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1. Introduction

The rapid expansion of various manufacturing sectors has adverse 
effects on the environment, particularly on the aquatic one, since most 
industries have wastewater composed of organic and inorganic pollut-
ants with high concentration. As an example, various industries, includ-
ing textile, paint, pharmaceutical, printing, leather, paper, and carpet, 
have produced daily a large number of aromatic pollutants, including 
many types of nitro compounds and dye. These industries would release 
large quantities of residual pollutants even if they were refined using 
conventional techniques [1-5]. Biodegradation of most of these aromatic 

pollutants dissolved in water is very hard, therefore becoming a long-
term and direct toxic threat to aquatic and amphibian lives, animals, and 
microorganisms. Finally, this process affects humans since the lives on 
land depend on aquatic products and water, and some of these pollutants 
are extremely toxic, mutagenic, and carcinogenic [5-7]. 

Anastas and Warner in 1998 [8] proposed twelve principles called 
the principles of green chemistry to eliminate and reduce chemical sub-
stances and processes that are harmful to the environment. Fabrication 
and development of catalysts is an essential principle of green chemis-
try. These principles state that catalytic reagents are better than stoichio-
metric reagents since catalytic reagents are applied in small quantities 
and carry out one reaction several times, but stoichiometric reagents are 
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

The manufacturing, application, and design of chemical processes and products that minimize or remove waste 
and the use of dangerous and toxic reagents are referred to as green chemistry. Green chemistry is made up of 
twelve principles, one of which is catalysis. The role of catalysis is to accelerate the reaction by introducing a 
substance called a catalyst. Because of their high efficiency, productivity, activity, and selectivity, nanocatalysts 
have recently received many interests. Nanocatalysts are characterized by their high surface area to volume ratio, 
as well as their nanoscale forms and sizes. One of the significant applications of nanocatalysts is wastewater 
and wastewater purification. Green and bio-synthesized nanocatalysts could be used efficiently to remove heavy 
metals, medicinal, organic, and inorganic pollutants from the wastewater systems. This paper reviews nanocata-
lysts based on noble and magnetic nanocatalysts, as well as metal catalysts supported by organic polymers, and 
discusses their industrial effluent treatment mechanisms.
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applied further and work only once [9, 10]. The base of these twelve 
green chemistry principles is to work similarly to nature. If the catalyst 
is not used, humans’ necessary products, such as lubricants, paints, fuels, 
fibers, polymers, fine chemicals, medicines, will not be produced. Catal-
ysis is a process that helps chemical transformations take place, allowing 
for the industrial processing of required products [11, 12]. Therefore, 
applying catalyst fabrication methods can be rendered more sustain-
able, cost-effective, and environmentally friendly. Soft catalysts such as 
crown ethers (as phase transfer catalysts) and zeolites have more indus-
trial applications than heavy metal catalysts, which are usually non-re-
coverable [13]. Enzymatic catalysis is the greenest and most effective 
catalysis in nature among three classifications of enzymatic, heteroge-
neous, and homogeneous catalysis. Heterogeneous and homogeneous 
catalysis has some advantages and limitations; therefore, it is crucial to 
create a novel catalytic mechanism that is easily recoverable and active, 
like heterogeneous and homogeneous catalysis, respectively [14]. 

Nanomaterials offer promising properties originating from their high 
surface area [15, 16]. Nanocatalysts have both advantages of the het-
erogeneous and homogeneous catalytic system [17, 18]. This system 
provides ease of catalyst recovery and separation as well as selective, 
and rapid chemical transformations with good product yield. One of the 
essential features of a catalyst is the ability to be recovered before being 
used in industry as green chemical manufacturing processes [19, 20]. 
One of the advantages of homogeneous catalysis is that the interaction 
between catalyst and reactants is significantly improved due to their 
nanosize and high surface area. Because of the catalyst’s insolubility in 
the solvent, it is heterogeneous and hence it could be readily removed 
from the solution, which is one of the properties of heterogeneous ca-
talysis [21]. Several authors have studied many magnetic [22-24], zinc 
[25, 26], cobalt [27, 28], and copper-based [29, 30] nanocatalysts. In 
this work, different nanocatalysts in industrial effluent treatment, includ-
ing zinc-based nanocatalysts, cobalt-based nanocatalysts, copper-based 
nanocatalysts, and magnetic nanocatalysts, and their mechanism of ac-
tion have been studied. Moreover, recent advancements have been re-
ported.

2. Nanocatalysts 

One of the first applications of nanoparticles is Catalysis. Several 
materials and elements such as silica, clays, titanium dioxide, iron, and 
aluminum have been applied as catalysts in nanoscale [31-35]. Never-
theless, there is no suitable explanation and the exact reason for nanopar-
ticles’ excellent catalytic behavior. The wide nanoparticles’ surface area 
directly affects reaction rate and it can be a good reason for its catalytic 
performance [36]. The properties of structure, shape, and nanosize of 

any substance affect their catalytic performance. A better selectivity was 
achieved by well-adjusting nanocatalyst composition, including the use 
of supports, core-shell type, and bimetallic size and shape. By showing 
how the physical properties and preparation parameters associated with 
nanoparticles influence their catalytic characteristics, nanocatalysts with 
high activity, selectivity, and resilience can be designed. These advan-
tages led to enabling industrial chemical reactions to produce less waste, 
consume less energy, and become more resource-efficient, reducing the 
environmental effect caused by applying chemical processes [37-39]. 
Nanoparticles are one of the most crucial catalysts for industrial purpos-
es with many applications in chemical manufacturing, energy storage, 
and conversion. The heterogeneity and differences in shape and size of 
nanoparticles led to their special catalytic performance [40, 41].

According to the effect of nanomaterial intrinsic features on catal-
ysis, the meaning and concept of nanocatalyst will be understood [42]. 
The intrinsic properties of nanomaterials that significantly affect the 
catalytic performance [21, 43] could be classified as follows: quanti-
ties directly connected with the bond length, including binding energy, 
atomic density, as well as mean lattice constant. Surface densification 
and relaxation are caused by lattice contraction in a nano solid. 

Quantities that relied on the cohesive energy per atom, including dif-
fusion, the activation energy for chemical reactions, atomic dislocation, 
evaporation in a nano solid, phase transitions, critical temperature, Cou-
lomb blockade, thermal stability, and self-organization growth. 

The Hamiltonian, which defines the whole band structure, as well as 
attributes like photoemission, core level energy, and bandgap differs by 
the binding energy density in the relaxed continuum zone. 

Qualities that result from the combined influence of the density of 
binding energy and energy of atomic cohesiveness including the mag-
netic performance of a ferromagnetic nano-solid, compressibility of a 
nano-solid, extensibility, surface energy, surface stress, Young’s modu-
lus, and mechanical strength.

3. Application of various nanocatalysts in industrial 
effluent treatment

3.1. Nanocatalysts based on magnetic metals

Gawande et al. [14] investigated the application of surface-function-
alized nano magnetite supported nanoparticles in pharmaceutically sig-
nificant, green chemistry, and catalysis reactions. Magnetite-supported 
metal nanocatalysts have been effectively applied in organic synthesis 
for various crucial reactions and they act as the catalytically active site 
[44-46]. The most important examples of these catalysts are Ni, Co, and 
Ferrites metal alloys. Some researchers have applied spinel ferrites for 

Fig. 1. Schematic illustration of the chainlike MFe2O4 nanoaggregates formation using spray flame.
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dyes and nitroarenes reduction. For example, Feng et al. [47] studied the 
CuFe2O4, which was prepared by hydrothermal technique; it has a high 
catalytic activity for nitrophenol reduction in the sodium borohydride 
presence. Li et al. [48] used the spray pyrolysis method to synthesize 
the chainlike spinel MFe2O4 (M = Cu, Ni, Co, and Zn). (Fig. 1). It was 
revealed that CuFe2O4 has the best catalytic performance for the nitroar-
omatic reduction compared to ZnFe2O4, CoFe2O4, and NiFe2O4.

Goyal et al. [49] have studied the catalytic efficiency of nano ferrites 
of MFe2O4 (M = Zn, Cu, Ni) as well as Mn-doped CoFe2O4 catalysts 
for the 4-NP catalytic reduction [50]. These samples were provided by 
the sol-gel process. CuFe2O4 presented higher catalytic performance be-
tween the synthesized ferrites while pure CoFe2O4 was not active, but 
the addition of Mn ions improved its catalytic efficiency. The synergistic 
effect of the Fe3+, Mn3+, and Co3+, which were in the octahedral sites, 
could be accountable for improving catalytic activity. CoMn0.2Fe1.8O4 
showed the highest catalytic performance. Kiran et al. [51] studied the 
Bi2+ catalytic performance substituted nanoparticles of CoFe2O4, which 
were synthesized by co-precipitation and combustion methods, and re-
vealed that the sample synthesized by combustion technique showed 
better catalytic activity in comparison with the nanoparticles synthe-
sized using the co-precipitation technique. Singh et al. [52] synthesized 
Ni2+-doped CoFe2O4 (NixCo1-xFe2O4 nanoparticles by the reverse micelle 
method. Dey et al. [53] studied the cube-shaped magnetic NiFe2O4 
nanoparticle for 4-nitrophenol (4-NP) catalytic reduction. Dhiman et al. 
[54] prepared several morphologies of NiFe2O4 hydrothermally using 
varying reaction conditions, solvents, additives, and precursors. It was 
reported that the catalytic performance of all the provided morphologies 
for reduction reactions depends on the surface area. The NiFe2O4 nano 
cord morphology showed the highest surface area and highest catalyt-
ic property. Papadas et al. [55] prepared three-dimensional mesoporous 
BiFeO3 using a process of nanoparticle templating, which in the first 
step involved the synthesis of polymer-assisted aggregating formation 
of 3-aminopropanoic acid stabilized BiFeO3 nanocrystals, accompanied 
by thermal decomposition to eliminate surfactant molecules . Catalysis 
reactions of some organic components by metal nanoparticles supported 
by magnetite are presented in Fig. 2.

Amir et al. [56] studied the degradation of organic dyes, including 
methylene blue (MB) and methyl orange (MO), using the recyclable 
magnetic nanocatalyst of Fe3O4@His@Ag in which histidine was ap-
plied as a linker. According to catalytic analysis, this nanocatalyst can 
lead to MB and MO degradation at the appropriate time. This material 
could also be recovered five times using magnetic separation while it 
maintains most of its activity. Kurtan et al. [57] prepared a magnetically 

recyclable nanocatalyst of MnFe2O4@SiO2@Ag by chemical reduction 
and co-precipitation method. The reduction of several azo compounds, 
including rhodamine B (RhB), eosin Y (EY), MB, and MO, as well as 
aromatic nitro compounds like 4-NP and 2-nitroaniline (2-NA), 4-ni-
troaniline (4-NA), was catalyzed by a magnetically recyclable Mn-
Fe2O4@SiO2@Ag nanocatalyst. Furthermore, the magnetic nanocata-
lyst exhibits high recyclability, with qualities that are maintained after 
multiple using cycles. Mohammadi et al. [58] studied the in situ and 
green synthesis of Fe3O4@SiO2Ag magnetic nanocatalysts employing 
safflower (Carthamus tinctorius L.) flower extract with no surfactants or 
stabilizers. For the reduction of MO, MB, and 4NP, the catalytic activity 
of the resulting nanocatalyst was investigated at room temperature. To 
reduce MB, MO, and 4NP, the noticeable rate constants were 0.09 s−1, 
0.064 s−1, and 0.756 min−1, respectively. A magnet was used to recover 
the catalyst, which was then reused for multiple cycles without losing 
its function. Veisi et al. [59] studied the surface functionalization of 
Fe3O4 nanoparticles with thiol groups to immobilize Ag nanoparticles, 
resulting in Fe3O4/SiO2-Pr-S-Ag nanoparticles. Fe3O4/SiO2-Pr-S-Ag NPs 
have excellent catalytic efficiency as a reusable nanocatalyst for the MB, 
RhB, and 4-NP degradation in an aqueous solution at room temperature. 
Ghosh et al. [60] investigated a convenient procedure for the synthesis 
of a new nanocatalyst containing Ag, CoFe2O4, and mesoporous TiO2 
nanoparticles for three essential reactivities: (i) photocatalytic MB deg-
radation, (ii) 4-NP reduction, and (iii) styrene epoxidation. The prepared 
catalyst showed a high catalytic performance to these three reactions. 
Within 10 hours, they recorded a 98 percent conversion of styrene and 
a 95 percent selectivity of styrene oxide. The result showed that this 
catalyst reduced 4-nitrophenol in 4 minutes with kapp = 1.08 min−1. When 
exposed to visible light for 60 minutes, the catalyst exhibited total pho-
todegradation of MB. In addition, the catalyst was readily restored using 
a permanent magnet externally as well as exhibited excellent reusability. 
Najafinejad et al. [61] prepared Au nanoparticles supported on Fe3O4@
polyaniline, and their activity in eliminating MB and MO from aqueous 
systems was investigated. Two nanocatalyst concentrations were ap-
plied at room temperature to examine the impact of nanocatalyst dosage 
on the degradation rate of azo dyes. When azo dyes are degraded with 
NaBH4, the reaction is 103 to 104 times quicker than degrading without 
the nanocatalyst. A list of recent nanocatalysts based on magnetic metals 
for treating various industrial effluents is provided in Table. 1.

 3.2. Nanocatalysts based on noble metals

The noble metals, such as Pt, Pd, Ag, and Au, make most catalysts 
for the reduction reaction, but their high cost has limited their practi-
cal applications [65-67]. Because metal-based catalysts can reduce 
their high surface energy, they can quickly aggregate with no effective 
protection or stabilization of the nanocatalysts, resulting in deteriora-
tion of their catalytic performance and decreased lifespan. [68-70]. For 
example, the aggregation of bimetallic NPs of Ag–Au occurs without 
protection by a surfactant of the triblock copolymer; at room tempera-
ture, the bimetallic NPs stabilized by surfactants can be stable for weeks 
[71, 72]. The results showed that Pd and Pt have excellent adsorption 
energy properties [73, 74]. The microwave-polyol process was used to 
create Pd, Pt, Pd@Ag, and Pt@Ag nanoparticles, and the nano boxes 
of these core/shell systems prepared by galvanic replacement reactions 
showed optical properties. [75, 76]. Besides, Gu et al. [77] reported the 
photochemical creation of Pd, Pt, and Ag monometallic NPs supported 
on graphene/ZnO and applied these multi-hybrid nano-architectures as 
electrocatalysts for H2O2. The free Ag NPs prepared by several various 
methods are also reported [78]. 

Salem et al. [79] prepared Pt@Ag and Pd@Ag core/shell nanopar-
ticles using the citrate method in two steps (Fig. 3). To examine the 
catalytic performance of these nanostructures of core/shell, the Congo 

Fig. 2. Catalysis reactions of some organic components by metal nanoparticles 
supported by magnetite.
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Table 1.
Nanocatalysts based on magnetic metals for the degradation of pollutants in wastewater

Authors/Country Nanocatalysts Synthesis Methods % removal/ reduction Catalytic behaviors

Oliveira et al. [62]
Brazil

TiO2:CoFe2O4

CoFe2O4 via Combus-
tion and TiO2:CoFe2O4 

via Pechini method

Degradation ~100% and 
efficient mineralization of 

diuron (DRN) 

Reducing the concentration of CoFe2O4 improved the 
photocatalytic systems mineralization. The photocatalytic 
treatment decreased the toxicity of the system and ampli-

fied CE50 from 1.5% to 14%.

Mohamed et al. 
[63]

Saudi Arabia

TiO2/α-Fe2O3 nanocom-
posite

Co-precipitation Degradation of MB~98%

TiO2/α-Fe2O3 nanocomposites exhibited better photo-
catalytic performance compared to pure Fe2O3 or TiO2 

nanomaterials; increased α-Fe2O3 concentration enhanced 
the activity.

Feng et al. [47]
China

CoFe2O4 Hydrothermal technique Nitrophenol reduction~95%
Reduction happened in the presence of sodium borohy-

dride.

Li et al. [48]
China

Chainlike spinel MFe2O4 
(M = Cu, Ni, Co, and Zn)

Spray pyrolysis method
Nitroaromatic reduction 

~100%
CoFe2O4 has the best catalytic performance in reducing 

nitroaromatic compared to ZnFe2O4, CoFe2O4, and NiFe2O4

Goyal et al. [49]
India

MFe2O4 nano ferrites (M 
= Zn, Cu, Ni), Mn-doped 

CoFe2O4 

Sol-gel method 2-NP reduction~95%
Fe3+, Mn3+, and Co3+ enhanced the catalytic performance, 
CoFe2O4was the best ferrite catalyst, CoMn0.2Fe1.8O4 was 

the best catalyst

Kiran et al. [51]
India

Bi2+ substituted nanoparti-
cles of CoFe2O4

Co-precipitation and 
combustion methods

4-NP to 4-AP reduction in 
2.25 min

Combustion method results had better catalytic perfor-
mance than co-precipitation process

Singh et al. [52]
India

Ni2+-doped CoFe2O4 (Nix-
Co1-xFe2O4) nanoparticles

Reverse micelle method
Reduction of 4-nitrophenol, 
degradation of Rhodamine 

B ~99%

Photo-oxidative degradation of Rhodamine B, NaBH4 was 
used as the reducing agent.

Dey et al. [53]
India

Cube-shaped magnetic 
NiFe2O4 nanoparticle

Novel method
4-nitrophenol (4-NP) catalyt-

ic reduction
Effective, reusable nickel ferrite magnetic nanocatalyst 

without implementing any functionalization,

Dhiman et al. [54]
India

Several morphologies of 
NiFe2O4 hydrothermally

Varying reaction 
conditions, solvents, 

additives, and precursors

Degradation of anionic 
remazol brilliant yellow 

(RBY) ~90% and cationic 
safranine-O (SO) 

NiFe2O4 nano cord morphology had the highest surface area 
and the best catalytic performance

Papadas et al. [55]
USA

Three-dimensional meso-
porous BiFeO3

Nanoparticle templating
Reduction of p-nitrophenol to 
p-aminophenol with NaBH4, 

~98%

The MBFAs (kapp= 0.018 s-1) reduction rate was two times 
quicker than  arbitrary BiFeO3 NP aggregates (0.009 s-1)

Amir et al. [56]
Turkey

Fe3O4@His@
Ag (histidine was applied 

as a linker)
Hydrothermal method

Complete degradation of MO 
and MB

Degradation of MB and MO at a reasonable time. Reusable 
five times.

Kurtan et al. [57]
Turkey

MnFe2O4@
SiO2@Ag

Chemical reduction and 
co-precipitation method

Complete reduction of 
rhodamine B (RhB), eosin Y 
(EY), MB, MO. Reduction of 
4-NP as well as 2-nitroaniline 

(2-NA), 4-nitroaniline (4-
NA), and.

Remained unchanged after multiple uses

Mohammadi et 
al. [58]

Iran

Magnetic nanocatalyst of 
Fe3O4@SiO2‐Ag

Green and in situ 
synthesis, prepared by 
safflower (Carthamus 
tinctorius L.) flower 

extract

Reduction of 4‐NP, MO, and 
MB at ambient temperature 

~98%

The apparent constant rate for MB, MO, and the 4‐NP 
reduction was 0.09 s−1, 0.064 s−1, and 0.756 min−1. Recover-

able by the magnet and reusable.

Ghosh et al. [60]
India

Nanoparticles of Ag, 
CoFe2O4, and mesoporous 

TiO2

EDTA precursor-based 
method,

Complete photocatalytic 
degradation of MB, 4-NP re-
duction, styrene epoxidation 

~98.1%

Reduction of 4-NP with kapp = 1.08 min−1 in 4 min, recov-
erable using magnet, reusable, and selectivity of styrene 

oxide.

Najafinejad et al. 
[61]
Iran

Nanoparticles of Au 
supported on Fe3O4@

polyaniline

Reduction of Au3+ using 
a wild herbal extract 

(Allium Sp)

Reduce MB and MO from 
aqueous solutions

Degradation of azo dyes with NaBH4 was 103 to 104 
times quicker than degradation without employing the 

nanocatalyst.

Ranjith et al. [64]
Taiwan

Hybrid rGO-TiO2/Co3O4 
nanocomposite

Co-precipitation
High reduction of MB and 

crystal violet dye

Compared to crystal violet dye, the decolorization of the 
MB dye was higher with reduced time. rGO/TiO2/Co3O 

catalyst could be applied to treat a variety of industrial dyes

Veisi et al. [59]
Iran

Nanoparticles of Fe3O4/
SiO2-Pr-S-Ag. Fe3O4/SiO2-

Pr-S-Ag NPs

Surface modification of 
nanoparticles of Fe3O4 

with thiol groups for the 
immobilization of Ag 

nanoparticles

Degradation of MB, RhB, 
and 4-NP high efficiently 

decolorized the dyes. 

Significant catalytic performance with NaBH4 in the water 
at ambient temperature, recyclable 

https://www.sciencedirect.com/topics/materials-science/coprecipitation
https://www.sciencedirect.com/topics/materials-science/coprecipitation
https://www.sciencedirect.com/topics/materials-science/nanoparticles
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red dye reductive degradation was selected. The electrons move from 
the reducing agent (NaBH4) to the dye molecules through nanocatalysts, 
which serve as electron mediators. After four reaction cycles, the Pd@
Ag nanocatalyst remained catalytically active. These results can be 
viewed as a cost-effective way to protect the environment by avoiding 
dye contamination in water supplies. 

Moradi et al. [80] used the precipitation–decomposition method to 
create a range of Ag–ZnO/CNT nano photocatalysts with addition of 
multi-wall carbon nanotubes. The photocatalytic degradation of the Acid 
Orange 7 dye under visible light was used to determine the catalytic 
activity. As compared to the nanocomposite of Ag–ZnO and pure ZnO, 
the nano photocatalyst of Ag–ZnO/CNT with five wt. percent multi-wall 
carbon nanotubes loading had excellent photocatalytic activity. The ef-
ficient separation of pairs of electron hole on Ag–ZnO/CNT was related 
to improved photocatalytic performance. Duan et al. [81] synthesized 
the recyclable and high-performance nanocatalysts, which are com-
posed of small, well-dispersed Ag nanoparticles that are immobilized 
on a Cu-based metal-organic substrate (MOF‐199s) supported by CCFs 
(carboxymethylated cellulose fibers). The catalytic activity of AgNPs@
MOF-199s/CCFs catalysts for the reduction of 4-nitrophenol to 4-amin-
ophenol showed a high catalytic efficiency. Enhanced dispersion, the 
porous catalyst structures, and small particles of Ag stabilized by the 
MOF-199 s cause the high catalytic activity. Applying cellulose fiber led 
to the facilitation of the sustainability and reuse of nanohybrid catalysts 
revealing high and stable reusability of > 91% after five cycles. 

Bao et al. [81] studied a one-pot method and used co-reduction 
growth in polyol mixture to synthesize amino-functionalized (-NH2) 
graphene oxide (GO-) supported networked nanowires of Pd–Ag. The 
results showed effective catalytic activity with superior recovering ef-
ficiency at ambient temperature (25 ºC) for catalytic Cr(VI) reduction 
using the H2 source of formic acid. The electron transfer from amino and 
Ag to Pd enhances Pd electron density, which improves the decomposi-
tion of formic acid and the reduction of Cr(VI). The catalytic reduction 
rate constant of Pd3Ag1/GO-NH2 is 0.0768 min-1, showing higher value 
compared to the monometallic Pd3Ag1/GO and Pd/GO-NH2 catalytic 
reduction rate constants. Iqbal et al. [82] created a new form of recy-
clable, ecologically safe, and convenient cerium-doped magnesium-alu-
minum-layered double hydroxide (MgAl-LDH) nanocatalyst, known as 
MgAlCe-LDH@Au. It was fabricated by adding Au nanoparticles with 
an approximate diameter of 3 nm on MgAlCe-LDH support by in situ re-
ductions of HAuCl4 utilizing NaBH4. This nanocatalyst shows very con-
siderable activity in the 4-nitrophenol reductive degradation by NaBH4 
with kapp = 0.041 s−1 (rate constant) and TOF= 1.2 × 106 h−1 (catalyst 
turnover frequency); at ambient temperature (25 ºC) and air pressure, the 
reactions took place in an aqueous system. MgAlCe-LDH@Au nano-

catalysts can be recovered and they can keep their original performance 
after seven catalytic processes. MgAlCe-LDH@Au is also an effective 
catalyst for the reductive breakdown of usual organic dyes, such as 
rhodamine 6G (R6G), rhodamine B, methylene blue, methyl orange, and 
Congo red that led to increased values of TOFs to 3.2 × 104 h−1. Sahoo et 
al. [83] applied a simple one-pot production of trimetallic porous Au@
Pd@Ru nanoparticles at ambient temperature. The trimetallic nanopar-
ticles exhibited excellent catalytic performance in reducing p-nitrophe-
nol and the breakdown of many azo dyes. The method was applied to 
eliminate color from wastewater using catalytic degradation of azo dyes. 

Nasrollahzadeh et al. [84] used a structurally described furfural 
with a 3-aminopropyltriethoxysilane long tail to immobilize palladium 
nanoparticles on NH2-modified zeolite (Zeo) particles carrying a hetero-
cyclic ligand. At room temperature (25 ºC) in aqueous solutions, NH2 
modified Zeo/Pd was produced as a reusable, highly active, and sus-
tainable nanocatalyst to reduce Nigrosin (NS), MB, RhB, 4-NP, 2,4-di-
nitrophenylhydrazine (2,4-DNPH), potassium hexacyanoferrate(III) 
(K3[Fe(CN)6]), and Cr(VI). UV–Vis spectroscopy was used to evalu-
ate the rate of removal of these toxicants with NH2 modified nanocat-
alyst of Zeo/Pd using formic acid (HCOOH) and sodium borohydride 
(NaBH4) at ambient temperature (25 ºC), as well as the nanocatalyst’s 
ability to be recovered eight times without remarkable reduction of 
catalytic performance. Yan et al. [85] used the one-pot solvothermal 
method to make bimetallic Pt-rhodium alloyed (PtRh ANMPs) nano-
multipods in oleylamine (OAm), using co-structure-directing agents of 
cetyltrimethylammonium chloride (CTAC) and creatinine. The prepared 
nanocatalyst showed remarkable catalytic properties to reduce RhB and 
4-NP by NaBH4. In similar conditions, the prepared catalyst exhibit-
ed a highly facilitated TOF=1.0 × 10−3/0.44 × 10−3 mol g−1 min−1 and 
k=0.209/0.354 min−1 for RhB and 4-NP reduction versus industrial Pt 
black. Table 2 shows a list of recent nanocatalysts based on noble metals 
for treating various industrial effluents.

3.3. Nanocatalysts based on organic polymer-supported metal catalysts

Because of their porous network structures and functionalities, poly-
mer hydrogels were used as metal nanoparticle carrier systems [104]. 
They could be produced by several polymerization techniques, includ-
ing polymerizations [105, 106], free-radical [107, 108], and ionic [109, 
110] based on convenient and low-cost solution routes. As an example, 
a core-shell microgel containing a shell of cross-linked poly(N-isopro-
pyl acrylamide) (PNIPA) and solid polystyrene (PS) core was applied to 
stabilize a nanocatalyst of Pd [111]. A spherical polyelectrolyte brush-
based scheme with poly ((2-methylpropenoyloxyethyl) trimethylammo-
nium chloride) long chains as a shell and a solid PS core was quan-
titatively contrasted to the microgel-based process [112]. The results 

Fig. 3. Synthesis method of Pt@Ag and Pd@Ag core/shell.
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Table 2.
Nanocatalysts based on noble metals for the degradation of pollutants in wastewater

Authors/ Country Nanocatalysts Synthesis methods
% removal/
reduction

Catalytic behaviors

Katoch et al. [87]
India

Bi2O3 Microflow Degradation of MO ~96 %
Bi2O3 nanoparticles exhibited excellent stability after three 

cycles indicating coated microreactors in photocatalysis 
reusability.

Dang et al. [88]
China

CuCl2 nanoflake 
film grown on 

the top surface of 
nanoporous anodic 
alumina substrate 

(nano-PAA-CuCl2)

Self-assembly approach
Degradation of MO~95% 

and MB~100%
Applicable in Fenton-like reaction as an effective process 

for wastewater treatment.

Rehman et al. [89]
Saudi Arabia

Ce & Zn doped CuO 
nanocatalyst

Co-precipitation
Degradation of MO ~81%

The photocatalyst of binary metal-doped CuO exhibited 
excellent photocatalytic performance for the treatment of 

toxic industrial effluents.

Dehghan et al. [90]
Iran

ZnO/rGO Chemical deposition
Removal of Metalaxyl (MX)

~ 90%

The MX toxicity was dropped from 51 to 15 within 96 h. 
The photocatalytic performance was reduced by nitrate 

and phosphate ions but remained constant in the presence 
of other water anions. 

Dosti et al. [91]
Iran

Pd NPs -
Reduction of Cr(VI) ~99% 

and Cr(III) precipitation 
~96%  

Electrochemical cells could perform in-situ total free chlo-
rine production and chromium removal concurrently.

Shelar et al. [92]
India

Ag-doped ZnO Co-precipitation
Degradation of MB ~65-

95%
The photocatalytic performance increase with the increase 

of concentration of dopant.

Ikram et al. [93]
Pakistan

Ag decorated MoS2 
nano pedals

Adopting hydrothermal 
approach

Dye degradation in the 
presence of NaBH4

~100%

Excellent potential for removing hazardous toxins, includ-
ing tannery pollutants and synthetic dyes, from industrial 

effluents.

Nasrollahzadeh et al. 
[94]
Iran

Ag/MgO nanocom-
posite

-

Complete and excellent 
reduction of MB, 4-NPMO2, 

and 4-DNPH
~100%

The Ag/MgO system was reusable, highly stable, with 
excellent catalytic performance.

Khoshnamvand et al. 
[95]

China
Ag NPs Green synthesis 

Reduction of 4-NP, and 
antioxidant activity against 

DPPH, and ABTS+
~99%

Ag nanoparticles exhibited excellent antioxidant activity 
against ABTS and DPPH free radicals and efficient catalyt-

ic performance in 4-NP reduction to 4-AP.

Kumar et al. [96]
Ecuador

Ag NPs Biosynthesis
Reduction of MB
~29% in 1 hour

Exhibited effective photocatalytic activity to remove MB 
dye (5  mg.L-1, k = 0.00707788 min−1).

Garol et al. [97]
India

Pd NPs Green synthesis
Complete reduction of 4-NP, 

MO, and MB 
Excellent catalytic reduction performance for all organic 
contaminants; the occurrence of complete reduction in 

10 min.

Salehi et al. [98]
Iran

Pd/RGO NPs Chemical deposition
Reduction of MB, MO, and 

rhodamine B ~99%
These nanoparticles have excellent catalytic reduction 

activity.

Khan et al. [99]
Pakistan

ZnO-NPs Green synthesis
Synozol Navy Blue-KBF 
textile dye degradation 

~91%

Removed the dye in 159 min, potential to have various 
photocatalytic and biological applications. 

Ganesh et al. [100]
South Korea

ZnO Np Green synthesis Reduction MB ~96%

These green prepared nanoparticles of ZnO could be 
effective photocatalysts and anti-microbial for dye degra-
dation and eliminating pathogenic microbes in industrial 

effluents.

Prasad et al. [101]
India

ZnO NPs 
Green synthetic strategy 

using Abelmoschus 
esculentus 

Degradation MB~100%, 
Complete degradation of 

rhodamine B. Degradation 
of Congo red, and MO

ZnO nanoparticles are applied in selective photodegrada-
tion of the target cationic dyes. 

Rajaendaran et al. [102]
India

Ag-Mo/CuO NPs Biogenic synthesis
Photodegradation of 

MB~99%
The photocatalytic performance by AzI-MACO (99%) was 

higher than that of AzI-MCO (88%), AzI-ACO (74%), 
AzI-CO (52%), and CO (39%) nanoparticles.

https://www.sciencedirect.com/topics/chemistry/antioxidant-agent
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/abts
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/industrial-effluents
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/industrial-effluents
https://www.sciencedirect.com/topics/physics-and-astronomy/rhodamine
https://www.sciencedirect.com/topics/engineering/photocatalyst
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showed that the polyelectrolyte brush-based catalyst had better catalytic 
efficiency than the one stabilized by microgel, which may be linked with 
the various diffusional barriers present in such stabilizing processes. A 
bottlebrush polymer tightly linked on a solid core of PS was also inves-
tigated as an Ag nanoparticle carrier platform. However, the synthesis 
method is complicated, which can lead to high costs and difficulties in 
raw materials personnel, and time, restricting broad realistic implemen-
tations [113, 114].

Using electrostatic attraction, a microgel of polymethacrylic acid 
was applied as a carrier device to accumulate the metal ions, which were 
then reduced to the resulting metal nanoparticles [115]. Moreover, a 
modified cryogel of poly(4-vinyl pyridine) was applied to adsorb metal 
ions and reduction treatment for the production of a compound cata-
lyst for 4NP and MB dye reduction [116]. Besides, amidodiol was used 
as a reducing agent and a cross-linking agent to adsorb Ag nanoparti-
cles in a poly(acrylic acid)–based hydrogel fibrillar system [117]. The 
cationic dyes such as crystal violet, MB, and R6G were catalytically 
reduced with the synthesized hydrogel immobilized Ag nanoparticles. 
Temperature and pH were observed to have a remarkable influence 
on the catalyzed process. To prepare the Au and Ag nanoparticles, gel 
beads of calcium alginate (CA) were applied as stabilizing and reducing 
agents [118]. The researchers hypothesized that metallic Ag might be 
a superior catalyst compared to Au throughout this catalytic reduction 
process because the as-synthesized CA-stabilized nanocatalyst of Ag 
has been more effective for transforming of 4NP to 4AP compared to the 
Au equivalent. Also, the volume of Ag nanoparticles loaded on alginate 

or the surface covering with Ag nanoparticles was assumed to be more 
desirable for the catalyzed process than Au nanoparticles [109].

Metal catalysts could also benefit from the use of polymer den-
drimers as stabilization systems. As an example, poly (amidoamine) 
(PAMAM) and poly (propylene imine) (PPI) dendrimers were applied 
to stabilize nanoparticles of Au for the reduction of 4NP [119, 120]. The 
results showed that as the dendrimer concentration increased, the rate 
constants of catalytic reduction for all of the processes studied declined. 
PPI and PAMAM dendrimers with amino groups on their surfaces were 
analyzed for synthesis and stabilization of Au compound nanocatalysts 
via laser irradiation reduction rather than chemical reduction [121]. With 
increasing the irradiation time, the mean size of the Au nanoparticles de-
clined. According to the previous report, the dendrimers were adsorbed 
on the surfaces of NPs as a monolayer, lowering the efficiency of the 
catalytic performance. Furthermore, a layer-by-layer nanoreactor film 
was fabricated for holding silver nanoparticles utilizing a PAMAM den-
drimer with positive charge and negatively charged polyacrylic acid or 
polystyrene sulfonate [122].

Polyacrylonitrile (PAN) substrate was also applied to embed silver 
nanoparticles by immobilizing the Ag nanoparticles within the poly-
mer matrix. However, because of the blocking influence of the polymer 
matrix, nanoparticles of PAN/Ag matrix are inappropriate for catalyt-
ic applications. In addition, Ag nanoparticles were applied to the PAN 
nanofiber surface to expose most of their surface [123]. The nanofiber 
of PAN had been pre-modified for binding site incorporation before ap-
plying Ag nanoparticles upon its surface. Hydroxylamine hydrochloride 

Table 2. (Continued)

Authors/ Country Nanocatalysts Synthesis methods
% removal/
reduction

Catalytic behaviors

Salem et al. [79]
Egypt

Pt@Ag and Pd@Ag 
core/shell

Citrate method in two steps
Congo red dye reductive 

degradation
~85%

NaBH4 was used as a reducing agent; nanocatalyst was 
catalytically stable after four cycles

Moradi et al. [80]
Iran

Ag–ZnO/CNT
Method of precipitation–

decomposition

Acid Orange 7 dye photo-
catalytic degradation under 

visible light ~100%

Improved photocatalytic activity due to effective separa-
tion of pairs of electron-hole on Ag–ZnO/CNT compared 

to the nanocomposite of Ag–ZnO and the pure ZnO 
reusable

Iqbal et al. [83]
China 

MgAlCe-LDH@Au
Au nanoparticles loading 

on MgAlCe-LDH by an in 
situ reductions of HAuCl4

Degradation of 4-nitro-
phenol ~100%, Complete 
degradation of rhodamine 

6G (R6G), RhB, Congo red, 
MO, and MB

The reactions were in an aqueous system at room tempera-
ture and atmospheric pressure, reusable for seven cycles, 

Sahoo et al. [84]
India

Trimetallic porous 
nanoparticles of 

Au@Pd@Ru

Facile ambient temperature 
one-pot synthesis

Efficient p-nitrophenol 
reduction and degradation 

of reactive black (RB-5) and 
reactive red (RR-120) 

Color removal and elimination of produced amine from 
wastewater

Nasrollahzadeh et al. 
[85]
Iran

Pd NPs@Zeo

Immobilization of structur-
ally defined furfural with 

3-aminopropyltriethoxysi-
lane long tail, multi-step 
organic amine function-

alization

Reduction of Nigrosin 
(NS), MB, RhB, 4-NP, 

2,4-dinitrophenylhydrazine 
(2,4-DNPH), potassium hex-

acyanoferrate (III) Cr(VI) 
and (K3[Fe(CN)6]), 

Highly active, recoverable, and reusable for eight times at 
room temperature, antibacterial activity against E. coli.  

Yan et al. [86]
China 

Nanomultipods of 
bimetallic PtRh-AN-

MPs in OAM 
by adopting the 

co-structure-direct-
ing agents of cetyl-

trimethylammonium 
chloride (CTAC) and 

creatinine

A facile one-pot solvother-
mal method

RhB ~97% and 4-NP ~94% 
reduction by NaBH4

Highly effective for RhB and 4-NP reduction than com-
mercial Pt black under similar conditions, recyclable

Mohammadi et al. [103]
Iran

Fe3O4/SBA-16-Cit-
Cya-Au nanocom-

posite
Chemical deposition

Reduction of MB and MO,
the reaction mixture turned 

colorless.
Sustainable and highly efficient after eight cycles. 

Memar et al. [104]
Iran

CuO/CuZnO Chemical deposition Degradation of MO and MB 
Excellent catalytic activity and high repeatability after the 

fifth cycle of degradation reaction. 
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has been utilized as a modifier by reacting with the –CN groups existing 
in PAN to create numerous amine as well as hydroxyl groups that could 
chelate Ag ions and immobilize them. Reduction treatment was used to 
build the Ag-decorated catalyst on the modified PAN fiber. A poly-(3,4)
ethylene dioxythiophene (PEDOT) substrate was also used as a support 
base for Pd nanoparticles. [124]. The sodium polystyrene sulfonate (Na–
PSS) catalytic reduction of the PEDOT supported nanoparticles of Pd in 
the solution was employed to improve the distribution of the PEDOT 
supported nanoparticles of Pd. The destructive impact on the catalyzed 
process must be considered because the surfactant Na-PSS is inclined 
to position the Pd catalyst. To stabilize Au and Fe3O4 nanoparticles, the 
conducting polymer polypyrrole (PPy) was utilized [125]. However, 
these nanoparticles were wrapped or embedded in a polymer substrate, 
creating a great diffusion barrier to the catalyst impairing MB dye cat-
alytic activity. The carrier platform for the Au nanocatalyst [126] was 

Poly(allylamine hydrochloride) which was modified with composite 
sub microspheres poly(glycidyl methacrylate). The results showed that 
the carrier system’s positive charges and epoxy groups could improve 
the catalyzed process. Epoxy groups have a role as electron acceptors 
because of their electrophilicity; therefore, they capture electrons and 
create an electron-rich region at the Au nanoparticle-sphere interface. 
This area could represent an electron reservoir, allowing the electron to 
be transferred to the reactant 4-NP in catalytic reduction of 4-NP; in the 
meantime, 4-NP anions could be adsorbed onto the positively charged 
surfaces of the sphere with ionic attraction. Aside from the multistep 
procedures and complex preparing requirements that restrict wide im-
plementations, the composite sphere catalyst’s reusability and stability 
have not been studied. Furthermore, the electrons captured by epoxy 
groups may not be freed, and the reduction of the epoxy groups could 
occur in the catalyzed reduction process by the captured electrons [1].

Table 3.
Nanocatalysts based on organic polymer-supported metal catalysts for the degradation of pollutants in wastewater

Authors/Country Nanocatalysts Synthesis method
Application: % removal/

reduction
Catalytic behavior

Kaliraji et al. [131]
Korea

ZnO nano-flowers Green synthesis
Removal of Eosin Y (EY), 
Malachite green (MG), and 

MB ~99%

High efficiency and reusability after five cycles 
without any remarkable loss in degradation 

performance.

Duan et al. [81]
China

AgNPs@MOF-199s/
CCFs

Ag nanoparticles immobilized 
on a Cu-based metal-organic 

framework (MOF‐199s) 
supported by CCFs (car-
boxymethylated cellulose 

fibers)

The 4-nitrophenol reduction 
to 4‐aminophenol ~95%

Better dispersion improved the catalytic activ-
ity; cellulose fiber increased sustainability and 

reusability of  >91% after five cycles.

M. Ajmal et al. [116]
Saudi Arabia

A microgel of poly-
methacrylic acid

Inverse suspension polym-
erization

Absorb and reduce metal 
ions ~100%

A carrier system that uses electrostatic interac-
tions to adsorb metal ions and then reduces the 

adsorbed metal ions to metal nanoparticles

Bhat et al. [129]
Malaysia

The Pd catalyst based 
on the framework of 
chitosan-tannin (CT)

Glutaraldehyde chitosan 
crosslinking

The reduction of Congo 
red~23% and nitrate~71% 

in the absence and presence 
of H2.

Catalyst is considerably thermally-stable com-
pared to CT support

Samai et al. [130]
India

Nanocomposite of 
polyaniline/cerium 

oxide
Hydrothermal method.

The removal of RhB~91% in 
wastewater under irradiation 

of the UV light.

Polyaniline polymer was employed as active 
catalyst support to enhance the cerium oxide 

nanoparticle photocatalytic activity.

Nasrollahzadeh et al. [132]
Iran

Pd/reduced graphene 
oxide (RGO) nanocom-

posite
Chemical deposition

Degradation of Cr(VI), 
4-NP, CR, MB, and MO, the 
disappearance of absorbance 

peaks 

Reusability and recyclability after multiple 
employment with no alteration in catalytic 

performance.

Peng et al. [133]
China

Pd truncated octahe-
drons (PdTOs) and 

Pd NPs
Biosynthesis

Excellent reduction of 4-NP
The apparent rate constant (Ka) over PdTOs 
was 0.358 min‐1 in p-NP reduction, which is 
improved compared to spherical PdNPs‐0 

(0.08 min‐1).

Gu et al. [77]
China

Pd, Pt, and Ag mono-
metallic NPs supported 

on graphene/ZnO
Photochemical synthesis Electrocatalysts for H2O2 Distinct electrocatalytic activity

Bao et al. [82]ÿ
China

Pd3Ag1/GO-NH2 One-pot method
Excellent catalytic reduction 

of Cr(VI) 

Formic acid (a H2 source) at room temperature, 
reduction rate constant was higher compared to 
the monometallic Pd3Ag1/GO and Pd/GO-NH2.

Sahiner et al.
[117]

Saudi Arabia

Modifiable Poly(4-vi-
nylpyridine) (p(4-VP)) 

cryogels

Cryogellation using free radi-
cal polymerization method

Complete degradation of 
MB dye and reduction of 

4NP 

The cryogel embedded with Fe, Cu, Ni, and Co 
nanoparticles employed in an aqueous solution 

with NaBH4

Narayanan [118]
India 

Polyacrylic acid–
amidodiol hydrogels 

(SPAGs) entrapped Ag 
nanoparticle 

Acrylic acid in situ polym-
erization and silver nitrate 

reduction utilizing amidodiol 
as cross-linking agent

Complete reduction of crys-
tal violet, MB, and R6G

Temperature and pH had a remarkable influence 
on the catalytic reaction, easy separation, 

promising reusability, and absence of induction 
period.

https://www.sciencedirect.com/topics/physics-and-astronomy/nanocomposites
https://www.sciencedirect.com/topics/physics-and-astronomy/rhodamine
https://www.sciencedirect.com/topics/physics-and-astronomy/cerium
https://www.sciencedirect.com/topics/physics-and-astronomy/photocatalytic-activity
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To stabilize Au nanoparticles for the 4-NP reduction catalysis, qua-
ternary ammonium resin beads of PS were used. The results showed 
that the tinier the Au nanoparticles, the quicker the catalyzed process. 
The Au nanoparticles immobilized on the surface of resin seem fragile 
because they could be dissociated with cationic surfactants, suggesting 
the composite catalyst’s low endurance [127]. Bhat et al. [128] synthe-
sized a Pd catalyst established on the chitosan-tannin (CT) framework. 
The catalyst’s catalytic efficiency was investigated in the presence and 
absence of H2 to reduce Congo red and nitrate. Within 60 and 20 min-
utes, respectively, the catalytic performances eliminated 23 percent and 
71 percent of Congo red and nitrate. 

Samai et al. [129] used a conducting polymer of polyaniline as active 
catalyst support to promote the cerium oxide nanoparticle photocatalyt-
ic activity. The as-prepared nanocomposite of polyaniline/cerium oxide 
shows significantly improved photocatalytic efficiency than some oxide 
nanoparticles or polyaniline for removing RhB in wastewater under the 
UV light irradiation. The results indicated that a nanocomposite con-
taining cerium oxide nanoparticles and polyaniline in a 1:1 molar ratio 
degraded 91 percent of Rhodamine B in 2 hours, while cerium oxide 
nanoparticles only degraded 10%. Recent studies on applying various 
organic polymer-supported metal nanocatalysts for pollutant removal 
from wastewater are summarized in Table 3. 

4. Catalytic mechanisms

Different types of biological, chemical, and physical technologies 
such as advanced oxidation processes (AOPs), ultra-filtration, mem-
brane, sedimentation, flocculation, adsorption, oxidation, reverse osmo-

sis, and ion-exchange are employed for treating wastewater. Because of 
their excellent performance, good reproducibility, convenience, and ease 
of handling, AOPs including photocatalysis, Fenton reaction, ozonation, 
or their variations are used to remove organic contaminants [134]. 

AOP is classified as remarkably nonselective and reactive chemi-
cal oxidants, including •O2, O3, H2O2, and •OH to remove resistant and 
non-biodegradable organic pollutants.

As shown below, the Fenton reaction by radical of •OH is a low-cost, 
efficient, and sustainable wastewater treatment process. [135]:

Fe2++ H2O2+ H+→ Fe3++ •OH+ H2O
Jaafar et al. [136] have studied some quantum calculations based 

on the ELF (electron localization function) and DFT (density functional 
theory) to investigate the removal process of Neutral Red dye (NR) in 
sewerage. In an aqueous medium, the Fenton reaction mechanism be-
tween free radicals (•OH) and the NR dye for its degradation was exam-
ined. For eliminating organic and inorganic pollutants and eradication of 
toxins (Fig. 4) from wastewater, freshwater sediments, groundwater, and 
other sites, a variety of pathways have been used, including reduction 
and (photo)degradation, adsorption, and UV photolysis/photocatalysis 
[137].

Nanomaterials can adsorb or degrade the contaminants using sev-
eral catalytic approaches, including photocatalysis, H2O2, and NaBH4, 
whereas green-synthesized nanoparticles are an excellent choice for 
photocatalytic wastewater treatment (Fig. 5) [138]. Toxic organic pol-
lutants are broken down into other materials [139] or fully mineralized 
components, producing water, carbon dioxide, or other inorganic ions. 
In general, a semiconductor such as TiO2 is capable of absorbing light 
with a wavelength equal to or greater than the wavelength of the semi-

Fig. 4. Removal mechanisms by nanomaterials for different pollutants.

Fig. 5. Mechanism of dye photocatalytic degradation via green-synthesized nanoparticles.
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conductor bandgap, resulting in the creation of electron-hole (e--h+) 
pairs [140, 141]. Reduction-oxidation reactions involve the interaction 
of nanocatalyst with adsorbate molecules. As shown in the equations 
below, h+

vb interacts with surface-bound water to form •OH, and oxygen 
selects e-CB to form a superoxide radical anion.. 

New green prepared metal-organic framework-based photocatalytic 
materials have recently received a great deal of interest, particularly be-
cause of their capacity for environmentally friendly removal of toxic or-
ganic contaminants. [142-144]. Several studies have reported on the use 
of transition metals in MOF-based photocatalysts to remove extremely 
toxic contaminants under UV/vis, UV, and visible light. First, a MOF-5 
was utilized to act as an efficient photocatalyst [145, 146]; these MOFs 
have a wide absorption band in the 500-840 nm range, which is related 
to the delocalized electron that lives on a time scale of microsecond and 
is most probably occupies a conduction band, with a value of conduc-
tion band energy equal to 0.2 V vs. NHE and a 3.4 eV bandgap. For the 
degradation of aqueous phenol, this method showed proportional perfor-
mance with TiO2 or ZnO. MOF-5 is an efficient photocatalyst since it is 
in a charge-separated state, with holes in the valence bands and electrons 
in the conduction band. As a result, phenol photodegradation can be ac-
complished by a series of reactions, including the primary formation of 
radical cations through transferring a phenol electron to the MOF-5 hole, 
or the oxygen active specie formation, including superoxide radical an-
ions, by the interaction between photo-ejected electrons and oxygen. 
[147, 148]. Das et al. [149] prepared a double interpenetrated porous 
MOF (UTSA-38) containing Zn4O with a bandgap of 2.85 eV, and its 
photocatalytic performance for the removal of MO in aqueous systems 
under UV/vis, visible light, as well as dark conditions was shown to be 
strong. According to the findings, under UV light for 120 minutes, meth-
yl orange could be decayed into colorless smaller particles. 

In reducing poisonous nitro compounds to useful and valuable ami-
no compounds in aqueous systems, NaBH4 has attracted much atten-
tion as a preferred alternative to hydrogen sources and a water-soluble 
reductant. Because metal hydride structures formed from BH4-ions 
through π-π stacking interaction have been evaluated as intermediates 
in this reduction reaction, the activation of NaBH4 is a major procedure 
that needs to take a metal material as the active site. The existence of 
a nanocatalyst of Pd stabilized amine-modified zeolite (Pd NPs@Zeo) 
with stacking interactions of π-π was found to explain the reduction of 
toxic 4-NP by NaBH4 reductant [84]. Pd NPs@Zeo transform NaBH4 to 
molecular H2 and BO2 dissociated on the nanocatalyst’s surface, and the 
adsorbed 4-NP interacts with the dissociated H2 gas to produce 4-amin-
ophenol. Consequently, the as-synthesized aminophenol is eventually 
desorbed from the nanocatalyst base, resuming the catalytic process. 
The nanocatalyst also plays a part in facilitating simple reduction by ad-
sorbing molecular H2 or 4-NP nearby. Magnetically separable nano-bio 
hybrid catalysts, Fe3O4@Ch-PdNPs and Fe3O4@Ch-AuNPs, have been 
prepared and designed by a three-step procedure according to the pro-
cess of biosynthetic mineralization [150]. Shewanella algae produced 
spherical Fe3O4 nanoparticles (35 nm) that were then coated or function-
alized with chitosan, accompanied by modification with nanoparticles 
of Pd or Au to produce a reusable and water-dispersible nano-bio hybrid 
catalyst that showed significant functionality for 4-NP reduction and dye 
photodegradation (>99 percent) in contaminated water at ambient tem-
peratures (25 ºC) [151].

This reaction was triggered by the adsorbent and reduction of meth-
ylene blue by Au or Pd nanoparticles via the electron transfer process. 
The reaction rates exhibited pseudo-second-order rate kinetics; under 
UV light, the Fe3O4@Ch-Pd and Au nanoparticles finished the methy-
lene blue reduction in just 1 minute, with apparent rate constants (kapp) 
of 5.0 min-1 and 4.0 min-1, respectively. Furthermore, the normalized rate 
constant (knor) values of the nanoparticles of Au and Fe3O4@Ch-Pd for 
the degradation of methylene blue are 1.14 × 102 and 1.72×102 mmol-1s-1, 

respectively, showing catalytic activities of the nanoparticles of Au and 
Fe3O4@Ch-Pd. For eliminating severely carcinogenic and toxic arsenic 
(As), green-fabricated amorphous nanoparticles of Fe with 51 m2 g-1 
Brunauer–Emmett–Teller (BET) area were employed [150].

Arsenate was reported to be evenly adsorbed on the surfaces of Fe 
nanoparticles; Fourier-transform infrared spectroscopy (FTIR) spec-
trometer analysis revealed that the adsorption was mainly due to a FeO-
As bond, but X-ray photoelectron spectroscopy (XPS) findings show 
that only As(V) was adsorbed. Therefore, this method for eliminating ar-
senate relies on Fe nanoparticles interacting with arsenate to generate a 
monodentate chelating ligand, and then followed by a complex of biden-
tate binuclear. More studies showed that the synthesized nanoparticles’ 
maximum arsenate adsorbent potential was about 14.6 mg g-1 and that 
the optimum range of pH for anionic arsenate adsorbent was around 4 
to 6. [150]. The Langmuir adsorption isotherms showed that adsorption 
of As(V) by Fe nanoparticles matched their regression coefficient (R2 
= 0.99), confirming the suggested chemisorption; the adsorption yield 
matched the pseudo-second-order kinetic model favorably. As a result, 
the green synthesis of Fe nanoparticles is a promising option for remov-
ing arsenic while also being simple to synthesize. 

5. Conclusions and future insights

This work focuses on organic polymer-supported metal catalysts, 
noble metals nanocatalysts, and magnetic nanocatalysts and then sum-
marizes their mechanism in treating industrial effluent. Studies show the 
efficacy and promising application of these nanocatalysts for the remov-
al of industrial effluents. Since low-cost preparation is critical for their 
uses in wastewater treatment, future research could focus on measure-
ment of interactive mechanisms in the water treatment system of these 
nanomaterials and refining their economic viability. In addition, the 
toxicity of these nanomaterials for the environment and human health 
should be examined and (quali-quantitative) risk assessment evaluations 
are suggested in this regard. To ensure that their implementation is safe, 
general assessments of their harm are needed. More studies are required 
to compare the nanomaterials’ relative performances to recognize favor-
able earth-abundant materials, resource utilization, and energy usage.

Some essential future perspectives should be considered for biogenic 
nanomaterials deployment for water purification and treatment. Com-
prehensive research is needed before these green-synthesized nanomate-
rials and nanocatalysts can be used on a commercial or industrial scale. 
Since these nanomaterials may result in secondary contamination, this 
critical problem must be thoroughly investigated. While the preparation 
of these nanomaterials is eco-friendly and simple, some challenging 
and essential factors, such as stability issues and the influence of re-
action parameters, should be optimized and analyzed, as these factors 
can improve their pollutant removal activity, morphologies, and behav-
ior of nanomaterials. Moreover, the extraction and purification of the 
synthesized biogenic nanomaterials are essential for additional applica-
tions. They should also be isolated as pure as possible for wastewater 
treatment. More studies are needed to find nanomaterials of multifunc-
tional and innovative nanohybrids to improve their efficient utility. The 
cost-effectiveness of green-synthesized nanomaterials versus nanoparti-
cles synthesized using traditional methods should be investigated. The 
assessment of restorative quality and efficacy issues is conducted in 
laboratory settings, simulating the parameter ranges of actual environ-
mental levels, but it’s vital to examine and analyze the outcomes from 
real-world scenarios. 
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