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A B S T R A C T 
 

A R T I C L E    I N F O R M A T I O N 

This study explores the ductile fracture mechanisms of cracked and notched composite 
elements, focusing on their structural integrity and failure behavior under various 
loading conditions. Composites are increasingly utilized in engineering applications 
due to their high strength-to-weight ratios and tailored properties; however, 
understanding the fracture processes is essential for optimizing their performance and 
durability. We analyze the key factors influencing ductile fracture, including material 
composition, notch geometry, and the influence of environmental conditions. This 
review aims to provide insights into the critical parameters that govern ductile failure, 
facilitating improved predictive models for the assessment and longevity of composite 
structures. 
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1. Introduction 

Ductile fracture mechanisms represent a critical area of study 
in materials science, particularly concerning composite materials 
that exhibit both cracked and notched configurations [1, 2]. 
Composite materials have become indispensable in various 
industries, including aerospace, automotive, and construction, due 
to their superior strength-to-weight ratio, corrosion resistance, and 
design flexibility [3, 4]. However, the presence of defects such as 
cracks and notches significantly impact the structural integrity and 
mechanical performance of composite elements [5]. These defects 
act as stress concentrators, initiating and propagating damage 
under mechanical loading, which can lead to premature failure[6, 
7]. In addition, the complexity of ductile fracture in composite 
materials emerges from a multifaceted interplay between the 
matrix and reinforcement phases. Each of these components plays 

a crucial role in influencing the overall mechanical response of the 
material [8]. The matrix, typically a polymer or metal, provides a 
binding matrix that supports the reinforcement, which may consist 
of fibers or particles that confer strength and rigidity [9]. Together, 
they interact in a way that not only affects the load distribution and 
stress concentrations but also determines how the material behaves 
under various mechanical loads. The failure mechanisms that arise 
in such composites are therefore not merely a result of one phase 
failing but are significantly determined by the dynamic 
interactions between the matrix and the reinforcements, leading to 
the observed complexity in ductile fracture behavior [10-12]. This 
makes the study of crack and notch behavior in composites both 
challenging and essential. This mini review aims to investigate the 
ductile fracture mechanisms of cracked and notched composite 
elements, focusing on the interaction between matrix and fiber, 
stress distribution, and the factors influencing crack growth and 
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failure modes. By gaining insights into these mechanisms, it is 
possible to enhance the reliability and safety of composite 
structures in demanding applications. 

 
2. Overview of ductile fracture mechanisms 

Ductile fracture in composites involves mechanisms that allow 
for non-linear deformation and gradual failure, rather than sudden 
catastrophic failure [13]. Their mechanism in composite materials 
is characterized by a sequence of processes that involve the 
nucleation, growth, and coalescence of voids within the material 
structure [14]. Fig. 1 illustrate a schematic of several failure 
mechanisms that are usually called ‘ductile fracture’. The ductile 
fracture mechanisms encompass five main processes, each with 
distinct characteristics. Mechanism 1 occurs in very pure metals, 
where failure can happen without damage due to the absence of 
void nucleation sites. In Mechanism 2, plasticity localizes into 
shear bands, and as large plastic strains accumulate, voids 
nucleate, grow, and coalesce. Mechanism 3 involves damage 
nucleation occurring before macroscopic localization, where the 
softening induced by accumulated porosity counteracts the 
material's strain-hardening capacity. Mechanism 4 refers to the 
simultaneous occurrence of macroscopic localization and 
coalescence, where the onset of coalescence dictates macroscopic 
localization. Finally, Mechanism 5 distinguishes between large-
scale coalescence localizations and those involving only a few 
voids, focusing on macroscopic localizations due to void growth 
or coalescence [14]. These mechanisms are crucial for 
understanding how composites behave under stress, particularly 
when they contain defects such as cracks or notches [15].  

In contrast to brittle fracture, which occurs suddenly with little 
plastic deformation, ductile fracture allows for significant 
deformation prior to failure, providing insights into the material's 
toughness and resilience [16]. The initiation of ductile fracture 
typically begins with the nucleation of voids at stress concentrators, 
such as inclusions or interfaces between different phases in the 
composite. As the material is subjected to tensile stress, these voids 
grow and eventually coalesce, leading to macroscopic failure. This 
process is influenced by several factors, including the material's 
microstructure, loading conditions, and the presence of interfacial 
interactions between different components of the composite [17, 
18]. For instance, recent studies have shown that enhancing 
interfacial bonding through modifications can significantly 
improve ductility by facilitating better load transfer and delaying 
the onset of fracture [19]. Moreover, the role of microstructural 
features is pivotal in dictating the fracture behavior of composites. 
The distribution and morphology of reinforcing fibers, matrix 
materials, and any existing flaws can profoundly affect how voids 

nucleate and grow [20]. Moreover, the influence of matrix 
materials and their interaction with reinforcing fibers is critical in 
dictating the fracture mechanisms [21]. Liu et al. [22] demonstrate 
that in 3D needle- punched C/SiC ceramic-matrix composites, 
damage mechanisms such as matrix cracking, fiber breakage, and 
pullout contribute to a nonlinear tensile response, which is 
essential for understanding ductile fracture behavior 

 
3. Crack and notch behavior in composite materials 

Crack and notch behavior in composite elements is a crucial 
aspect of understanding their durability and performance under 
various loading condition [23]. Composites, which typically 
consist of a matrix material reinforced with fibers, exhibit unique 
fracture characteristics due to their heterogeneous structure. When 
subjected to stress, cracks can initiate from defects, notches, or 
interfaces between different materials, leading to complex failure 
modes such as delamination’s, fiber breakage, and matrix cracking 
[24, 25]. The behavior of cracks in composites is influenced by 
several factors, including the type of fibers used, the matrix 
material, and the loading environment [26]. Additionally, the 
interaction between cracks and the composite's microstructure 
plays a vital role in determining how these materials respond to 
stress. Advanced modeling techniques, such as finite element 
analysis (FEA), have been developed to simulate crack 
propagation and assess the structural integrity of composite 
materials under monotonic and cyclic loading conditions [27, 28]. 
Experimental studies have also highlighted the importance of 
environmental factors on crack behavior [29, 30]. This section 
provides an overview of the primary ductile fracture mechanisms 
observed in cracked or notched composite elements, highlighting 
the role of matrix properties, fiber reinforcement, and interfacial 
interactions. 

3.1. Matrix cracking 

The matrix in composite materials serves as the primary load- 
bearing phase and is crucial for transferring loads between fibers. 
Under tensile loading, the matrix can experience cracking, which is 
often the first mode of damage. The initiation of matrix cracks 
typically occurs at stress concentrations, such as those found at 
notches or defects [31]. These cracks can propagate through the 
matrix, leading to a reduction in load transfer efficiency and 
ultimately contributing to the overall failure of the composite. 
Research by Liu et al. [22] demonstrated that matrix cracking is a 
significant precursor to more catastrophic failure modes in 3D 
needle-punched composites, indicating that understanding matrix 
behavior is essential for predicting ductile fracture.

 

Fig. 1. Schematic of several failure mechanisms ductile fracture. 
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3.2. Fiber breakage and pull-out 

Fibers are incorporated to enhance strength and stiffness in 
composite materials [32]. However, under tensile loading, fibers 
can also break, particularly when subjected to high stress 
concentrations. The breakage of fibers contributes to energy 
dissipation during fracture, which is a hallmark of ductile behavior 
[33]. Additionally, fiber pull-out mechanisms play a crucial role 
in enhancing the toughness of composites. When fibers are pulled 
out of the matrix, they absorb energy, which delays crack 
propagation and increases the overall fracture resistance of the 
material [34]. 

3.3. Interfacial debonding 

The interface between the fiber and matrix is critical in 
determining the mechanical performance of composites. 
Interfacial debonding occurs when the adhesive bond between the 
fiber and matrix fails, allowing for relative motion between these 
two phases [35]. This mechanism can contribute to ductility by 
allowing for energy dissipation through the sliding of fibers within 
the matrix [36]. For instance, in applications such as reinforced 
concrete, the use of steel fibers can enhance ductility and 
toughness. When subjected to tensile loads, if the bond between 
the steel fibers and concrete weakens, the fibers may slide within 
the matrix rather than break. This sliding action allows for energy 
absorption, which can help prevent sudden failure of the structure 
[37, 38]. 

3.4. Fiber bridging 

Fiber bridging is another critical mechanism that contributes to 
ductile fracture behavior in composites. When a crack propagates 
through a composite, fibers that span the crack can bridge the gap, 
providing additional load-bearing capacity and delaying crack 
propagation [39]. This mechanism is particularly effective in 
improving the toughness of composites, as it allows for continued 
load transfer even after the initial crack has formed [40]. A notable 
example of fiber bridging in civil engineering is found in 
Engineered Cementitious Composites (ECC). Review by VC Li 
[41] demonstrated that ECC exhibits significant ductility and 
toughness due to its unique fiber bridging capabilities. The fibers 
within the ECC matrix can bridge cracks, thus preventing rapid 
failure and allowing for energy dissipation during loading 
conditions. 

3.5. Temperature and rate effects 

The mechanical behavior of composites is significantly 
influenced by temperature and loading rates [42]. Elevated 
temperatures can reduce the strength and stiffness of polymer-
based composites, leading to premature failure, especially in 
structures exposed to high heat [43]. Conversely, high loading rates 
may enhance the apparent strength of some materials due to strain 
rate sensitivity, but can also result in brittle failure if not properly 
accounted [44]. 

 
4. Factors affecting fracture mechanisms 

Several factors influence the ductile fracture mechanism in 
composite materials. Material properties such as yield strength, 
tensile strength, and hardness play a significant role [45, 46]. High 
yield strength materials can withstand substantial stress without 
experiencing permanent deformation, reducing the likelihood of 
ductile fracture [47].  

Conversely, excessive hardness may increase brittleness, 
making a material more prone to sudden failure. Grain size and 
orientation are also crucial; finer grains can enhance ductility by 
providing more slip systems for dislocation movement, which aids 
in energy dissipation during deformation [48]. The rate of loading 
is another important factor; slower loading rates allow more time 
for plastic deformation to occur, enhancing ductility. Rapid 
loading can lead to premature failure even in materials that are 
typically ductile. Environmental factors such as temperature 
significantly affect ductile fracture behavior. At lower 
temperatures, materials may exhibit increased brittleness and a 
higher propensity for sudden failure [49, 50]. In contrast, elevated 
temperatures generally promote greater plastic deformation before 
fracture occurs. Additionally, the history of stress and strain 
experienced by a material can led to fatigue damage over time. 
Repeated loading cycles may cause localized structural damage 
that can culminate in ductile fracture under stress levels that would 
otherwise be acceptable [51-53]. 

 
5. Conclusion 

The study of ductile fracture mechanisms in cracked or notched 
composite elements is essential for enhancing the reliability and 
performance of engineering materials. This mini-review has 
underscored the complex interplay of factors such as material 
properties, environmental conditions, loading scenarios, and 
microstructural characteristics that influence ductile fracture 
behavior. A deeper understanding of these mechanisms is crucial 
for predicting failure modes and improving the design of 
composite materials in structural applications. Looking ahead, 
further research is needed to refine our understanding of ductile 
fracture mechanisms. Future studies should focus on integrating 
advanced computational techniques, such as phase-field modeling 
and finite element analysis, to simulate crack propagation more 
accurately in complex composite structures. Additionally, 
exploring innovative material compositions and hybrid structures 
can provide valuable insights into enhancing ductility and overall 
fracture toughness. Moreover, the development of real-time 
monitoring technologies that assess stress and strain in composite 
structures during service could lead to proactive maintenance 
strategies, minimizing the risk of catastrophic failure. 
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