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A B S T R A C T A R T I C L E  I N F O R M A T I O N

Drug delivery is known as the administration of drugs using suitable vehicle for achieving effective treatment 
with no unwanted effects. In recent years, various composite materials have been developed and evaluated for 
being used in different biomedical fields such as wound dressings, cardiac prosthesis, tissue engineering, and drug 
delivery. Zinc is the second most available element after Fe in our body. Nanoparticles based on metal oxides, such 
as zinc oxides and Zn-containing composites, can be considered as viable platforms for some biomedical uses, 
especially for drug delivery applications. Mg composite biomaterials are also suggested for diverse biomedical 
applications due to their good mechanical properties, biocompatibility, and bioactivity. This paper highlights ap-
plications of zinc and magnesium-based composites in development of drug delivery systems.
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1. Introduction

Drug delivery systems are designed for the administration of a phar-
maceutical compound to promote its therapeutic effects in the animal 
or human body with minimum side effects [1, 2]. Through extensive 
studies on animals and humans, our understanding of pharmacodynam-
ics and pharmacokinetic fundamentals has been improved widely. Based 
on these improvements, several attempts have been implied to improve 
drug effects in treatment. As a result of these attempts, controlled-release 
technology is developed, for instance, sustained release drug delivery 
systems, targeted drug delivery systems, on-demand drug delivery sys-
tems, etc. Such systems include tablets, capsules, liposomes, nanoparti-
cles, hydrogels, microneedles and other medical devices [3, 4]. 

In the past few years, a wide range of composites has been devel-
oped and evaluated for different biomedical applications such as cardiac 
prosthesis, tissue engineering, and drug delivery [5-9]. For instance, for 
delivering a drug to the intestines, the structure of the composite should 
include an acid-resistant fatty acid surface covering the interlayers of 
lactate dehydrogenase (LDH) [10-12]. In recent years, there has been a 
great interest in the development of bioactive mesoporous materials for 
drug delivery and bone repair owing to their high pore volume as well 
as specific surface area. In this regard, a variety of bioactive mesoporous 
materials have been studied including mesoporous amorphous calcium 
silicate [13], silica-hydroxyapatite (HAp) composite [14], silica with 
different pore sizes [15], and CaO–SiO2–P2O5 bioactive glasses [16-19].

Zinc is the second most abundant trace element found in our body 
[20, 21], 85% of which is stored in the bone and muscle [22]. It has 
been estimated that the zinc amount in our bone is between 110 to 300 
mg/kg [23]. The combination of multifunctional properties of zinc and 
high bioactivity of HAp yields attractive characteristics for biomedical 
applications [24]. Zn has been termed ‘calcium of the twenty-first centu-
ry’ [25]. Intrinsic physiological relevance, pro-regeneration properties, 
biocompatibility, and biodegradability of Zn has resulted in the emer-
gence of Zinc-based degradable biomaterials [25]. Zn metal-organic 
frameworks (MOFs), Zn ceramic nanomaterials, and metallic Zn alloys 
are common Zn-based biomaterials [25, 26]. In the field of drug delivery 
systems, nanoparticles (NPs) have exhibited prospective performance 
resulting from facile synthesis and incorporation, high surface area, and 
high stability, making them suitable for targeting specific cell types and 
controlling drug release within various microenvironments [27]. PH-re-
sponsive drug carriers such as ZnS and ZnO nanoparticles can target tu-
mor cells because the pH values of these cells are noticeably lower than 
those of normal cells [28, 29]. Nanocomposites are preferred materials 
for drug delivery due to their adsorption [29].

Mg alloys have attracted great interest among different biodegrad-
able materials owing to their biosafety and desirable mechanical prop-
erties [30-32]. Several studies have concentrated on the application of 
magnesium alloys for temporary cardiovascular stents [33-40]. Further-
more, drug-eluting stents (DESs) have been developed after success-
fully placing temporary Mg-based cardiovascular stents into a preterm 
baby’s left pulmonary artery [41]. Recently, some Mg alloy-based DESs, 
such as DREAMS and DREAMS 2G, have been developed, which have 
lower degradation rate compared to the bare Mg stent and release anti-
proliferative drug including paclitaxel or rapamycin. The BIOSOLVE-I 
and BIOSOLVE-II clinical trials of these stents were reported to be suc-
cessful and no obvious scaffold thrombosis or death was observed, indi-
cating optimal efficacy and biosafety [34, 40, 42]. The mentioned merits 
of biodegradable Mg-based alloys have encouraged researchers to in-
vestigate porous magnesium-based composites that offer higher fracture 
toughness as well as compressive strength for bone tissue engineering 
applications [43, 44]. Mg-based composite scaffolds have also shown 

favorable drug release profiles appropriate for bone infection treatment 
[45].

The objective of this paper is to review the progress and development 
of Mg and Zn-containing composites for drug delivery, their synthesis 
methods, mechanisms, and current challenges and future developments. 

2. Drug delivery system

Controlled drug delivery systems (DDSs) are known as formulations 
or devices that can transport therapeutic agents in the body for their ac-
tion at specific site, at desired rate, for specific time, and release of the 
drugs to the target location [46-48]. Therefore, these systems act as an 
interface between the drug and the patient and help us to develop person-
alized medicine including pharmaco proteomics, pharmacometrics, and 
pharmacogenomics. In addition to active pharmaceutical components, 
an improved delivery process provides a suitable pharmaceutical formu-
lation containing a variety of inactive constituents [49, 50]. Any disease 
is treated by the specific concentration of therapeutic drugs in plasma 
with a special regimen [51], which is achieved by a specific drug dose 
taken at a particular interval in conventional drug therapy. The intervals 
and the dose of the drug are regulated only based on the half-life and 
therapeutic index of the drug. In general, fluctuations occur inevitably 
due to missed dose of the drug, improper patient compliance, over med-
ication or under medication. In order for the drug to be released with an 
effective therapeutic concentration in a controlled release system, a defi-
nite drug release kinetics is required to be followed which is achieved 
through controlled drug delivery systems [52, 53].  

The administration route also influences drug bioavailability. Vari-
ous administration routes namely, parenteral (subcutaneous, intramus-
cular, and intravenous) or enteral (ocular, nasal, oral, or transmucosal) 
can influence the drug bioavailability by altering the biological barrier 
numbers a drug should cross or by altering the drug exposure to meta-
bolic and pumping mechanisms [54, 55]. To overcome these limitations, 
it is required to use existing drug effectively and safely using concepts 
and techniques contributing to controlled/sustained and targeted drug 
delivery systems. Moreover, the attempts towards overcoming negative 
aspects of conventional drug delivery that are formed by compression of 
tablets, coating, and encapsulating bioactive drug molecules have result-
ed in technological advancements in drug delivery systems and revolu-
tion in medication methods [50, 56]. In this regard, computational simu-
lations have also provided a unique insight into the mechanisms of drug 
diffusion and adsorption in porous carriers at the atomic level [57-60]. 

3. Composites in drug delivery

In recent decades, noticeable advancements have been observed in 
the design of chemotherapeutics. However, most chemotherapeutics 
have some limiting drawbacks such as high cytotoxicity, nonspecific 
and uncontrolled delivery, high drug dosing, lower solubility, poor ab-
sorption, and high side effects [61, 62]. Therefore, it is needed to de-
velop ideal drug delivery systems with some particular properties such 
as biodegradability, biocompatibility, high drug loading capacity, and 
capability of drug release in a controlled way. In recent years, different 
drug delivery systems have been designed to address these parameters 
including dendrimer, liposomes, and polymers nanoparticles; however, 
they cannot address the mentioned factors independently [63-66].

The expected characteristics of an ideal drug delivery system could 
be provided by metal substrate composites. A composite system can of-
fer some advantages like controlled drug release over a long time, sta-
bility improvement of drug delivery system, and drug bioactivity preser-
vation in polymeric-based technology. Furthermore, in comparison with 
pure liposome, dendrimer, and polymeric-based systems, this integrated 
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system may increase the delivery efficacy [67, 68]. 

4. Composites containing Mg and Zn in drug delivery

4.1 Zinc and composites containing Zn in drug delivery

Owing to better biocompatibility as well as in vivo biodegrada-
tion rate for tissue therapy and regeneration, zinc is considered a pre-
ferred candidate for biodegradable metallic materials over Fe and Mg. 
The emerging theranostics field, such as drug delivery, cancer therapy, 
bioimaging, and tissue targeting, have extensively benefited from zinc-
based ceramic nanomaterials [69, 70]. These ceramics possess sever-
al promising characteristics including a high surface-to-volume ratio, 
pH-responsive nanostructure, good biocompatibility, antibacterial ac-
tivity, and photoluminescence [71]. Organic biomaterials based on Zn, 
mainly MOFs, are also promising materials for bioimaging, drug de-
livery, and cancer therapy due to pH responsiveness as well as large 
surface/volume ratios [25].

In mesoporous silica nanoparticles (MSNs), the ZnS and ZnO quan-
tum dots, or nanoparticles, are incorporated to cover pores as a compo-
nent in nanocomposites or cappers [25, 72-74]. In addition, ZnO can 
exhibit various nanostructures such as nanobels, nano rods, nano disks, 
nano sheets, nano spheres, quantum dots, etc. It can also be modified to 
provide excellent properties as a nanocomposite. The US Food and Drug 
Administration introduced ZnO as one of the safe metal oxides [75, 76]. 
Moreover, its high energy of excitation-binding around 60 meV, as well 
as its the wide spot gap around 3.37 eV, add positive properties to its 
long list of attractive features. Regarding the rewarding properties of 
ZnO together with its low cost, nanomaterials based on this metal oxide 
attracted attention in applications related to biomedicine [28, 77]. Fur-
thermore, ZnO nanomaterials exhibit a high capacity of drug loading, 
have good biodegradability, and can be synthesized through different 
routes, making them prospective materials for drug delivery. Not only 
ZnO-based nanocarriers have been fabricated into various forms of 
nanostructures to deliver drugs to target sites but also they have designed 
to release the drugs in a controlled manner in response to the pathophys-
iological conditions [78, 79].

4.2. Magnesium and composites containing Mg in drug delivery

Mg, as one of the important elements in bone tissue and body flu-
ids, has some key roles in the improvement of bone mineral density, 
reduction of bone fragility, and enhancement of the growth and adhe-
sion of osteoblast cells leading to bony tissue development [31, 80, 81]. 
Because of the excellent biocompatibility, bioactivity, and mechanical 
properties of Mg-based biomaterials, they have been considered for lo-
cal drug delivery systems as well as bone regeneration materials. These 
systems include forsterite (Mg2SiO4) [82], calcium phosphate bone ce-
ments doped by Mg [83, 84], magnesium-containing bioactive glasses, 
etc. [85]. To make biomaterials suitable for bone repair, they are pre-
ferred to exhibit a controllable drug delivery capacity in addition to 
bioactivity [86, 87]. The Mg alloy surface can be treated by bioactive 
agents to become suitable for this kind of application. Local drug release 
strategies have several advantages over traditional systemic drug deliv-
ery including avoiding systemic drug exposure as well as using a lower 
amount of drugs [88]. Until now, some drug release orthopedic implants 
based on Mg alloys have been reported containing antibiotics, e.g. anti-
microbial peptide [89, 90], gentamicin [91], or gentamicin sulfate [92]. 
Magnesium alloy implants commonly suffer from an easy infection re-
lated to implantation along with the high rate of degradation. Dong et al 
[89] fabricated a surface drug delivery system based on Mg/Epoxy res-
in-ZnO/Polycaprolactone (PCL)-Ibuprofen using a dip coating method 
followed by spraying. It was suggested that the composite coating could 
be a promising alternative for biodegradable Mg-based drug delivery 
and implant applications.

5. Synthesis methods of composites containing Mg and 
Zn

 5.1. Electrospinning method

In order to fabricate composite with well chemical composition and 
controlled morphology, many advanced methods have been employed. 
Meanwhile, electrospinning is considered the simplest and most adapt-
able technique. The fabrication of composites can easily be prepared via 
the electrospinning technique; however, the only restriction is that the 
second phase should be well dispersed or soluble in the primary solu-

Fig. 1. Schematic illustration of composites containing bioactive agents by (a) blend, (b) coaxial, and (c) emulsion electrospinning.
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tion. This technique has been developed approximately for a century and 
can be considered as sub-branches of the electrospray process [93-95]. 
During the electrospinning process, the elongation of the liquid drop oc-
curs by increasing the electric field. A conical shape of the liquid drop is 
created by achieving a balance between the induced charge distribution 
on the drop surface and the liquid surface tension. The process is shown 
schematically in Fig. 1.

In the case of electrospinning, the fundamental setup is easily con-
trolled and very simple. Mainly, it consists of an electrically conductive 
collector (an aluminum foil or silicon part), a high-voltage power sup-
ply, and a spinneret, however, all of these segments are not essential 
[96]. Therefore, to produce fibers instead of droplets, a number of pro-
cessing parameters must be optimized actually e.g. fibers, droplets, or 
a beaded structure that depends on the different processing parameters, 
such as distance between collector and source [97].

5.2. Solvothermal technique

Another synthesis method for the composites is the solvothermal 
technique. The general procedure is similar to the hydrothermal tech-
nique, but organic solvents are utilized instead of water in the solvo-
thermal method [98-100][96]. Through this technique, a transformation 
or chemical reaction occurs under supercritical temperature and pres-
sure in an organic solvent such as toluene [101], 1, 4 butanol [102], and 
methanol [103]. To make the final material crystallized, it is required to 
perform a subsequent thermal treatment [104].

5.3. Co-precipitation method

A commonly used technique for the fabrication of layered double 
hydroxides (LDHs) and similar materials for drug delivery applications 
is co-precipitation [105-107]. For all co-precipitation variations, similar 
materials are required for initiation. The starting materials are composed 
of similar starting materials: 1) a divalent cation soluble source for the 
formation of the layers; 2) a trivalent cation soluble source for the for-
mation of the layers; 3) a soluble ionic compound such as sodium nitrate 
and sodium carbonate as a source of interlayer anions; 4) a strong base 
including sodium hydroxide, urea, ammonia, and potassium hydroxide 
to cause LDH precipitation [105, 108, 109].

5.4. Sol-gel method

The sol-gel technique is an extensively used method to synthesize 
highly pure and homogeny products [93, 110, 111]. Depending on the 
homogeneity degree of the gel, two types of the sol-gel method are 
known: monophasic and diphasic. In case metal ions are dispersed at 
the atomic level, it is called a monophasic gel, while in diphasic one, 

the homogeneity scale is in the range of 1-100 nm [112]. The hybrid gel 
is a combination of monophasic and diphasic gels [113, 114]. The final 
material properties are determined by the rate of hydrolysis and conden-
sation in the sol-gel process, which is dependent on different factors. 
These factors include starting materials, inorganic and organic additive 
addition, pH, water content, etc. [114, 115]. Recent developments in the 
sol-gel process have made it possible to embed organic compounds as 
well as other modified inorganic oxides in SiO2 and also to control the 
release of these compounds from the matrix into the medium [116, 117]. 
Despite the remarkable advantages of these sol-gel carrier systems, they 
are not widely known for drug delivery applications. The sol-gel method 
is facile and versatile; the starting materials are inexpensive, inert, stable 
to heat and light, and benign for the environment or humans [118-121].  

5.5. Water-in-oil-in-water (w/o/w) double emulsion method

According to Sahoo et al. [122] and Jaraswekin et al. [123], the 
most popular method for the preparation of poly(lactic-co-glycolic acid) 
(PLGA) microparticles (MP) or microsphere (MS) is the solvent evap-
oration method. In this technique, elevated temperatures or agents for 
inducing phase separation are not needed, and sterile microcapsules can 
also be produced by scaling up microencapsulation (ME) [124, 125]. 
Based on the drug state in the polymer solution and the dispersion me-
dium, the emulsion method is categorized into oil-in-water (o/w), water-
in-oil (w/o), and water-in-oil-in-water (w/o/w) double emulsion meth-
ods [126, 127]. Among the methods used for MS preparation, the w/o/w 
solvent evaporation is the most commonly practiced technique [128]. In 
order to provide the controlled drug release, degradation protection of 
the drugs, and alleviating adverse effects of the drugs in the body, phar-
maceutical industries extensively use w/o/w by evaporation removal of 
the emulsion solvent technique [129, 130]. In this method, to internalize 
the active ingredient efficiently, the stability of the primary emulsion is 
considered to be a critical factor [131]. Low encapsulation efficiency is 
the result of unstable primary emulsion [132, 133].

5.6. Microemulsion method

The microemulsion method is employed for the preparation of high-
Tc oxide of YBa2Cu3O7, nanocrystalline Al2O3, TiO2, Fe2O3, colloidal 
metals, colloidal AgCl, and colloidal Fe3O4 [134, 135]. Microemulsions 
consist of at least three components including a surfactant, a nonpolar 
phase (usually oil), and a polar phase (usually water). Microemulsions 
are thermodynamically stable solutions, isotropic, and macroscopically 
homogeneous. The polar and the non-polar regions are separated by an 
interfacial film formed by the surfactant molecules [136]. This meth-
od shows some significant advantages such as thermodynamic stability, 

Fig. 2. Free-radical polymeriza-
tion technique for the nanostruc-

tured hydrogel preparation.



F. Niazvanda et al. / Journal of Composites and Compounds 2 (2020) 193-204 197

nanoparticle monodispersity, large interfacial area, and ultralow inter-
facial tension [137, 138]. Microemulsion has attracted attention in the 
preparation of nanoparticles mainly due to the versatility of microemul-
sion systems like the very small droplet size production, cost-effective-
ness [139-141], simple procedure, and mild reaction conditions [142, 
143].

5.7. Free radical polymerization method

In bioprinting, free radical polymerization is frequently utilized for 
the creation of cross-linked hydrogels [144]. Through using thermal or 
photo-initiator or redox reaction, polymerization of a polymer consisting 
of vinyl groups occurs leading to the formation of a hydrogel. This meth-
od is not a suitable technique for the fabrication of end-functional poly-
mers. On the other hand, the situation has changed by the emergence of 
living radical polymerization, so that the production of end-functional 
polymers is also possible using this technique. Free radical polymeriza-
tion is employed to synthesize composites containing polymers, metal, 
and metal oxide used in the drug delivery systems  [145]. The processing 
steps are presented in Fig. 2. 

 5.8. Microwave radiation method

As a result of several rewarding properties of microwave stimula-
tion including controllable operability, deep tissue penetration, and good 
thermal efficiency, it is being increasingly used in numerous smart drug 
delivery investigations [146]. Microwave is composed of both magnetic 
and electrical components with high-frequency radiation in the range 
of 300 MHz-300 GHz [147]. By the use of the electromagnetic and/
or heating elements of the microwave, drug delivery systems can be 
processed and modified. The introduction of microwave radiation can 
be carried out directly onto the pre-formed products and/or upon the 
dosage form preparation. Furthermore, the microwave can be used in 
the excipients processing before using them in the drug formulation in 
delivery systems [148].

Qiu et al. [149] designed a microwave-sensitive drug microcarrier 
based on Fe3O4@ZnO@mGd2O3: Eu nanoparticles using poly [(N-iso-
propyl acrylamide)-co-(methacrylic acid)] as the microwave stimulus 
gate-keeper. By using a short-time high-frequency microwave device, 
it is possible to avoid the bulk heating, therefore, the construction of 
drug delivery systems based on MSN responsive to microwave radia-
tion is feasible [150]. Shi et al. [146] fabricated NPs for drug delivery 
based on a doped ZnO@Fe3O4 core surrounded by a mesoporous silica 
shell. The silica shell was used due to its large pore volume and good 
biocompatibility, while the core exhibited high-performance microwave 
absorbance.

5.9. In-situ gelling procedure

The in-situ gel forming polymeric systems have been extensively 
studied as carriers for sustained drug delivery. Before administration in 
the body, these vehicles are in the form of sol or suspension and after 
administration, they undergo in-situ gelation [151-153]. In the formula-
tion of these systems, a gelling agent is used to form a stable suspension/
sol system containing dispersed drugs and other excipients. Due to the 
pH change in the gastric environment, the gelation of the sol/suspen-
sion system is triggered. The adopted formulation is a sodium alginate 
solution or gellan gum containing sodium citrate and calcium chloride, 
in which the free calcium ions turn into complexes and released only 
in the stomach acidic environment. Sodium alginate/gellan gum acts 
as a gelling agent producing textures in the final product, which can 
be in the form of hard, brittle, non-elastic gels of fluid gels [153-155]. 
Ca ions entrapped in sodium alginate or gellan gum polymeric chains 
enable polymer chains crosslinking to form matrix structure. In the ge-

lation process, double-helical junction domains are first formed, then, 
these domains are re-aggregated forming a three-dimensional network 
by hydrogen bonding with water and complexing with cations [156, 
157]. Some advances in the field of in-situ gelling include: overcoming 
the problem of poor conventional ophthalmic solution bioavailability 
by using gel drops that are instilled into eyes; increasing drug contact 
time at the maximum absorption site; reducing systemic drug absorption 
through the nasolacrimal duct and the resulting side effects; reducing the 
frequency of administration, and drug delivery with narrow windows 
of absorption in the small intestinal zone. Gastro-retentive drug delivery 
systems are beneficial for drugs that are absorbed through the stomach 
such as ferrous salts and also for the ones that are used for local treat-
ment in the stomach and peptic ulcer disease treatment (e.g. antacids) 
[158-160].

6. Drug delivery mechanisms of composites containing 
Mg and Zn

There are slightly different ways for the definition of the term “re-
lease mechanism”. It has been used for describing the process that deter-
mines the rate of release and also for describing the procedure through 
which drug molecules are released or transported. A number of process-
es or mechanisms have been demonstrated to be rate-controlling in drug 
release [161]. In recent years, the development of novel approaches for 
designing new controlled-release drug delivery systems has been at the 
center of attention [162]. The traditional drug delivery system works in a 
way that causes a rapid increase in the drug dosage in the blood follow-
ing by a drop in the dosage [163, 164]. Drug plasma levels are described 
as under level and overhead, which are inefficient and toxic, respectively 
[165]. In an ideal drug delivery system, a suitable drug concentration 
should be transmitted to targeting sites while keeping other tissues safe 
[166, 167].The following two formulas (Eq. 1and Eq. 2) are used for the 
calculation of the levels of loaded and released drug [166]:

OR 						        (1)

						        (2)

The efficiency of drug encapsulation can be determined according 
to Eq.(3) [168]:

						        (3)

The drug release of nanocomposite has been studied in the literature 
using mathematical models [169]. Eq.4 can determine the sample liquid 
uptake:

Ms = Ktn                                  				     (4)
where, K and n are constants. By using the mechanism of drug re-

lease, the following power law equation is obtained:
Mt /M∞ = Ktn                                                                                                               	     (5)

where, the drug released fraction at time t and equilibrium is represented 
by Mt and M∞, respectively. The characteristic of the drug and the sam-
ples determines the value of K and the diffusion exponent of n is used 
for the characterization of the drug release mechanism. The values of 
‘k’ and ‘n’ are obtained by calculating the intercept and slope of the plot 
between Mt/M∞ [170]. 

Das et al. [171] designed a colon-specific drug carrier based on Zn/
pectin/chitosan composite microparticles. By studying the drug release, 
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the formulation was optimized. The drug release pattern was shown to 
be significantly affected by formulation parameters. It was reported that 
the specific content of the colon-specific drug could be loaded without 
hampering its behavior. Results showed high encapsulation efficiency 
and stability of the drug in the formulation during storage time. Further-
more, in vivo drug release was observed from the optimized composite 
particle formulation in rats. Company et al. [172] developed a novel 
composite of zinc oxide nanoparticles and citric acid-based polyester 
elastomer (POC–ZnO). Results indicated that the original concentration 
of NPs in the composites affected the ZnO release kinetics for 15 days. 
Among all composites, POC–ZnO 5% was reported to have the zero-or-
der release kinetics.

7. The state-of-the-art of composites containing Zn and 
Mg in drug delivery

Dodero et al. [173] used an electrospinning technique to embed 
ZnO nanoparticles within alginate-based nanofibrous membranes.  In 
order to combine ZnO nanoparticle with the polymer through electro-
spinning, it is preferred to use medium-molecular-mass alginates with a 
low mannuronic and guluronic acid residues (M/G) ratio or low-molec-
ular-mass alginates with a high M/G ratio. Composite scaffolds based 
on ZnO-polyetherimide (ZnO/PEI) with antibacterial activity were 
also developed by the electrospinning process [174]. The effectiveness 
of the developed scaffolds was reported by positive responses against 
gram-negative (Escherichia coli) bacteria as well as gram-positive 
(Staphylococcus aureus).

Javanbakht et al. [166] developed a novel drug delivery bio-nano-
composite based on carboxymethylcellulose (CMC)/zinc MOF/
graphene oxide via the solvothermal method. It was reported that the 
prepared bio-nanocomposite could be used for anticancer drug delivery. 
Bhattacharjee et al. [175] successfully incorporated ZnO into Fe (III) 
trimesate metal-organic framework (MIL-100(Fe)) to deliver anticancer 
drugs of doxorubicin hydrochloride (DOX) by the one-pot in-situ meth-
od. The investigation rendered interesting insights into the incorporation 
of NPs into MIL-100(Fe) and its drug loading capacity as well as release 
rates. Kura et al. [176] loaded L-3-(3,4-dihydroxyphenyl) alanine as 
an anti-parkinsonian drug in a novel layered organic-inorganic nano-
composite based on Al-layered double hydroxide (LDH)/Zn via a direct 
co-precipitation technique. Sustained-release behavior was observed 

in these composites suggesting that they are suitable for controlled-re-
lease formulations. In comparison with pure levodopa, the synthesized 
nanocomposite showed enhanced cell viability of 3T3 cells after 72 h 
of exposure. 

Seyfoori et al. [177] fabricated a robust nanostructure composite of 
ZnFe2O4 and ZnFe2O4-hydroxyapatite using the co-precipitation meth-
od for multiple applications of cancer treatment, bone filler, and drug 
delivery.

Nigam et al. [178]  reported a successful synthesis of ZnxMg(1-x)Fe2O4 

nanoparticles using the sol-gel method with the potential to be used for 
drug delivery. SiO2–CaO mesoporous bioactive glass nanoparticles 
doped with Zn2+ ions were produced by Neščáková et al. [179] using the 
microemulsion assisted sol-gel method. It was reported that the nanopar-
ticles have the potential for being used as drug delivery systems as well 
as bioactive fillers for various applications such as wound healing and 
bone regeneration. Thangaraj et al [180] synthesized superparamagnetic 
Ce4−xSr1+xFe5−xZnxO14+δ (x=0-0.45) nanocomposites by the nitrate-ci-
trate sol-gel route for different applications such as drug delivery, sensor, 
dielectric, conductivity studies, and optical properties. Pathania et al. 
[181] studied the drug release kinetics of chitosan-g-poly(acrylamide)/
Zn (CPA-Zn) nanocomposite synthesized by microwave radiations. The 
nature of the matrix and the pH of the medium were shown to affect the 
drug release behavior. 

Zn-clinoptilolite/GO nanocomposite was introduced by Khatamian 
et al [182] for the preparation of drug delivery systems with high load-
ing capacity. The reflux method and microwave-assisted hydrothermal 
method were used for the fabrication of the nanocomposites. As a cancer 
drug, the nanocomposite exhibited slow release for DOX, high load-
ing capacity, and cytocompatibility. Nanocomposite hydrogel scaffolds 
based on chitosan-gelatin/ZnO with both drug delivery and inherent 
antibacterial properties were prepared using an in-situ method. The pre-
pared scaffolds demonstrated high porosity and no agglomeration in the 
chitosan-gelatin matrix. Additionally, the nanocomposite scaffolds ex-
hibited improved antibacterial, biodegradation, swelling properties, as 
well as a controlled release for naproxen [183]. Yadollahi et al [184] 
synthesized nanocomposite hydrogel beads of chitosan/ZnO by the 
in-situ generation of zinc oxide nanoparticles upon the chitosan bead 
formation. According to the results, the drug release from the chitosan 
beads was prolonged by the addition of ZnO nanoparticles. This was 
reported to be due to a longer drug migration path from the beads to the 

Fig. 3. Hydrogel beads containing ZnO NPs for the drug delivery application.
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media. The nanocomposites showed promising behavior for develop-
ing controlled delivery of drugs. The drug release behavior of hydrogel 
beads containing ZnO particles is demonstrated in Fig. 3.

Yang et al [185] assembled flower-mesoporous carbon (FPCS)-mag-
netic Fe3O4 and pH-sensitive ZnO nanoparticles to construct the FPCS-
Fe3O4-ZnO composite as microwave and pH bi-triggered drug carrier. 
Yang et al. [186] incorporated Mg particles into poly (l-lactic acid) 
(PLLA) microspheres to suppress inflammatory response induced by 
PLLA and regulate the drug release profile. It was shown that the in-
ternal connectivity of the microspheres was altered during hydrolytic 
degradation by changing the Mg particle sizes and contents, resulting 
in manipulating drug delivery with tunable release patterns. Foroughi et 
al. [168] developed a novel synthesis method (one-step modified reverse 
microemulsion) for the preparation of HAp-MgFe2O4 nanocomposite for 
the drug delivery application. It was demonstrated that the drug deliv-
ery rate of the nanocomposite was influenced by calcination temperature 
and textural properties.

In a study by Cheddadi et al. [187], the free radical polymerization 
method was used to synthesize poly (magnesium acrylate) hydrogel for 
drug delivery applications. They were suggested for oral drug delivery 
devices due to prospective drug release properties along with simplicity 
and low cost. In the work performed by Rijal et al. [188], the electrospin-
ning technique was utilized to synthesize Mg incorporated polycapro-
lactone/low molecular weight chitosan (PCL/LMW-CS) composite 
nanofiber. They showed that the obtained nanofibrous were good can-
didates for applications in tissue engineering such as bone regeneration, 
wound healing, regenerative medicine, and drug delivery. Rijal et al. 
[189] used the electrospinning method to prepare composite nanofibers 
of MgO, chitosan (CS), and poly(ε-caprolactone) (PCL). They realized 
that the obtained new composite nanofibrous membranes were able to 
mimic the function and physical structure of the tissue extracellular ma-
trix (ECM). This, in turn, suggested that they can be potentially used for 
various tissue engineering applications e.g. DDSs.

In another study, Mohammad et al. [190] prepared a composite of 
ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO4) via the 
sol-gel technique. Their results proved that the composite could be used 
in the fields of drug delivery, biosensor, bioanalytical, and scaffolding 
applications. Foroughi et al. [191] used a one-step reverse microemul-
sion method to synthesize nanoporous HAp-MgFe2O4 nanocomposite. 
They found that calcining the nanocomposite at 700 °C results in a 
core-shell structure with MS of ~9.5 emu/g. In addition, considering the 
IBU release behavior of all samples, the drug delivery rate of the nano-
composite could be altered by calcination temperature that in turn may 
change the textural properties of samples.

Bakhsheshi-Rad and his colleagues [45] synthesized composite scaf-
folds of Mg-Ca-TiO2 (MCT). They loaded different concentrations of 
doxycycline (DC) in the scaffolds and used the space holder technique 
as a cost-effective, feasible, and novel method to have an appropriate 
corrosion rate, a network of interconnected pores, and appropriate com-

pressive strength. A schematic presentation of this technique is shown in 
Fig. 4. Considering the drug release profiles, they found that DC loading 
MCT scaffolds showed sustained and burst drug release and by increas-
ing the concentration of DC, the drug release rate was increased. 

Tabia et al. [192] fabricated the Mg-doped bioactive glass nanopar-
ticles (BG-NPs) through the sol-gel route. They loaded amoxicillin to 
the synthesized BG-NPs and investigated their drug release behavior. 
They concluded that by increasing Mg content the loading efficiency 
decreased. However, the release kinetics was increased by increasing 
magnesium content. They realized that the specific surface area and po-
rosity were responsible for this advancement.

8. Conclusions and future insights

In this review, the drug delivery composite systems containing Mg 
and Zn either matrix or reinforcement are summarized. Both Zn and 
Mg have been applied in various areas of DDSs due to their amazing 
intrinsic properties i.e. biocompatible and biodegradable as well as be-
ing abundantly available. This has made them remarkably advantageous 
over their conventional counterparts. Besides, the synthesis methods of 
these excellent composites are also reviewed and their mechanism of 
drug release is discussed. It should be noted that studying the drug deliv-
ery properties of zinc/magnesium and their composites might lead to the 
realization of more effective drug delivery systems in the future.
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