Preparation of graphene nanolayers through surfactant-assisted pure shear milling method
DOI:
https://doi.org/10.29252/jcc.1.1.4Keywords:
Ultrathin, Multilayer Structure, Graphene nanolayer, Sodium-dodecylsulfateAbstract
In this study, graphite powder was used to prepare few-layer graphene sheets through shear milling. During the process, graphite was well-dispersed in double distilled water as a lubricant and sodium dodecylsulfate (SDS), followed by shaking and milling under low energy. The exerted sheer force led to continuous delamination of graphene flakes. The microstructural investigation was performed by SEM. Also, the energy dispersive X-ray spectroscopy (EDS) analysis was performed to determine distinct levels of carbon in different fragments of graphite. The ultrathin multilayer structure of graphite was successfully obtained using the surfactant of SDS, which can lead to the production of molecularly thin sheets by mechanical peeling. Moreover, it was found that this synthesis method has advantages, including cost-effectiveness and ease in performance for producing a lot of graphene nanolayers.
References
A. Moghanian, F. Sharifianjazi, P. Abachi, E. Sadeghi, H. Jafarikhorami, A. Sedghi, Production and properties of Cu/TiO2 nano-composites, Journal of Alloys and Compounds 698 (2017) 518-524.
F. Sharifianjazi, N. Parvin, M. Tahriri, Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses, Ceramics Interna-tional 43(17) (2017) 15214-15220.
M. Radmansouri, E. Bahmani, E. Sarikhani, K. Rahmani, F. Sharifianjazi, M. Irani, Doxorubicin hydrochloride - Loaded electrospun chitosan/cobalt ferrite/tita-nium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release, International Journal of Biological Macromolecules 116 (2018) 378-384.
P. Abasian, M. Radmansouri, M. Habibi Jouybari, M.V. Ghasemi, A. Moham-madi, M. Irani, F.S. Jazi, Incorporation of magnetic NaX zeolite/DOX into the PLA/chitosan nanofibers for sustained release of doxorubicin against carcinoma cells death in vitro, International Journal of Biological Macromolecules 121 (2019) 398-406.
F.S. Jazi, N. Parvin, M. Tahriri, M. Alizadeh, S. Abedini, M. Alizadeh, The relationship between the synthesis and morphology of SnO2-Ag2O nanocomposite, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 44(5) (2014) 759-764.
A.R. Rouhani, A.H. Esmaeil-Khanian, F. Davar, S. Hasani, The effect of aga-rose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method, International Journal of Applied Ceramic Technology 15(3) (2018) 758-765.
V. Salimian Rizi, F. Sharifianjazi, H. Jafarikhorami, N. Parvin, L. Saei Fard, M. Irani, A. Esmaeilkhanian, Sol–gel derived SnO2/Ag2O ceramic nanocomposite for H2 gas sensing applications, Materials Research Express 6(11) (2019) 1150g2.
S. Abedini, N. Parvin, P. Ashtari, F. Jazi, Microstructure, strength and CO2separation characteristics of ?-alumina supported ?-alumina thin film membrane, Advances in Applied Ceramics 112(1) (2013) 17-22.
F. Sharifianjazi, N. Parvin, M. Tahriri, Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses, Journal of Non-Crystalline Solids 476 (2017) 108-113.
M. Alizadeh, F. Sharifianjazi, E. Haghshenasjazi, M. Aghakhani, L. Rajabi, Production of nanosized boron oxide powder by high-energy ball milling, Synthe-sis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 45(1) (2015) 11-14.
E.H. Jazi, R. Esalmi-Farsani, G. Borhani, F.S. Jazi, Synthesis and Character-ization of In Situ Al-Al13Fe4-Al2O3-TiB2 Nanocomposite Powder by Mechanical Alloying and Subsequent Heat Treatment, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 44(2) (2014) 177-184.
A. Esmaeilkhanian, F. Sharifianjazi, A. Abouchenari, A. Rouhani, N. Parvin, M. Irani, Synthesis and Characterization of Natural Nano-hydroxyapatite Derived from Turkey Femur-Bone Waste, Applied Biochemistry and Biotechnology 189(3) (2019) 919-932.
E. Sharifi Sedeh, S. Mirdamadi, F. Sharifianjazi, M. Tahriri, Synthesis and evaluation of mechanical and biological properties of scaffold prepared from Ti and Mg with different volume percent, Synthesis and Reactivity in Inorganic, Met-al-Organic, and Nano-Metal Chemistry 45(7) (2015) 1087-1091.
V. Balouchi, F.S. Jazi, A. Saidi, Developing (W, Ti) C-(Ni, Co) nanocomposite by SHS method, Journal of Ceramic Processing Research 16(5) (2015) 605-608.
A. Masoudian, M. Karbasi, F. SharifianJazi, A. Saidi, Developing Al2O3-TiC in-situ nanocomposite by SHS and analyzingtheeffects of Al content and mechan-ical activation on microstructure, Journal of Ceramic Processing Research 14(4) (2013) 486-491.
M. Radmansouri, E. Bahmani, E. Sarikhani, K. Rahmani, F. Sharifianjazi, M. Irani, Doxorubicin hydrochloride-Loaded electrospun chitosan/cobalt ferrite/tita-nium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release, International journal of biological macromolecules 116 (2018) 378-384.
K.S. Novoselov, A. Geim, The rise of graphene, Nat. Mater 6(3) (2007) 183-191.
A.K. Geim, K.S. Novoselov, The rise of graphene, Nanoscience and Tech-nology: A Collection of Reviews from Nature Journals, World Scientific2010, pp. 11-19.
C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene, Carbon 48 (2010) 2127-2150.
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Advanced materials 22(35) (2010) 3906-3924.
W. Wu, Z. Liu, L.A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y.P. Chen, S.-S. Pei, Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing, Sensor Actuat B-Chem 150 (2010) 296–300.
A. Ebel, M.A. Pegoraro, B. Malard, C. Tenailleau, J. Lacaze, Coarsening and dendritic instability of spheroidal graphite in high silicon cast iron under thermal cycling in the ferritic domain, Scripta Materialia 178 (2020) 86-89.
X. Ni, Z. Zheng, Extinguishment of sodium fires with Graphite@Stearate core-shell structured particles, Fire Safety Journal 111 (2020) 102933.
K. Shirvanimoghaddam, E. Ghasali, A. Pakseresht, S. Derakhshandeh, M. Alizadeh, T. Ebadzadeh, M. Naebe, Super hard carbon microtubes derived from natural cotton for development of high performance titanium composites, Journal of Alloys and Compounds 775 (2019) 601-616.
O. Ashrafiyan, M. Saremi, A. Pakseresht, E. Ghasali, Oxidation-Protective Coatings for Carbon-Carbon Composites, Production, Properties, and Applications of High Temperature Coatings, IGI Global2018, pp. 429-446.
J. Sanchís, A. Freixa, J.C. López-Doval, L.H.M.L.M. Santos, S. Sabater, D. Barceló, E. Abad, M. Farré, Bioconcentration and bioaccumulation of C60 fuller-ene and C60 epoxide in biofilms and freshwater snails (Radix sp.), Environmental Research 180 (2020) 108715.
H. Nejat Pishkenari, A. Golzari, A temperature-calibrated continuum model for vibrational analysis of the fullerene family using molecular dynamics simula-tions, Applied Mathematical Modelling 80 (2020) 115-125.
Z. Genene, A. Negash, B.A. Abdulahi, R.T. Eachambadi, Z. Liu, N. Van den Brande, J. D’Haen, E. Wang, K. Vandewal, W. Maes, J. Manca, W. Mammo, S. Admassie, Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cells, Organic Electronics 77 (2020) 105572.
L. Bazli, M. Siavashi, A. Shiravi, A Review of Carbon Nanotube/TiO2 Com-posite Prepared via Sol-Gel Method, Composites and Compounds 1(1) (2019).
R. Maleki, H.H. Afrouzi, M. Hosseini, D. Toghraie, A. Piranfar, S. Rostami, pH-sensitive loading/releasing of doxorubicin using single-walled carbon nano-tube and multi-walled carbon nanotube: A molecular dynamics study, Computer Methods and Programs in Biomedicine 186 (2020) 105210.
Y.V. Fedoseeva, L.G. Bulusheva, V.O. Koroteev, J.Y. Mevellec, B.V. Senkovs-kiy, E. Flahaut, A.V. Okotrub, Preferred attachment of fluorine near oxygen-con-taining groups on the surface of double-walled carbon nanotubes, Applied Surface Science 504 (2020) 144357.
M.C. Martinez-Ballesta, N. Chelbi, A. Lopez-Zaplana, M. Carvajal, Discern-ing the mechanism of the multiwalled carbon nanotubes effect on root cell water and nutrient transport, Plant Physiology and Biochemistry 146 (2020) 23-30.
M. Ahmaruzzaman, D. Mohanta, A. Nath, Environmentally benign fabrica-tion of SnO2-CNT nanohybrids and their multifunctional efficiency as an adsor-bent, catalyst and antimicrobial agent for water decontamination, Scientific Re-ports 9(1) (2019) 12935.
S.A. Hussain, Comparison of Graphene and Carbon Nanotube Saturable Absorbers for Wavelength and Pulse Duration Tunability, Scientific Reports 9(1) (2019) 17282.
S.A. Delbari, B. Nayebi, E. Ghasali, M. Shokouhimehr, M.S. Asl, Spark plas-ma sintering of TiN ceramics codoped with SiC and CNT, Ceramics International 45(3) (2019) 3207-3216.
Y. Orooji, M.R. Derakhshandeh, E. Ghasali, M. Alizadeh, M. Shahedi Asl, T. Ebadzadeh, Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite, Ceramics International 45(13) (2019) 16015-16021.
Y. Orooji, E. Ghasali, M. Moradi, M.R. Derakhshandeh, M. Alizadeh, M.S. Asl, T. Ebadzadeh, Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering, Ceramics International 45(13) (2019) 16288-16296.
Y. Orooji, A.a. Alizadeh, E. Ghasali, M.R. Derakhshandeh, M. Alizadeh, M.S. Asl, T. Ebadzadeh, Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds, Ceramics International 45(16) (2019) 20844-20854.
P. Orsu, A. Koyyada, Recent progresses and challenges in graphene based nano materials for advanced therapeutical applications: a comprehensive review, Materials Today Communications 22 (2020) 100823.
J. Yang, S. Kumar, M. Kim, H. Hong, I. Akhtar, M.A. Rehman, N. Lee, J.-Y. Park, K.B. Kim, Y. Seo, Studies on directly grown few layer graphene processed using tape-peeling method, Carbon 158 (2020) 749-755.
W. Peng, K. Sun, Effects of Cu/graphene interface on the mechanical prop-erties of multilayer Cu/graphene composites, Mechanics of Materials 141 (2020) 103270.
A. Begum, M. Bose, G. Moula, Graphene Supported Rhodium Nanoparticles for Enhanced Electrocatalytic Hydrogen Evolution Reaction, Scientific Reports 9(1) (2019) 17027.
E. Ghasali, M. Alizadeh, A.H. Pakseresht, T. Ebadzadeh, Preparation of sili-con carbide/carbon fiber composites through high-temperature spark plasma sin-tering, Journal of Asian Ceramic Societies 5(4) (2017) 472-478.
K. Shirvanimoghaddam, S.U. Hamim, M.K. Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, Carbon fiber reinforced metal matrix composites: Fabrication processes and properties, Com-posites Part A: Applied Science and Manufacturing 92 (2017) 70-96.
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, electric field effect in atomically thin carbon films, Science 306(5696) (2004) 666-9.
J. Ota, S. Hait, M. Sastry, S. Ramakumar, Graphene dispersion in hydrocarbon medium and its application in lubricant technology, RSC Advances 5(66) (2015) 53326-53332.
W. Yu, H. Xie, X. Wang, X. Wang, Significant thermal conductivity enhance-ment for nanofluids containing graphene nanosheets, Physics Letters A 375(10) (2011) 1323-1328.
T.T. Baby, S. Ramaprabhu, Enhanced convective heat transfer using graphene dispersed nanofluids, Nanoscale research letters 6(1) (2011) 289.
X. Feng, S. Kwon, J.Y. Park, M. Salmeron, Superlubric sliding of graphene nanoflakes on graphene, ACS nano 7(2) (2013) 1718-1724.
K. Kim, H. Lee, C. Lee, Lee. SK, Jang. H., Ahn. JH, Kim. JH, Lee. HJ,“, Chemical vapor deposition-grwon graphene: the thinnest solid lubricant”, ACS Nano 5(6) (2011) 5107-5114.
D. Berman, A. Erdemir, A.V. Sumant, Few layer graphene to reduce wear and friction on sliding steel surfaces, Carbon 54 (2013) 454-459.
D. Berman, A. Erdemir, A.V. Sumant, Graphene: a new emerging lubricant, Materials Today 17(1) (2014) 31-42.
A. Altuntepe, A. Seyhan, R. Zan, Graphene for Si-based solar cells, Journal of Molecular Structure 1200 (2020) 127055.
U. Mehmood, H. Asghar, F. Babar, M. Younas, Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovolta-ic performance of dye-sensitized solar cells (DSSCSs), Solar Energy 196 (2020) 132-136.
M. Masjedi-Arani, M. Ghiyasiyan-Arani, O. Amiri, M. Salavati-Niasari, CdSnO3-graphene nanocomposites: Ultrasonic synthesis using glucose as cap-ping agent and characterization for electrochemical hydrogen storage, Ultrasonics Sonochemistry 61 (2020) 104840.
Z. Zhang, Z. Gao, R. Fang, H. Li, W. He, C. Du, UV-assisted room tempera-ture NO2 sensor using monolayer graphene decorated with SnO2 nanoparticles, Ceramics International 46(2) (2020) 2255-2260.
Y. Zhou, M. Ma, H. He, Z. Cai, N. Gao, C. He, G. Chang, X. Wang, Y. He, Highly sensitive nitrite sensor based on AuNPs/RGO nanocomposites modified graphene electrochemical transistors, Biosensors and Bioelectronics 146 (2019) 111751.
Y. Long, P. He, R. Xu, T. Hayasaka, Z. Shao, J. Zhong, L. Lin, Molybde-num-carbide-graphene composites for paper-based strain and acoustic pressure sensors, Carbon 157 (2020) 594-601.
M. Zhang, J.T.W. Yeow, A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite, Carbon 156 (2020) 339-345.
S. Gao, R. Wang, Y. Bi, H. Qu, Y. Chen, L. Zheng, Identification of frozen/thawed beef based on label-free detection of hemin (Iron Porphyrin) with solu-tion-gated graphene transistor sensors, Sensors and Actuators B: Chemical (2019) 127167.
L. Guardia, M.J.F. ndez-Merino, J.I. Paredes, P.S.s.-F. ndez, S. Villar-Rodil, A. Mart? ?nez-Alonso, J.M.D. Tasco ?n, High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants, Carbon 49 (2011) 1653-1662.
A. Ilyin, N. Guseinov, A. Nikitin, I. Tsyganov, Characterization of thin graph-ite layers and graphene by energy dispersive X-ray analysis, Phisica E 42 (2010) 2078–2080.
M.V. Antisari, A. Montone, N. Jovic, E. Piscopiello, C. Alvania, L. Pilloni, Low energy pure shear milling: A method for the preparation of graphite na-no-sheets, Scripta Mater 55 (2006) 1047–1050.
G. Kalita, K. Wakita, M. Umeno, Mono layer graphene from a green solid precursor, phisica E 43(8) (2011) 1490-3.
W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon 48 (2010) 1146-1152.
V. Sridhar, J.H. Jeon, I.K. Oh, Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation, Carbon 48 (2010) 2953-7.
Z.Y. Juang, C.Y. Wu, C.W. Lo, W.Y. Chen, C.F. Huang, J.C. Hwang, F.R. Chen, K.C. Leou, C.H. Tsai, Synthesis of graphene on silicon carbide substrates at low temperature, Carbon 47 (2009) 2026-2031.
C.-D. Kim, Y.-S. Sohn, Growth of Ni-Graphite Core-Shell for Electrode Applications, Journal of Nanoelectronics and Optoelectronics 12(6) (2017) 622-624.
A. Ngqalakwezi, D. Nkazi, G. Seifert, T. Ntho, Effects of reduction of graphene oxide on the hydrogen storage capacities of metal graphene nanocomposite, Catalysis Today 358 (2020) 338-344.
Y. Liu, J. Yu, D. Guo, Z. Li, Y. Su, Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage, Journal of Alloys and Compounds 815 (2020) 152403.
A. Verma, A. Parashar, M. Packirisamy, Role of Chemical Adatoms in Frac-ture Mechanics of Graphene Nanolayer, Materials Today: Proceedings 11 (2019) 920-924.
A.T. Johnson, Z. Luo, Large-scale graphene sheet: articles, compositions, methods and devices incorporating same, Google Patents, 2019.
S.-M. Kim, W. Kim, Y. Hwangbo, J.-H. Kim, S.M. Han, Electrodeposition Cu and roll transfer of graphene for large scale fabrication of Cu-graphene nanolay-ered composite, 2D Materials 6(4) (2019) 045051.
Z. Chen, W. Ren, B. Liu, L. Gao, S. Pei, Z.-S. Wu, J. Zhao, H.-M. Cheng, Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane, Carbon 48 (2010) 3543-3550.
C. Knieke, A. Berger, M. Voigt, R.N.K. Taylor, J.R. hrl, W. Peukert, Scal-able production of graphene sheets by mechanical delamination, Carbon 48 (2010) 3196-3204.
W. Liu, C.H. Chung, C.Q. Miao, Y.J. Wang, B.Y. Li, L.Y. Ruan, K. Patel, Y.J. Park, J. Woo, Y.H. Xie, Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films, Thin Solid Films 518 (2010) S128-S132.
L. Zhao, K.T. Rim, H. Zhou, R. He, T.F. Heinz, A. Pinczuk, G.W. Flynn, A.N. Pasupathy, Influence of copper crystal surface on the CVD growth of large area monolayer graphene, Solid State Commun 151 (2011) 509-13.
D. Wei, J. Yu, H. Huang, Y. Zhao, F. Wang, A simple quenching method for preparing graphenes, Mater lett 66 (2012) 150-2.
C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M.V. Costache, M. Paradinas, M. Panighel, G. Ceballos, S.O. Valenzuela, D. Peña, A. Mugarza, Bottom-up synthesis of multifunctional nanoporous graphene, Science 360(6385) (2018) 199.
C. Bronner, R.A. Durr, D.J. Rizzo, Y.-L. Lee, T. Marangoni, A.M. Kalayji-an, H. Rodriguez, W. Zhao, S.G. Louie, F.R. Fischer, M.F. Crommie, Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions, ACS Nano 12(3) (2018) 2193-2200.
J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid, In-amuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review, Journal of Industrial and Engineering Chemistry 66 (2018) 29-44.
M.V. Antisari, A. Montone, N. Jovic, E. Piscopiello, C. Alvani, L. Pilloni, Low energy pure shear milling: a method for the preparation of graphite nano-sheets, Scripta Materialia 55(11) (2006) 1047-1050.
J. Chen, M. Duan, G. Chen, Continuous mechanical exfoliation of graphene sheets via three-roll mill, Journal of Materials Chemistry 22(37) (2012) 19625-19628.
F.A. Litt, Lubricant additives-chemistry and applications, Marcel Dekker, Inc., New York, NY (2003) 357-358.
S. Choudhary, H.P. Mungse, O.P. Khatri, Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications, Journal of Materials Chemistry 22(39) (2012) 21032-21039.
T. Kuila, S. Bose, C.E. Hong, M.E. Uddin, P. Khanra, N.H. Kim, J.H. Lee, Preparation of functionalized graphene/linear low density polyethylene compos-ites by a solution mixing method, Carbon 49(3) (2011) 1033-1037.
W. Zhang, M. Zhou, H. Zhu, Y. Tian, K. Wang, J. Wei, F. Ji, X. Li, Z. Li, P. Zhang, Tribological properties of oleic acid-modified graphene as lubricant oil additives, Journal of Physics D: Applied Physics 44(20) (2011) 205303.
M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspec-tives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Letters 10(3) (2010) 751-758.
Article DOR: 20.1001.1.26765837.2019.1.1.4.3
Published
How to Cite
License
Copyright (c) 2019 JCC Research Group
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors will be asked, upon acceptance of an article, to transfer copyright of the article to the Publisher. This will ensure the widest possible dissemination of information under copyright laws. The submitted materials may be considered for inclusion but can not be returned.
Licensing: The JCC articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source (appropriate citation), provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
*Author rights
As an author you (or your employer or institution) have certain rights to reuse your work.