorations, and to finish bridge constructions with porcelain [160,
161].

FGC veneers were found to function as zirconia veneers over
the course of 30 months in the oral cavity, according to Spies et al.
[162]. According to Ritzberger et al. [163], three-unit ZrO2 bridges
were improved by applying FGC veneers, leading to restorations
that closely resembled natural teeth and met aesthetic demands.

Zhang et al. [164] used FGC to penetrate and cover ZrO,
surfaces to prevent ZrO, restorations from becoming loose,
significantly strengthening the bond between ZrO, and natural
teeth. Their research demonstrated that it enhances the durability
of the adhesive bond and flexural strength, along with
approximately a threefold increase in bond strength compared to
the initial bond. Fluorapatite—mullite composite glass ceramics
were produced and heated to high temperatures to enhance the
coating's adherence to substrates. This process allowed the coating
to penetrate the substrate [165].

The final coatings exhibited mechanical resistance, chemical
durability, and robust bonding. The osseointegration potential was
also promising, and the risk of inflammation was low [164].

4. Ceramic

Due to their favorable physico-chemical characteristics that
align with specific human body components, ceramics classified
as metal and metalloid oxides, nitrides, sulfides, and carbides play
a significant role in the biomedical sector [166, 167].

4.1. Composition and properties

Since their inception, ceramics have been recognized as one of
the most significant high-performance materials because of their
exceptional mechanical strength, hardness, and the ability to resist
corrosion, wear, and temperature. In contemporary industries such
as mechatronics, aerospace, defense, energy, as well as chemical
and biomedical fields, enabling applications for advanced
ceramics with distinctive geometrical features and unique
functionalities [163].

Compared to other biomaterials, bioceramics possess a distinct
set of qualities. For example: (i) materials with intense intrinsic
strength, such as alumina and zirconia, exhibit excellent
mechanical properties, including strong resistance to wear and low
friction coefficient, making them suitable for high-stress
applications like dental implants and artificial joints; (ii)
biocompatibility- generally speaking, bioceramics are compatible
with human tissues, decrease the likelihood of adverse reactions or
inflammation.

Certain bioceramics, such as hydroxyapatite and bioactive
glasses, display bioactive behaviors that promote tissue
regeneration and osteointegration; (iii) versatility- bioceramics can
be precisely shaped, and their compositions can be modified to
improve certain properties. Due to these characteristics,
bioceramics can address a wide range of biomedical challenges.
Research on ceramic biomaterials is advancing rapidly,
uncovering new significant applications in biotechnology and
medicine, particularly in load-bearing components, joint
replacements, fillers, veneering materials, drug delivery systems,
and biomimetic scaffolds [168, 169].

4.2. Synthesis methods

Ceramic synthesis is a versatile and essential field of materials
science that produces high-performance ceramics with specific
properties tailored for industrial and scientific applications through
various techniques. The chosen synthesis method depends on the
intended application and material requirements.

4.2.1. Sol-gel process

The sol-gel technique is a method for producing ceramic
powders, among other things. It involves slowly dehydrating the
hydroxide sol of a specific powder to form a gel, which is then
calcined to produce a fine, uniform powder. The advantages of this
process include a relatively low production cost and the ability to
obtain various materials. However, the drawbacks involve
challenges in managing particle size and the extent of
agglomeration, which can be mitigated by either polymerizing
agents that facilitate the gelling process or various capping agents
that prevent grain growth. Natural polymers, mainly starch and its
derivatives, are the most commonly used [170-172]. Fig. 4 shows
the synthesis of ceramics by the sol-gel method.
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Fig. 4. Scheme of the sol-gel synthesis of ceramics [173].

4.2.2. Combustion process

One of the most effective and economical methods for
producing ceramic powders is combustion synthesis, also known
as self-propagating high-temperature synthesis, due to its
straightforward experimental approach, comparatively quick
process, and, most importantly, high-purity products. This process
involves an elevated reaction temperature and a specific heating
and cooling rate, which help to control the powders'
microstructure. Typically, combustion synthesis starts with an
oxidant precursor (usually metal nitrate) reacting with a fuel (an
organic derivative) that serves as a reducing reagent. The energy
generated by the reaction powers a subsequent step, igniting the
reagents to produce a ceramic powder. The end products comprise
nitrogen, carbon dioxide, water vapor, and metal oxide or its
spinel. In this context, the fuel-to-oxidant ratio and the type of
combustion fuel are the most crucial factors. When selecting a fuel,
we should consider its enthalpy of combustion; a lower value for
this parameter reduces the exothermicity of the combustion
process and decreases the temperature at which the chosen powder
is produced. While hydrazide-type compounds were used in the
past, urea, carbon, and polysaccharides, starch, most commonly
used, are now favored due to their nontoxicity [174, 175].

4.3. Applications

The remarkable qualities of ceramic materials, including their high
strength, durability, heat resistance, and chemical stability, make
them widely used across various industries. In the biomedical field,
ceramics are utilized for drug delivery, implants, dental
applications, and bone-tissue engineering because of their
biocompatibility and regenerative potential (Fig. 5).

4.3.1. Drug delivery

In particular, biomedical applications, especially drug
delivery, metal oxide-based nanoparticles, such as zinc oxides and
Zn-containing composites, are considered viable platforms. Drug
delivery refers to the administration of drugs using an appropriate
vehicle to ensure effective treatment with minimal side effects
[176]. CaP-based hybrid nanoceramics can be designed to deliver
anticancer drugs with fluorescence tracers and achieve
fluorescence imaging (FLI)-guided therapy. CaP nanocarriers
integrated with fluorescence tracers can function as optical
reporters, allowing for real-time drug delivery and release
monitoring, and assessing the therapeutic effects of delivered

drugs in vivo. Fluorescence agents include organic fluorescent
dyes, quantum dots, fluorescent macromolecules, rare earth
oxides, and metals [177].

Applications

of Ceramics

Fig. 5. Bio applications of ceramics.

Due to CO*radical impurities, Singh et al [178]. Reported a
novel HAp-based nanocarrier with self-fluorescence imaging
capability. Hydrothermal methods prepared the HAp nanorods,
and the self-fluorescent HAp nanorods (fHAp) enabled imaging
capabilities and showed great potential for theranostics
applications. These results indicate that hybrid fHAp@mSi
nanocarriers have significant potential for effective loading of
therapeutic molecules, drug delivery within intracellular
compartments, and the ability to perform in situ imaging. Peng et
al. [179] used silane chemistry to coat Fe;O, nanoparticles with
zwitterionic polymer membranes, enhancing the nanoparticles'
stability, a crucial factor in medication delivery for cancer
treatment, where prolonged blood circulation is necessary.

4.3.2. Tissue engineering

Considering their capacity for autologous recellularization, the
preservation of native arterial architecture, and the elimination of
cell-based antigens, decellularized vascular grafts have recently
been examined in tissue engineering for their potential use in
cardiac medicine [180, 181].Marinval et al. [180] and lijima et al.
[181] have developed coatings for decellularized vascular grafts to
reduce the risk of thrombosis and degeneration. Marinval et al.
[180] manually coated a valve scaffold with three layers of a
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fucoidan/vascular  endothelial ~ growth  factor  (VEGF)
polyelectrolyte multilayer film (PEM) to enhance re-
endothelization and decrease thrombogenicity and calcification of
decellularized porcine heart valves. The coating demonstrated the
desired increase in antithrombotic activity without elevating
calcification, and the modified scaffold also displayed improved
re-endothelization and potential for stem cell repopulation. To
polymerize the coating as a gel inside the lumen, lijima et al. [181]
coated the internal surfaces of aortic grafts (Wistar rats) with a
hydrogel-VEGF mixture. In vivo, results showed that the coating
stimulated medial recellularization and significantly increased
endothelium formation compared to the uncoated graft control
group. Understanding the need for bioactive composite scaffolds
with favorable mechanical properties, Luo et al. [182] utilized in-
situ mineralization and 3D printing to create alginate/gelatin
scaffolds featuring a uniform nanoapatite coating; the phosphate
ion concentration could regulate the coating thickness. The coated
scaffold exhibited superior mechanical properties (two-fold higher
Young's modulus) compared to uncoated scaffolds, and it also
enhanced the proliferation and osteogenic differentiation of rat
bone marrow cells.

4.3.3. Knee implants

Medical devices known as knee implants consist of various
components designed to replicate the joint's surface, made up of
broken bone and cartilage. The lower part of the femur, the upper
part of the tibia, and the back surface of the patella can all be
replaced. Metals are typically used in this type of surgery [183].
The abnormal hinge-like action of these metal knee implants can
increase strain on the knee's supporting muscles and ligaments,
leading to various knee issues. Therefore, similar to the case with
THA, using additional materials, such as bioinert ceramics, is
necessary. To assess clinical and radiological outcomes and the
long-term durability of the ceramic tri-condylar implant over 15
years, Nakamura et al [184] developed a ceramic tri-condylar
implant with an alumina ceramic femoral component. However,
Meier et al. [185] demonstrated the potential of the metal-free
BPK-S ceramic complete knee replacement system, which is a safe
and effective clinical alternative to metal implants.

4.3.4. Dental applications

The compatibility of ceramic materials with living tissues is a
key characteristic of their use in dentistry. Examples of
bioceramics that have been researched for dental applications in
recent decades include alumina, zirconia, SiAION, bioglasses, and
hydroxyapatite  (Ca;o(PO4)s(OH),)  [186-188].  Numerous
researchers have studied the use of a combination of polylactides
and bio-ceramics in bone surgery in recent years. These materials
are utilized in sinus lift operations and bone augmentation
surgeries before implant insertion [189, 190]. Using autogenous,
homogenous, and xenogenous bone grafts and their undesirable
side effects can be reduced by porous three-dimensional structures
(scaffolds) made from bioabsorbable ceramics like hydroxyapatite
or tricalcium phosphate [191]. Because zirconia is bioactive,
biocompatible, and has good mechanical and aesthetic qualities
that improve the quality of dental implants, HAp incorporated into
zirconia provides high stability and protection over an extended
period, aiding in the integration of dental implants.

These composites are promising new bone restorative materials
with characteristics similar to human bone, and various HAp
coatings can modify the surface of zirconia composites. Because
of these materials' advantages in dental implant applications can
be considered alternatives to titanium and its alloys, two of their

conventional counterparts [192]. Ceramics are often used in
dentistry due to their easily achievable shape, color, and
customized mechanical properties. Crystalline mineral salts are
dispersed throughout a vitreous silicate matrix that constitutes
dental porcelain. Smaller quantities of metal oxides, used as dyes
to replicate the color of natural teeth and to increase the coefficient
of thermal expansion while lowering the melting temperature, are
incorporated into the ceramic's composition [193, 194]. Dental
porcelain is applied in veneering, the fabrication of prosthetic
teeth, indirect cosmetic restorations such as facades and
inlays/overlays, and the construction of fixed frameworks like
metal-ceramic rims and bridges [195, 196]. Glass-matrix ceramics
are derived from a ternary material system comprising clay/kaolin,
quartz (silica), and natural feldspar (a mixture of potassium and
sodium aluminosilicate). Potassium feldspar (K,A;,SisO16) that
develops into leucite crystals (the crystalline phase) can enhance a
restoration's inherent strength. These bioceramic materials are
utilized as aesthetic monolithic tooth-covering and veneering
materials in ceramic substrates and metal alloys [197]. The
creation of ceramic structures utilizing 3D scaffolding as
substitutes for dental bone has garnered significant attention in
regenerative dentistry. In this context, a study byMihai M.C.
Fabricky et al. [198] explores the development of two scaffold-like
structures derived from various commercial dental ceramics using
the foam replication technique. Fig. 6 illustrates an overview of
these newly developed ceramic scaffold structures.

P3 P4

Fig. 6. General summary of ceramic scaffolds P3 and P4 [198].

5. Future challenges

The inherent brittleness of bioactive glasses and bioceramics
limits their use as structural materials. Innovative solutions are
necessary to tackle this issue, such as developing hybrid
composites or utilizing polymers to improve mechanical properties
while maintaining bioactivity. Thermal treatments often lead to the
crystallization of bioactive glasses, which can diminish or inhibit
their bioactivity. It is essential to create methods to prevent or
control crystallization for applications like coatings and porous
scaffolds [199].

Scaling up manufacturing from laboratory research to
industrial applications remains challenging due to issues with cost-
effectiveness, repeatability, and regulatory barriers. The
widespread acceptance of bioactive glass-based products relies on
developing standardized manufacturing processes [200]. Green
synthesis techniques are increasingly essential for bioactive
glasses to reduce the negative environmental impacts of
production.  Developing  eco-friendly  processes  without
compromising material properties is becoming increasingly
important [201].

Additionally, investigations into bone regeneration in the past
ten years have shown that inadequate or delayed vascularization
presents a significant barrier to transforming regenerative medical



10 T. Ghasabpour et al./ Journal of Composites and Compounds 7(2025) 1-14

devices into clinical products. Promoting blood vessel infiltration
into the scaffolds is essential for vascularized bone to function and
remain viable long-term. Viable cells are typically confined to the
outer or superficial layers of the tissue constructs due to limitations
in the flow of oxygen and nutrients. Consequently, bone
development is minimal in the central areas of the scaffold, which
could be considered for further research to address these
challenges [202].

These issues represent crucial topics for further study and
development to fully realize the potential of bioactive glasses,
glass ceramics, and ceramic composites in regenerative medicine
and other fields.
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