Electrical properties of polymer blend composites based on silicone rubber/EPDM/clay hybrid for high voltage insulators
DOI:
https://doi.org/10.52547/jcc.3.1.3Keywords:
EPDM, Silicone rubber, Clay, Nanocomposite, Dielectric propertiesAbstract
Silicone rubber (SR) and ethylene-propylene-diene monomer (EPDM) are widely-used polymers as housing for high voltage insulators. In this work, SR/EPDM/clay nanocomposites were obtained by two-roll mill mixing for outdoor polymeric insulators. Morphology, dielectric properties, dielectric breakdown strength (DBS), and surface and volume resistivity of different weight contents of nanoclay (Cloisite 15A) incorporated in SR, EPDM, and SR/EPDM hybrid nanocomposites were characterized. In addition, the distribution of breakdown voltages was fit to the distribution of Weibull and estimated the scale and shape parameters. The polar groups of the clay particles enhanced the polarization capability of the nanocomposites. Moreover, DBS results showed an enhancement of the dielectric strength proportional to clay content. Finally, the surface and volume resistance of all nanocomposites decreases but maintains very high electrical resistance. The experimental data presented in this study will be useful for designing and manufacturing the outdoor insulators.
Published
How to Cite
License
Copyright (c) 2021 JCC Research Group
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors will be asked, upon acceptance of an article, to transfer copyright of the article to the Publisher. This will ensure the widest possible dissemination of information under copyright laws. The submitted materials may be considered for inclusion but can not be returned.
Licensing: The JCC articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source (appropriate citation), provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
*Author rights
As an author you (or your employer or institution) have certain rights to reuse your work.