Critical study about recent advanced materials and their electrochemical sensing of organic pollutants
DOI:
https://doi.org/10.52547.jcc.5.2.5Keywords:
Advanced materials, Carbon based materials, Organic pollutant, Electrochemical sensingAbstract
Because of their unique physical, chemical, and biological characteristics, conductive nanomaterials have a lot of potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and other fields. Recent breakthroughs in the manufacture of carbon materials, conductive polymers, metals, and metal oxide nanoparticles based electrochemical sensors and biosensors for applications in environmental monitoring by detection of catechol (CC) and hydroquinone (HQ) are presented in this review. To achieve this goal, we first introduced recent works that discuss the effects of phenolic compounds and the need for accurate, inexpensive, and quick monitoring, and then we focused on the use of the most important applications of nanomaterials, such as carbon-based materials, metals, and metal oxides nanoparticles, and conductive polymers, to develop sensors to monitor catechol and hydroquinone. Finally, we identified challenges and limits in the field of sensors and biosensors, as well as possibilities and recommendations for developing the field for better future applications. Meanwhile, electrochemical sensors and biosensors for catechol and hydroquinone measurement and monitoring were highlighted and discussed particularly. This review, we feel, will aid in the promotion of nanomaterials for the development of innovative electrical sensors and nanodevices for environmental monitoring.
Published
How to Cite
License
Copyright (c) 2023 The University of Georgia Publishing House (UGPH)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors will be asked, upon acceptance of an article, to transfer copyright of the article to the Publisher. This will ensure the widest possible dissemination of information under copyright laws. The submitted materials may be considered for inclusion but can not be returned.
Licensing: The JCC articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source (appropriate citation), provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
*Author rights
As an author you (or your employer or institution) have certain rights to reuse your work.