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1. Introduction

In the electronic and metallurgical industries, corrosion control is 
a challenge with great importance worldwide [1]. To protect metals 
from corrosion, various methods have been used. A widely practiced 

technique is the application of conducting polymer coatings [2, 3]. An 
active area of research in electrochemistry in the last decades has been 
the electrodeposition of CPs on the surfaces of metallic electrodes. In 
contrast to other coatings, such as paints, CPs do not contain toxic and 
hazardous constituents for the environment. Additionally, compared to 
other coatings that only provide physical barriers against corrosive envi-
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A B S T R A C T A R T I C L E  I N F O R M A T I O N

One of the most important problems in the manufacturing industry is metal corrosion. Recently, conductive poly-
mers (CPs) have attracted attention due to their economic viability and widespread industrial applications. Upon 
adsorption, long-chain carbon bonds of polymers provide a blockage for large surface areas of corroding metals. 
The adsorbed thin films create a barrier between the surrounding environment and the metal substrate. Polypyrrole 
(PPy), polyaniline (PANI), and polythiophene (PTh) are conducting polymers that are utilized to protect metals 
and metal alloys against corrosion. A proper selection of synthesis parameters for CPs can improve the anticor-
rosion behavior of the coatings for metals and metal alloys. This paper has an overview of conducting polymer 
composite coatings on substrates based on steel, copper, magnesium, aluminum, and their alloys.
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ronments, CPs provide physical and electronic barrier effects and elec-
tromagnetic interference (EMI) shielding which enhances the protection 
behavior [4-6].

These composite materials are strongly adsorbed onto active sites of 
the metal substrate leading to suppression of the dissolution process and 
production of a protective film layer. In fact, corrosion protection of CPs 
is a kind of anodic protection. According to studies, coating a metal with 
a conducting polymer places the potential of the electrode in the passive 
zone in the absence of redox reactions [7]. CPs have been applied on 
the surface of metals such as zinc [5], copper [6, 7], aluminum [8, 9], 
iron [10, 11], stainless steel (SS) [12], mild steel (MS) [13], etc. Mostly, 
polyaniline, polypyrrole, and polythiophene are used for coating met-
al substrates [8-19]. This review article has an overview of conducting 
polymers and composites and the state-of-the-art findings in the field of 
composite conducting polymers coated on various metal substrates are 
presented.

2.1. Conducting polymers 

CPs can be used as a protective coating for the prevention of met-
al surface corrosion and enhancement of PE values [20]. Intrinsically 
conducting polymers are organic polymers with electrical conductiv-
ity. These compounds can either be semiconductors or show metallic 
conductivity. Their great advantage is the processability of conductive 
polymers, mainly by dispersion. Generally, these polymers are not ther-
moplastics and thereby they are not thermoformable. However, they are 
organic compounds like insulating polymers. Mechanical properties of 
conducting polymers are not similar to other commercial polymers, but 
they exhibit high electrical conductivity [21]. Using organic synthesis 
methods as well as advanced dispersion techniques, the electrical prop-
erties of these polymers can be fine-tuned [22, 23]. 

Different CPs are commercially available including PANI, PPy, PTh 
[24-26]. The chemical composition of these polymers is illustrated in 
Fig. 1. To synthesize CPs, electrochemical or chemical oxidation meth-
ods are used [27, 28]. PANI and its derivatives are extensively utilized 
for anticorrosion coatings due to facile synthesis, enhanced environmen-
tal stability, as well as various redox states that allow property regula-
tion. Localized/delocalized polarons and bipolarons may be present in 
the PANI structure in various proportions, which depends on the meth-
ods of synthesis and isolation. PANI is practically applied to protect con-
crete steel bar reinforcement [28, 29].

Among all known CPs, one can consider PPy as promising material 
due to its high conductivity, easy and flexible preparation, good me-
chanical properties, and stability. Potential technological application of 
PPy include membrane separation [30], electronic and electrochromic 
devices [31], light-weight batteries [32], chromatographic stationary 
phases [33], sensors [34], and counterelectrode in electrolytic capacitors 
[35]. In recent years, it has been reported in several studies that PPy can 
protect metals and their alloys from corrosion [36-38].

An important class of conjugated polymers is PTh polymers that 
have a wide range of applications including field-effect transistors, elec-
trochromic, and conducting films [39]. Few reports have demonstrat-
ed the use of PTh for the corrosion protection of metals. Among CPs, 

some PTh derivatives have shown good performance, which ultimately 
depends on the environment nature that CPs are in contact with. It is 
feasible to generate PTh and its derivatives on other CPs such as PPy 
by applying proper voltage. The combination of these two conducting 
polymers has led to better corrosion performance [40].

It is possible to formulate CP-based coatings to inhibit corrosion of 
metals even in damaged areas where the surface of the metal is direct-
ly exposed to the corrosive environment. Conducting polymers can be 
whether in the reduction-nonconductive state or oxidation conductive 
state. Under appropriate conditions, they can easily switch between 
the two states. Redox processes occur in CPs; therefore, the expelling/
binding of dopants (counterions) is conducted in response to the metal 
surface potential variation. The potential variation is initiated by local 
electrochemical reactions resulting from the corrosion. Based on the lo-
cal corrosive conditions, the dopants can be expelled or inserted by the 
CP, which often act as inhibitors that prevent the local corrosion reac-
tions upon release [41, 42]. This is considered as a strategy suggested for 
taking advantage of CP-based corrosion-resistant coatings [43].

3. Corrosion protection mechanisms of CPs

For the provision of electronic conductivity in CPs, oxidative po-
lymerization and anion doping are performed into the polymer. The 
penetration of aggressive anions into CP coating is prevented by con-
trolling the doping ions. When CP-coated metal substrates are immersed 
in aggressive environments, such as the sodium chloride solution, the 
chloride anions present in the medium is exchanged with doped anions 
in the CP coating. The corrosion protection mechanisms of CPs have not 
been precisely revealed. Four possible hypotheses have been proposed: 

Ι) Mechanism of controlled inhibitor release: In this mechanism, the 
anion dopant may be released upon reduction from the oxidized and 
hence doped CP-based coating on a metallic substrate, which is driven 
by a coating defect. As far as doped PANI is concerned, the anions are 
released either through a reduction mechanism or a simple acid-dopant 
elimination if it is soluble in water [44, 45]. 

ΙΙ) Mechanism of anodic protection: according to this mechanism, 
protective metal oxide layers are formed on the metal surface as a result 
of CPs providing corrosion protection [46].

ΙΙΙ) It is proposed that an electric field is produced when there is a 
contact between a doped semiconductor or a conducting polymer and a 
metal resulting in a reduction in the corrosion rate due to the restriction 
of the electron flow from the metal to an oxidizing species [47]. 

ΙV) CPs create an adherent, dense, low porosity film on the metal 
surface limiting the access of oxidant agents and prevent metal surface 
oxidation [48] (Fig 2).

A denser CP layer provides a better barrier effect and decreases the 
rate of H2O and O2 transport into the polymer. The reaction site on which 
O2 reduction occurs moves from the metal/CP interface to the CP/solu-
tion interface by the enhancement of the compactness of the coating and 
its adherence to the substrate [49]. The change in the O2 reduction site 
on the surface of the polymer leads to a decrease in reduction products 
such as OH across the metal/CP interface, and thereby prevent the coat-
ing disbondment and delamination [50]. Furthermore, oxygen reduction 
requires the local reoxidation of the coating and its active role in the 
case that local small-size defects or pinholes are generated. Therefore, 
the improvement of the barrier effect should not inactivate CPs. The 
open-circuit potential of the metal/CP-based coating/solution system 
will be is in the passive state as far as the conducting polymer is in the 
conductive form. The site of the O2 reduction and its kinetics are import-
ant factors to determine the prolonged protective properties of the coat-
ing. Generally, it has been reported that the barrier effect is improved by 

Fig. 1. FChemical composition of PANI, PPy, and PTh.
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the dehydration of CP film electrodeposited on metal surfaces from an 
aqueous medium [43].

Mechanisms Ι and ΙΙ are the most important contributing mecha-
nisms that can rationalize corrosion inhibition by CPs. For a specific 
metal substrate/CP-based coating/solution system, the other two mech-
anisms contribute to the corrosion process simultaneously with the con-
trolled inhibitor release or the anodic protection mechanism [10, 43]. 

3.1. Corrosion inhibitors

Different ways of CP doping can be used for controlling the electro-
lytic environment near the surface of the metal substrate in case a scratch 
is formed. In this condition, a galvanic coupling exists between the CP 
coating and the metal. The anodic reaction involves the metal oxidation, 
while the cathodic reaction is the CP reduction resulting in the release of 
the doping anions. However, oxygen is reduced simultaneously on both 
the metal surfaces and CP coating resulting in the OH production and the 
CP reoxidation, respectively. Based on the nature of doping anions and 
the metal, a self-healing process may be triggered. In some metals such 
as steel, copper, and aluminum, the doping anions such as molybdates 
and phosphonic acid derivatives act as inhibitors, or oxide formation is 
initiated [43]. 

In the inhibition mechanism, a monomolecular barrier is formed by 
the organic species adsorption onto the surface of the metal. The pres-
ence of the adsorbed molecules results in the limitation of the cathodic 
and/or anodic corrosion reactions such as electron transfer and decreases 
the rate of corrosion [51, 52]. According to Brycki et al. [53], the in-
hibitor action involves the replacement of the adsorbed water from the 
surface of the metal by soluble organic species (Org):
Orgsol+nH2Oads→Orgads+nH2Osol      (1)

Several investigations have reported that monomeric aniline, as well 
as functionalized aniline derivatives, act as potential corrosion inhibitors 
for steel and iron [54-56]. 

3.2. Anodic protection

The anodic protection activity involved the ways wherein general 
corrosion of the metal substrates and alloys is prevented by CPs mostly 
in solutions free of halides [43]. According to Kinlen et al. [57], the elec-
troactive conducting polymer (ECPs) electrochemistry provides anodic 
protection for the substrate and also prevents cathodic debonding of the 
polymer coating. In this protection mechanism, the corrosion potential 
of the metal substrate in the electrolyte of interest moves to the passive 
region. The proposed reaction between the metal (M) and the oxidized 
state of the polymer coating (ECPm+) is:

   (2)
reoxidation of the ECP can occur by dissolved or atmospheric ox-

ygen:
     (3)

4. Composite conducting polymers (CCPs)

Polymer nanocomposites have found increasing attention in various 
engineering applications [58-60]. The essential characteristic of this pro-
cedure is that CPs make it possible to maintain the substrate surface 
potential into a passive state wherein a protective oxide film is generated 
on the surface of metal substrates [43, 61]. As a result, CPs-based coat-
ings are pinhole and defect resistant in such a way as that of the hexava-
lent chromium coatings. It is due to the replenishing of CP charges con-
sumed by oxidation of metal by O2 reduction within the CP coating. 
The corrosion process of metal is prevented by switching the CP-based 
coating into the oxidation state and thereby changing the potential into 
the passive region [62]. 

Expanded studies have focused on the anti-corrosive features of CPs; 
however, there are still numerous problems to be resolved regarding the 
fulfillment of mechanical and physico-electrochemical requirements of 
high performance anticorrosive CP-based coatings exposed to various 
practical conditions. Anticorrosive CP-based coatings have some lim-
itations such as poor adhesion to the metallic substrate, anion-exchange 
properties, poor barrier effect due to porous structure, and irreversible 
consumption of stored charges within the coating, which can oxidize 
the substrate and form a passive oxide layer. The mentioned drawbacks 
show their effect more significantly under harsh environments. In case 
chloride ions are present, these ions can either penetrate through the CP 
coating or undergo anion-exchange (replacement of chlorides with CP 
doping anions) and reach the metal-substrate interface. Extended local-
ized corrosion may be induced by chloride ions and during the redox 
reactions, the charge stored in the CP layer might be irreversibly con-
sumed. 

Using CP-based composites consisting of a conducting polymer and 
different inorganic fillers like metal oxides has been offered as an effi-
cient strategy for the elimination of the disadvantages. In CP-based com-
posites, the CP self-healing properties are combined with qualities of 
inorganic materials. Therefore, the composite coatings exhibit improved 
physicochemical and mechanical properties including enhanced hydro-
phobicity, barrier effect, and adhesion [43, 63-65]. The improvement of 
these properties leads to the enhancement of corrosion protection. Nano-

Fig. 2. Barrier effect of CPs for the diffusion of corrosive agents.
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technology has gained dramatic attention in recent years and is expected 
to make advancements in the design and development of commercially 
viable CP-based composite coatings [66]. It seems that CP-based nano-
composite can combine the properties of CPs and inorganic materials 
more effectively compared to microcomposites [67].

5. CCPs coatings on metals

5.1. CCPs coated on steels

Structural steel is corroded through an electrochemical process in 
the presence of oxygen and moisture. Rust is produced by the oxida-
tion of iron in the steel, which has a volume of six times the original 
material [68]. The corrosion mechanism is presented in Fig. 3. There 
are numerous reported focusing on the corrosion protection effect of CP 
coatings on metals, especially iron and mild steel, and stainless steel 
and significant advancements have been made [69-76]. Most conduct-
ing polymers form conducting films directly on the substrate surface by 
anodic oxidation [77, 78]. Changing from an insulating state to a con-
ducting state by different doping methods including injection of charge 
at the interface of a metal and the conducting polymer, photo doping, 
electrochemical doping, and chemical doping by charge transfer [71]. 
Due to the capability of these polymers in charge storing and transport, 
they can anodically protect metals against fast corrosion [79]. The corro-
sion protection mechanisms of CPs are complex and affected by various 
parameters [80-85]. Some theories have proposed that a passive oxide 
film is formed on the metal surface by oxidation-reduction processes, 
while others have predicted that the barrier mechanism is responsible for 
provided protection [61, 86, 87].

There are many studies targeting to investigate the corrosion pro-
tection of steel by CPs and CCPs. Sathiyanarayanan et al. [88] synthe-
sized the PANI-TiO2 composite coating (PTC) on steel and studied its 
corrosion protection behavior. To prepare PTC, aniline and TiO2 were 
chemically oxidized by ammonium persulfate in a medium containing 
phosphoric acid. According to the results, the redox property of PTC led 
to maintaining the steel potential in the passive region. The resistance 
of the PTC coating in a 3% NaCl solution after 60 days was more than 
107 cm2 and in the salt spray test for 35 days was 109 cm2. However, in 
both cases, the resistance of the coating was less than 104 cm2. It was 
proposed that the corrosion protection is due to the passivation of steel 
resulting from the presence of polyaniline. Lenz et al. [73] incorporat-
ed TiO2 pigment into PPy during the electrochemical synthesis of the 
CP-based coating on AISI 1010 steel. Weight loss and salt spray tests 
demonstrated that the PPy/TiO2 composite significantly increased an-
ti-corrosion properties compared to PPy films. The composite coatings 
were suggested as a primary coating that can be applied on mild steel 
instead of phosphatized layers.

According to Radhakrishnan et al. [89], composite coatings com-

posed of PANI and nano-TiO2 prepared by in-situ polymerization on 
steel plates showed superior corrosion resistance than did PANI coatings 
in aggressive environments. It was reported that the corrosion resistance 
improvement for the nanocomposite coating containing 4.18 wt% TiO2 
nanoparticles was beyond 100 times. It was proposed that the improve-
ment is the result of the high surface area accessible for the dopant re-
lease due to nano-size additive, redox properties of PANI, charge trans-
port prevention by the TiO2 nanoparticles, and an increase in diffusion 
barrier. In a research study by Patil et al. [90], polyvinyl acetate (PVAc)-
ZnO-PANI hybrid composite coatings (PVAc as the major matrix) were 
deposited on steel plates by the dip-coating method. In comparison with 
the coatings that contained either ZnO or PANI, the coatings that con-
tained both the components exhibited higher corrosion resistance. The 
PVAc-ZnO-PANI coating showed the Icorr value of two-order lower than 
that of PVAc–ZnO and PVAc coatings. The improvement was reported 
to be the result of the redox behavior of PANI, enhancement of barrier 
properties by nanoparticles, as well as the formation of protective oxide 
layers near the substrate. Hosseini et al. [91] electrodeposited the poly-
pyrrole phosphate (PPy-P) coating by cyclic voltammetry (CV) method 
on ST12 mild steel. The deposited PPy–P films demonstrated higher cor-
rosion resistance compared to the PPy coating. 

To coat 304 stainless steel for bipolar plates used in a proton ex-
change membrane fuel cell, Ren et al. [92] used galvanostatic deposition 
to produce an inner layer of PPy with large groups of dodecylsulfate 
ions, and then a PANI external layer containing small groups of SO4

2- 
was applied via cyclic voltammetric deposition. According to results, 
the increase in pitting corrosion potential and corrosion potential of the 
bare steel for the single PPy and PPy/PANI coatings was more than 500 
mV and 400 mV (saturated calomel electrode), respectively. Compared 
to the single PPy coating, the bilayer composite coating showed more 
effective corrosion reduction through providing passivity protection as 
well as a physical barrier with acceptable contact resistance.

Jiang et al. [46] deposited PPy-graphene oxide (GO) composite 
coatings on 304 stainless steel bipolar plates by in-situ electrodeposi-
tion to protect them against aggressive environments. The analysis in 
the simulated PEMFC environment exhibited that during potentiostatic 
polarization, the polarization current density of the substrate was sig-
nificantly reduced by the conductive PPy-GO composite coating. The 
addition of GO to the PPy matrix led to the enhancement of the adhesion 
strength and an increase in the diffusion pathway of corrosive agents 
and therefore, restriction of their inward penetration. The best corrosion 
resistance was obtained for the composite coating containing 1 mg mL-1 
of GO in the electrodeposition electrolyte. The corrosion enhancement 
in the composites is the result of the improved anodic protection and 
physical barrier. Jadhave et al. [93] added poly-o-anisidine (POA) and 
PANI nanoparticles to alkyd paint formulation for protecting the mild 
steel surface. In comparison with the POA/alkyd coatings, corrosion 
protection of the PANI/Alkyd coatings was remarkably higher. 

Epoxy/graphene composite coatings with hydrophobic surfaces were 
prepared by Chang et al. [94]. The water droplet’s contact angle with 
the epoxy surface and hydrophobic epoxy/graphene surface were 82o 
and 127o, respectively. The improvement of the corrosion resistance by 
applying the composite coating was reported to be due to the physi-
cal barrier effect, a decrease in the adsorption of water/corrosive me-
dia resulting from the coating hydrophobicity, and high aspect ratio of 
graphene nanosheets leading to enhancement of the oxygen barrier prop-
erty. Sumi et al. [95] synthesized PANI-Fe2O3 composite by an In-situ 
method and added it to a commercial alkyd resin as an anti-corrosive 
coating for mild steel. The composite coating was proposed to offer pas-
sivation protection and better barrier performance. The complimentary 
cathodic reaction of the nonconductive leuco-PANI to the conductive 
emeraldine-PANI was explained to be also responsible for the improved 
corrosion resistance in the acidic medium. Table 1 summarized research 

Fig. 3. Corrosion mechanism of steel.
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Table 1.
 Research reports on using CCPs for corrosion protection of steel

Authors CPs Additive Coating technique Medium Corrosion behavior

Jadhav et al. 
(2020) [96]

PPy Fe2O3 Electrochemical method NaCl
Better corrosion resistance was observed by the coating of Fe2O3/

PPy.

Sun et al. (2020) 
[97]

PANI - Electrochemical deposition NaCl
The density of corrosion current decreased 5 times and the coating 

exhibited effective protection for 140 days.

Deyab et al. 
(2020) [98]

PANI Zn-Porphyrin Electrochemical deposition H2SO4

The composite of PANI/Zn-Pr with 1.0% of Zn- Pr rendered the 
highest anti-corrosion activity (99.41%).

Chen et al. 
(2020) [24]

PPy
Polydopamine –func-

tionalized carbon 
powders

Electropolymerization H2SO4

The PPy/C-PDA coating showed good protection performance for 
the 304SS bipolar plate in PEMFC.

Rajkumar et al. 
(2020) [99]

PPy TiO2, ZnO, and SiO2 Incorporation in resin NaCl
The PPy coating provides the denser passivation film at the inter-

face of PPy and TiO2.

Chen et al. 
(2019) [100]

PPy TiO2 and V-TiO2 Electrochemical method HCl
comparing V-TiO2/PPy and TiO2/PP composite coatings, the 
V-TiO2/PPy showed better corrosion resistance performance.

Kong et al. 
(2019) [101]

PANI Chitosan - HCl
Using the PANI/CTS in 0.5 M HCl solution was effective for corro-
sion protection of Q235 steel and at high PANI/CTS concentrations, 

the highest inhibition efficiency was obtained.

Babaei-Sati et 
al. (2019) [102]

PPy Al2O3 Electrodeposition H2SO4

PPy/Al2O3 nanocomposite with declining the density of corrosion 
current by 18 times, exhibited excellent performance in the protec-

tion of MS.

Shi et al. (2019) 
[26]

PANI SiO2 Drop casting technique H2SO4

The silicone-SiO2@PANI coating with a 4:1 weight ratio of SiO2/
PANI exhibited the highest resistance against corrosion (2.24×107 
Ω cm2) after immersion in a corrosive medium for about 180 days.

Jaouhari et al. 
(2019) [103]

PPy Zinc phosphate
Galvanostatic electrodepo-

sition
NaCl

The ZP/PPy coatings showed excellent corrosion resistance and 
increased the ZP/PPy coating thickness.

Liu et al. (2019) 
[104]

PANI TiO2 Electrochemical deposition NaCl
The epoxy coating with TiO2/PANI particles showed high corrosion 

protection compared to the blank coating after subjecting to a 
corrosive environment.

Wang et al. 
(2019) [38]

PANI Nb: TiO2 nanofibers galvanostatic method HCl
The presence of Nb: TiO2 nanofibers in the coating of PANI led to 

the provision of better in-situ anodic protection and physical barrier 
effect. 

Abd El-Lateef 
et al. (2019) 

[105]
PANI Tl2O3-SiO2 Electrochemical deposition HCl

The PANI coating could prevent the carbon steel corrosion and 
provide maximum yielding of 89% and this amount after the 

modification with Tl2O3-SiO2 nanocomposites was improved and 
reached 96%.

Ramezanzadeh 
et al. (2018) 

[83]
PANI GO-CeO2 Electrodeposition NaCl

The deposition of CeO2 and PAni improved the properties of active 
and barrier corrosion inhibition of GO nanosheets.

Contri et al. 
(2018) [106]

PPy Montmorillonite (Mt) Electrodeposition H2SO4 The Epoxy/Mt-PPy (5 wt%) could prevent carbon steel corrosion.

Jadhav et al. 
(2018) [107]

PPy Mica Incorporation in resin NaCl
The pigment-based composite coating of Mo-doped PPy/mica ex-

hibited better protection against corrosion with the steel passivation 
by the anions of molybdate.

Salem et al. 
(2018) [108]

PANI - Electrochemical deposition NaCl
The possibility of delamination and blister formations were reduced 

by composite coatings.

Jiang et al. 
(2018) [109]

PANI Ni(OH)2

Cyclic voltammetry tech-
nique

NaCl
The Ni(OH)2 particle deposition in a matrix of PANI prevented 

access to aggressive media. Also exhibited long-term anti-corrosive 
behavior.

Arabzadeh et al. 
(2017) [110]

PPy - Cyclic voltammetry method HCl
The sample synthesized with the scan rate of polymerization equal 

to100 mV/s was the best coating.

Ladan et al. 
(2017) [111]

PPy TiO2 Dip coating NaCl
Co doping TiO2/PPy decreased the charge transfer across the inter-

face of electrolyte/AISI 1018 steel.

Yan et al. (2017) 
[112]

PPy Al2O3

Cyclic voltammetry tech-
nique

NaCl
The PPy-Al2O3 composite coating exhibited good performance in 

the corrosion protection of 316SS.

Yan et al. (2017) 
[113]

PPy SiO2

Cyclic voltammetry tech-
nique

NaCl
The PPy-SiO2 coating exhibited good performance in the corrosion 

protection of 316SS.

Qiu et al. (2017) 
[114]

PANI GO Pulse-current deposition
Phosphate 

buffer
The 98.4% corrosion inhibition efficiency and 99.3% protection 

efficiency was obtained by using the PANI-GO composite coating.

https://www.sciencedirect.com/science/article/pii/S0300944016311031
https://scholar.google.com/citations?user=Cq9tAGcAAAAJ&hl=en&oi=sra
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investigation on using CCPs for corrosion protection of steel substrates. 

5.2. CCPs coated on magnesium and its alloys

Because of biocompatibility, easy biodegradation, and excellent 
mechanical properties, Mg alloys have been extensively investigated 
for biomedical applications. Nevertheless, in a physiological environ-
ment, these alloys show a high corrosion rate leading to an increase in 
the pH value, which adversely affects cell differentiation, proliferation, 
and viability on the implant surface and thereby induces blood clots to-
gether with chronic tissue inflammatory responses [115-119]. Two main 
strategies for the improvement of the corrosion resistance of Mg and its 
alloys are surface modification and alloying [120, 121]. CPs and CP-
based composites have been developed for the corrosion reduction of 
Mg-based substrates. The corrosion mechanism of Mg with and without 
CP coatings is shown in Fig. 4. PANI-TiO2 composites were deposited 
on the ZM 21 alloy by Sathiyanarayanan et al. [122]. To synthesize the 
coatings, aniline underwent oxidative polymerization in phosphoric acid 
with (NH4)2S2O8, in the presence of TiO2. Compared to the PANI coat-
ing, the composite coating exhibited more effective protection perfor-
mance as a coating for the ZM 21 alloy. In another research, Guo et al. 
[123] applied a composite coating of PPy/ZnO to protect biodegradable 
Mg alloys for orthopedic implant applications. Results indicated the im-
proved corrosion protection, antibacterial property, as well as cytocom-
patibility of the composite coating suggesting it as proper material for 
orthopedic implants.

Wang et al. [124] presented the corrosion protection performance 
of composite coatings based on PANI and coal. PANI/coal powder was 
synthesized by in situ polymerization, the coatings were composed of 
epoxy, and PANI/coal was deposited on the surfaces of Mg alloys. A 
significant decrease in the corrosion rate and corrosion current density 
of the PANI/coal coatings was observed suggesting that the coating is a 

promising candidate for the enhancement of corrosion resistance of Mg 
alloys in aggressive environments. In a research study by Li et al. [125], 
a PPy/V2O5 composite film was deposited on magnesium by mild vapor 
phase polymerization (VPP) technique. Corrosion investigations in 3.5 
wt% NaCl revealed that the prepared composite film reduced the corro-
sion rate of Mg. The VPP method was offered as a technique with great 
potential to synthesize CP-based coating for the protection of reactive 
metals. Table 2 summarized research investigation on using CCPs for 
corrosion protection of Mg-based substrates. 

5.3. CCPs coated on alumnum and its alloys

Al is an important metal due to its high technological value and its 
application in the household and aerospace industries [134-137]. Al-

Table 2.
Research reports on using CCPs for corrosion protection of Mg and its alloys

Authors CPs Additive Coating technique Medium Corrosion behavior

Najibzad et al. 
(2020) [126]

PANI Praseodymium Dip coating NaCl
The improvement in the performance was observed with applying 

2000 ppm concentration compared to other concentrations.

Guo et al. (2020) 
[123]

PPy ZnO2

Cyclic voltammetry 
technique

NaCl An increase in the resistance of the corrosion was observed.

Jothi et al. (2020) 
[127]

PPy Gelatin Electrodeposition NaCl
The coating exhibited good performance in providing the corrosion 

resistance of AZ31.

Samadi et al. 
(2020) [128]

PANI Praseodymium Electrochemical methods NaCl
The composite of PANI/Pr31 that exhibits anti-corrosion behavior 
can be used as environmentally-friendly and non-toxic corrosion 

protective coating.

Li et al. (2020) 
[125]

PPy V2O5

Vapor phase polymeriza-
tion (VPP)

NaCl
For the synthesis of the protective coating of CPs on reactive metals, 

the method of mild VPP may be effective.

Maurya et al. 
(2019) [129]

PANI Graphene
Incorporation as pigments 

in epoxy resin
NaCl

The amount of the resistance value >106 Ω cm2 was estimated using 
the composite coatings.

Yufeng Li et al. 
(2018) [130]

PANI SiO2 Electrochemical methods NaCl
For the Mg-Li alloy, the good resistance was obtained with the coat-
ing and the density of the corrosion current and impedance value was 

6.7×10-7 A cm-2 and 5×104 Ω cm2, respectively.

Gao et al. (2018) 
[131]

PANI - Electrochemical methods NaCl
The improvement was observed with the PANI-PhA addition because 

of the synergistic effect of silane, PhA, and PANI.

Wang et al. (2017) 
[124]

PANI Coal Electrodeposition NaCl This sample exhibited excellent resistance to corrosion.

Saremi et al. 
(2016) [132]

PPy
NaF and polyeth-

ylene glycol (PEG)
Cyclic voltammetry 

technique
NaCl

The observed improvement in the corrosion behavior of the PPy 
coating with PEG and NaF was due to the inhibition fluoride effect, 

which is considered a barrier for magnesium alloys.

Chen et al. (2010) 
[133]

PANI SiO2 Electrochemical methods NaCl
In the solution of 3.0 wt% NaCl, the coating of PANI-SiO2 showed 

better performance in keeping the potential values in the noble poten-
tial compared to the coating of pure epoxy.

Sathiyanarayanan. 
(2007) [122]

PANI TiO2 Electrodeposition NaCl
For the protection of the Mg ZM 21 alloy, the composite coating was 

better than Polyaniline coating.

Fig. 4. Corrosion mechanism of brae Mg and CP-coated Mg.
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though on the surface of reactive metals such as Al, a thin oxide film 
is formed protecting them from further corrosion, localized corrosion 
occurs on the surface of Al when it is exposed to corrosive environments 
containing complexing agents such as halides [138-141]. There have 
been several studies regarding the deposition of CP-based coatings on 
Al-based substrates to enhance their corrosion resistance. In a study by 
Yan et al. [142], PPy was first deposited on Al flakes in the presence of 
inhibiting dopants including vanadate, molybdate, or phosphate oxyan-
ions. Then, the modified Al flakes were added to an epoxy primer to 
protect the AA 2024-T3 alloy. The composite coating showed good pro-
tection performance for the Al alloy through the mechanism of oxygen 

scavenger protection provided by PPy in the composite coating.
Hussein et al. [143] used the cyclic voltammetry technique to deposit 

PANI-NiLa and PPy-carbon nanotubes (CNTs) nanocomposite coating 
on aluminum. The thermal stability of PPy was enhanced by the addition 
of CNTs, while decreased in the presence of NiLa. The addition of CNTs 
and NiLa particles improved the protection role and adhesion of the PPy 
coating for aluminum. Compared to the PPy layer, the nanocomposite 
coatings had higher protection property for Al in the NaCl solution. PPy-
NiLa nanocomposite coating demonstrated the highest corrosion protec-
tion. In another study by Hosseini et al. [144], ZnO, Mn2O3, and TiO2, 
nanoparticles were dispersed in PPy by in-situ electropolymerization to 

Table 3.
Research reports on using CCPs for corrosion protection of Al and its alloys

Authors CPs Additives Coating technique Medium Corrosion behavior

Tomaev et al. 
(2019) [146]

PPy
Aluminum Oxide Galvanostatic H2SO4

The improvement in the electrochemical potential was 
obtained by PP coating, and the incensement in the 
surface impedance was provided by oxide coating. 

Kumar et al. 
(2017) [147]

PPy CeO2 Galvanostatic NaCl
For the corrosion protection of the Al in aircraft infra-
structures, the nanocomposites of PPy with nanoparti-

cles of CeO2 could be effective.

Hosseini et al. 
(2017) [144]

PPy TiO2, Mn2O3, and ZnO Cyclic voltammetry technique oxalic acid
An excellent improvement in the corrosion protection 
was observed by applying the synthesized polypyrrole 

with nanoparticles of TiO2. 

Hussein et al. 
(2016) [143]

PANI /
PPy

CNT and Ni2LaO4 Cyclic voltammetry technique oxalic acid

The barrier effect increased with the nanoparticles of 
NiLa oxide. Also, the reaction of oxygen reduction 
catalyzed by these particles led to improving the Al 

passive state.

Ates et al. (2015) 
[148]

PANI
TiO2, Ag, and Zn Cyclic voltammetry method NaCl

The nanocomposite film of PANI/Ag exhibited the 
highest efficiency of protection (PE = 97.54%).

Ates et al. (2015) 
[149]

PANI /
PPy

TiO2 Cyclic voltammetry oxalic acid

According to the results, the efficiency of corrosion pro-
tection of the nanocomposites coated on the electrode 

of Al1050 was larger compared to PPy (94.9 %), PANI 
(96.4 %), and uncoated Al1050 electrodes.

Alvi et al. (2015) 
[150]

PANI ZnO Cyclic voltammetry method HCl
Due to the electronic properties and chain conforma-

tion of the ZnO-PANI, it provided excellent protection 
against corrosion for Al and steel.

Jensen et al. 
(2014) [151]

PPy Aluminum flake Electrochemical methods KCl
The composite coatings exhibited the reduction of dis-

solved oxygen over the scribe with no corrosion product 
concomitant buildup. 

Gupta et al. 
(2013) [152]

PANI Lignosulfonate - NaCl
The low corrosion amount was obtained with the coat-

ing of 5 wt% Pani-LGS/epoxy.

Jadhav et al. 
(2013) [153]

PPy Aluminum flake Incorporation in epoxy resin
Electrolyte 

solution

For the larger defect protection of the AA 2024-T3 
substrate, the composite of the wire PPy/Al flake was 

effective.

Yan et al. (2013) 
[142]

PPy Al flake Incorporation in epoxy resin DHS solution
The best performance of the protection was obtained by 

doping the vanadate in the composite coating.

Shabani et al. 
(2011) [154]

PANI Montmorillonite Electrosynthesis NaCl
Using nanocomposite-coated compared to uncoated Al 
led to a decrease in the amount of the corrosion current 

(icorr) from 6.55 μA cm−2 to 0.102 μA cm−2.

Hosseini et al. 
(2011) [134]

PANI Montmorillonite Electrochemical methods NaCl
Epoxy blend with polyaniline and MMT showed the 

highest corrosion protection for 100h.

Castagno et al. 
(2010) [155]

PPy
Montmorillonite 

(MT)
Electrochemical techniques NaCl

The PPy/MT films with 1% clay provided good perfor-
mance in the protection of corrosion for Al.

Hosseini et al. 
(2009) [156]

PPy Montmorillonite Electrochemical methods NaCl
The coating provided good protection of Al corrosion 
with a combination of epoxyblend with MT and PPy 

advantages.

Wu et al. (2007) 
[157]

PANI Silicate–NiZn ferrite Electrochemical and salt-spray NaCl

With the incorporation of the NiZn ferrite/PANI par-
ticles, the denser configuration of the ormosil hybrids 

was obtained which could prevent the Al alloy substrate 
corrosion.

Shah et al. (2001) 
[145]

PANI/ 
PPy 

-
Galvanostatic and potentiostat-

ic technique
oxalic acid

The low corrosion rates were observed in moderate to 
high applied electrochemical current densities.
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protect Al electrodes. It was found that the corrosion resistance of the 
nanocomposites was higher than that of bare PPy in harsh environments. 
The PPy/TiO2 composite coating exhibited a remarkable improvement 
in corrosion protection. The great enhancement of protection properties 
was reported to be due to the high surface area of nano-additives for 
the dopant release, charge transport prevention by the TiO2 nanoparti-
cles, redox properties of PPy together with increased barrier effect to 
diffusion. 

Kunal et al. [145] coated Al-2024-T3 substrate with PPy, PANI, and 
PPy/PANI composites via potentiostatic and galvanostatic techniques. 
Results showed that the corrosion rate reduction in the presence of 
CPs was about three orders of magnitude. Deposition time and applied 
current density as electrochemical processing variables were found to 
noticeably affect the corrosion behavior of the coated substrate so that 
low corrosion rates were achieved by applying moderate to high current 
densities. Table 3 summarized research investigation on using CCPs for 
corrosion protection of Al-based substrates. 

5.4. CCPs coated on copper and its alloys

Cu is used in industrial and technological applications on a large 
scale because of its outstanding processability, thermal and electrical 
conductivity, wear and shock resistance, and ductility. Cu is the best 
selection for integrates circuits, especially microprocessors due to its 
improved electromigration performance as well as low resistivity [158-
162]. Under neutral pH conditions, protective oxide or hydroxide layers 
form on the surface of Cu substrates [163-167]. In chloride-containing 
environments, the copper corrosion process and the protective layer for-
mation are more complex [168, 169]. In oxidative environments, the 
mechanism of corrosion for copper involves the electrochemical reduc-

tion of water and oxygen at local cathodic zones and the dissolution of 
Cu at local anodic zones. The rates of reduction and dissolution reac-
tions are slowed down by the formation of the protective film formation, 
and the diffusion rate of Cu chloride ions into the chloride solution influ-
ences the rate of these reactions. However, the diffusion and reduction 
of corrosive species like oxygen cannot be prohibited by the oxides or 
hydroxide layers [170, 171].

The enhancement of the corrosion resistance of copper has been an 
attractive topic for researchers [172, 173]. Applying CPs on copper sub-
strates and their corrosion behaviors have been reported in the literature 
[174-182]. Beikmohammadi et al. [37] used the in situ electropolymer-
ization technique to deposit PPy/TiO2 composite coating on copper elec-
trodes. It was proved that the addition of TiO2 nanoparticles promoted 
the corrosion protection behavior of the coating compared to bare PPy in 
a harsh environment. As reported for the similar coatings for other met-
als, an increment of barrier to diffusion, charge transport prevention by 
the TiO2 particles, high surface area of the titanium oxide nanoparticles 
for the dopant liberation, as well as redox properties of polypyrrole are 
responsible for the improvement.

Pan et al. [183] used Cu as substrate and electrochemically synthe-
sized the conductive composite coating consisting of an outer PANI lay-
er and an inner PPy layer. They found that the corrosion potential of Cu 
substrate increased via both the single PPy coating and the bilayered 
PPy/PANI. In addition, the corrosion current density decreased by an 
order of magnitude compared to uncoated Cu substrate. They also eval-
uated the Long-term protection of the coatings. It was shown that the 
PPy/PANI bilayer coating was better than the single polypyrrole coating 
that can be an effective physical barrier for inhibiting the penetration of 
corrosive species.

In another study, Çakmakcı et al. [184] fabricated the poly(pyrrole)/

Table 4.
Research reports on using CCPs for corrosion protection of Cu and its alloys

Authors CPs Additive Coating technique Medium Corrosion behavior

Badi et al. (2020) [94] PANI Silver nanoparticles
Electrochemical 

methods
HCl

The coating containing the nanoparticles of PANI-Ag 
exhibited corrosion protection for 6061 Al alloys used in 

solar panel frames.

Wan et al (2019) [189]
PPy

Benzotriazole (BTA) or/
and silica

Cyclic voltammetry 
technique

NaCl
The composite film exhibited good performance in 

corrosion protection due to the synergetic effect of silica 
physical barrier and BTA active protection.

Beikmohammadi et al. (2018) 
[37]

PPy TiO2

Cyclic voltammetry 
technique

NaCl
Nanoparticles of TiO2 exhibited good performance in the 
improvement of polypyrrole films for the protection of 

copper.

Jafari et al. (2016) [190]
PPy Graphene

Cyclic voltammetry 
technique

H2SO4

The number of polymer pores decreased and the nano-
composite morphology after immersion in NaCl solution 

at a concentration of 5000 ppm for 2 hours, remained 
constant and unchanged.

Shabani et al. (2015) [191] PPy Zeolite Electrodeposition NaCl
By using this coating the corrosion current density 

declined and reached 0.34 μA cm−2 and also the potential 
of corrosion shifted from −0.314 V to −0.141 V.

Pan et al. (2015) [183]
PPy/
PANI

-
Cyclic voltammetric and 

galvanostatic
acidic medium

The PPy/PANI bilayered coating provided better protec-
tion for the copper substrate than the PPy coating.

Davoodi et al. (2015) [192]
PPy

Multi-walled carbon 
nanotubes

Cyclic voltammetry 
technique

NaCl
Higher protection of corrosion was obtained by using 
the nanocomposite of PPy/functionalized MWCNT 

compared to PPy/MWCNT.

Dhibar et al. (2013) [193] PANI -
Electrochemical 

methods
HCl

The promising electrochemical properties were exhibited 
with doping of 2 wt% PANI. 

Ozkazanc et al. (2013) [209] PPy Zinc and nickel Electrodeposited H2SO4

The protection degree for electrodes of copper was 
enhanced. 

K. Wu et al. (2009) [93] PANI Silicate/carbon black
Electrochemical 

methods
NaCl

The resistance of corrosion and barrier properties were 
enhanced by using the system of PANI/CB.
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poly(N methyl pyrrole) bilayer and poly(pyrrole-co-N-methyl pyrrole) 
copolymer composites via electrochemical synthesis. They applied them 
on Cu substrate through cyclic voltammetry from an aqueous solution of 
0.1 M monomer and 0.3 M oxalic acid. They suggested that the mono-
mer feed ratio strongly affects the performance of coatings, in which the 
most protective property was illustrated by copolymer fabricated with 
8:2 concentration ratio. Electrochemical impedance spectroscopy and 
anodic polarization using 0.1 M H2SO4 solution were employed to eval-
uate the corrosion behavior of polymer composites. They implied that 
the bilayer and copolymer coatings had a higher protection effect than 
that of single PPy coatings. 

Branzoi et al. [185] investigated the electropolymerized monolayer 
poly (N, N’ dimethylaniline) (PNDMA), bilayer PNDMA/PANI, poly-
aniline (PANI), PANI/PNDMA coatings on Cu substrate.

They found that good corrosion protection was obtained by PND-
MA-SDS/PANI coatings in aggressive media. In addition, better corro-
sion inhibition efficiencies were observed for bilayer coatings.

Singh et al. [186] used electrophoretic deposition (EPD), as a less 
time-consuming, inexpensive, and fairly facile method, to fabricate hy-
drophobic graphene oxide-polymer composite (GOPC) on copper. The 
efficacy of the coating under stringent environmental conditions was in-
vestigated via EIS and potentiodynamic polarization investigation. They 
implied that electrochemical degradation of the bare copper substrate 
was three orders of magnitude higher than GOPC coating. They realized 
that the GOPC coatings were impermeable to ion diffusion of corrosive 
liquid solution and oxidizing gas.

In another study, Kim et al. [187] fabricated graphene/polysiloxane 
(PSX) nanocomposite films possessing superior corrosion protection, 
high electrical, and dual function. A facile bar coating method using a 
metering rod was employed for the better in-plane ordering of filler net-
works in the coating. It was found that PSX-G composite coating films 
improved the charge transfer resistance dramatically (20,000%), high-
er electrical conductivity (1700 Sm-1), and decreased rate of corrosion 
(1/40 th). This was due to complementary effects between the covering 
agent of graphene defects and inorganic polymer matrix as the anticor-
rosive layer as well as graphene conductive filler. They implied that the 
system could be potentially employed in industrial fields including en-
ergy storage systems, electromagnetic shielding (EMI), and anti-icing.

Singh et al. [188] applied a cathodic electrophoretic deposition 
(EPD) technique to fabricate anticorrosive graphene reinforced com-
posite coating. They implied that the Cu substrate became resistant to 
electrochemical degradation by applying the composite coating. In this 
regard, the Tafel analysis showed that composite coating reduced the 
corrosion rate about an order of magnitude lower than that of bare sub-
strate. Table 4 summarizes the studies focusing on the application of 
CCPs for corrosion protection of steel, Cu, Al, and Mg.

6. Conclusions and future insights

CCPs have been widely investigated for the protection of metal sub-
strates such as steel, Al, Cu, and Mg. PANI, PPy, and PTh are common 
conducting polymers that have been developed as protective coatings 
for metals. Composite conducting polymers have been prepared with the 
incorporation of different components such as ZnO2, TiO2, NiLa, Mn2O3, 
etc. Corrosion inhibiting and anodic protection is the most important 
contributing mechanisms to the reduction of the corrosion rate of metals. 
It has been demonstrated that CCPs have superior corrosion protection 
properties than do conducting polymer coatings. This is the result of 
the high surface area of nano-additives for the dopant release, and the 
promotion of barrier effect against diffusion. It is expected that in future 
investigations, a variety of reinforcements will be at the center of atten-
tion and more focus will be placed on the application of CCPs on other 

metallic substrates and in different fields. Moreover, since the protection 
against corrosion by CPs is mostly based on the mechanism of anodic 
protection, the stabilization of the passive oxide film under the polymer 
coating and inhibition of the aggressive anions from penetration into the 
polymer film must be carefully considered.
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